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D. V. Alekseevsky
I. Basic facts about Lie groups and Lie algebras

I.1. Lie groups and Lie algebras. Functor Lie. Recall that a Lie group
is a smooth manifold G together with structure of a group such that the group
operations

L:GxG—=G, (91,92) 9192

i:G>5 G, grg!

are smooth mappings. Here we will assume that either 4ll objects are real and
then G is a real Lie group, or all objects are complex and holomorphic, then G
is a complex Lie group. An example of Lie group is the general linear group
GL(V) = Aut(V), i.e. the group of all automorphisms of a finite dimensional vector
space V & R™ or C". If V is the arithmetic vector space k", k = R or C, then the
group GL(k™) is denoted also by GL, (k) and it is called the general matrix group.
Any closed subgroup G of GL(V) is a Lie group, called a linear group. Example of
linear groups are the following classical Lie groups. The group

SL(V)={A € GL(V), detA=1}
of unimodular transformations and the group
Aut(V,b) = {A € GL(V), A-b:=b(A-,A) =b}
of automorphisms of a nondegenerate bilinear form b. If b = w is skew-symmetric,
then the group Aut(V,w) = Sp, (V) = Sp;(C), V = C is called symplectic group
and it is connected. For V = k", n = 2m, the standard notation for symplectic

group is Spm (k). If b = g is a symmetric form, then the group Auty(V, g) = O,4(V)
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is called the orthogonal group. The connected component of the unity is denoted
by SO,(V) = {A € 04(V),det A= 1} or by SO,(C), if V = C".
Lie algebra (real or complex) is a vector space (over k = R, C) with a bilinear

operation
gxg3(X,)Y)~[X,Y])eg

which satisfies the Jacobi identity
X[V, 2] + [, (2, X]) + [2,[X, Y]] =0, X,Y,Zeg.

Let G be a Lie group. Denote by L the left action of G on G, that is the
homomorphism

L:G—-Difi(G), g—Ls, Lgg1i =991, 9,91 €G.
The space
g=LieG:=X(G)le = {X € X(G), L}X =X, g€ G}

of all Lg-invariant vector fields on G is a subalgebra of the Lie algebra X(G) of
vector fields (with respect to the Lie bracket (X,Y) —» [X,Y] =X oY -Y o X;
here vector fields are considered as derivations of the algebra C*(G) of smooth
functions on G and o means the composition of derivations). Lie algebra of a Lie
group G is called the tangent Lie algebra g of G.

Any Lg-invariant vector field X is defined by its value X, in the point e € G:
Xg=X. g:=(Ry), Xe gE€QG,

where R,91 = g19 is the right multiplication. (In the case of a linear Lie gioup
G, X, = X, - g, where dot stands for matrix multiplication). The map X — X,
defines isomorphism ¥(G)2¢ — T.G which allows identify the tangent Lie algebra
X(G)Le with the tangent space T.G. If G C GL(V) is a linear Lie group, then the
Lie bracket on g = TG is the commutator:

X,Y]=X-Y-Y-X, X,Ye€gl(V)=EndV.

The map G +— g = LieG defines a functor from category of Lie groups to category
of Lie algebras. It is called Lie functor and is very closed to be an isomorphism
of categories. Indeed, any Lie algebra g is the tangent Lie algebra of some simply
connected Lie group G, defined up to an isomorphism. Any Lie group G, with
tangent Lie algebra g is isomorphic to the quotient G/T" of G by a central discrete
subgroup I' of G. All Lie groups with the same tangent Lie algebra are locally
isomorphic, i.e. they have the same group operations in some neighborhood of the
unity. Many properties of a Lie group G can be described in terms of properties of
the tangent Lie algebra g. )
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For example, Lie group G is solvable, nilpotent, commutative iff the tangent
Lie algebra g is solvable, nilpotent, commutative. Lie group G is simple (i.e. has
no nondiscrete normal subgroup), semisimple (i.e. has no nondiscrete commuta-
tive normal subgroup), reductive (i.e. has a normal semisimple subgroup S with
commutative quotient G/S) iff the tangent Lie algebra g is simple (has no proper
ideal), semisimple (has no proper commutative ideal) or reductive (is a direct sum
of commutative and semisimple Lie algebras).

There is 1-1 correspondence between subalgebras (resp., ideals) of a Lie al-
gebra g and virtual subgroups (resp., virtual nermal subgroups) of a Lie group G
with Lie G = g. Subgroup H of a Lie group G is called virtual if it is an immersed
submanifold of G. Such subgroup H has a structure of Lie group, but H is not
necessary a closed subgroup of G (even if it is simple).

Ezercise. Prove that the classical Lie groups SL(V'), SO,(V), Sp,(V) have
tangent Lie algebras
siV)={Ae€gl(V),trA=0},
s50g(V) = {A € sl(V) g(Az,y) = g(z,Ay) =0, Vz,y € V},
spo, (V) ={A €sl(V), w(Az,y) + w(z, Ay) =0, Vz,y € V}.

Prove that all of them are simple with the exception SO,(V), where V = C* or
V = R* and g has signature (4,0), (2,2) or (0,4).

I.2. Basic results about structure of Lie groups and Lie algebras.
We collect here some useful general results about Lie groups and Lie algebras.

(1) (Levi-Maltsev theorem). Any Lie algebra g can be decomposed into a

sum
g=s+rt, snNt=0
of a maximal semisimple subalgebra s and the radical t (maximal solvable ideal).

Any two maximal semisimple subalgebras are conjugated by an automorphism
of g.

Any connected Lie group G can be decomposed into a product G = S - R
of a maximal semisimple subgroup S and the radical R (i.e. the maximal solvable
normal subgroup), such that SN R is a discrete subgroup of G. Any two maximal
semisimple subgroups of GG are conjugated by an automorphism of G.

(2) Any semisimple (respectively, reductive) Lie algebra g is a direct sum of
noncommutative simple ideals:

g=g1+ -+ gk

(respectively, simple ideals and the center).
Any simply connected semisimple Lie group G is a direct product of simple
connected normal subgroups:

G=G1X...XGk.
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Any simply connected connected reductive Lie group G is a direct product of simple
Lie groups G;, i > 0 and the connected component of the center of connected Lie
group Zo(G) ~ R? x TY, where
T9=8"x..x8
N’

q

is the g-torus G = Zp(G) x G1 X ... X Gy.

(3) (Ado theorem). Any Lie algebra g (over R,C) admits exact linear repre-
sentation, that is a homomorphism p : g = gl(V)) into general linear Lie algebra
gl(V) = EndV with trivial kernel.

For any simply connected connected Lie group G, there exists a discrete
central subgroup I' such that G/T" admits an exact linear representation p : G/T' —
GL(V) (monomorphism into GL(V)).

Let G be a Lie group and denote by Ad the natural homomorphism of G into
the group Aut(G) of automorphisms of G given by Ady, g1 = gg197%, 9,01 € G.
Since any automorphism of G preserves the unity e, the group Adg C Aut(G) acts
on the tangent space g = T.G by linear transformations and this action preserves
the Lie bracket on g:

[Ady X,Ad, Y] = Ady [X,Y], g€@, X,YeT.M.
If G ¢ GL(V) is a linear Lie group,
Ay X=g-X-g7%,
where - denotes the matrix multiplication. We get a representation
Ad: g~ Ad, € Aut(g) C GL(g),

which is called the adjoint representation of a Lie group G. It induces the adjoint
representation ad of the tangent Lie algebra g = Lie G by derivations of g:

ad: g — Der(g), X —adyx, adxY =[X,Y] X,Yeg.

Remark that the kernel of Ad coincides with Z(G) (the center of G) and kerad =
Z(g) (the center of g).

Define a symmetric bilinear form B on a Lie algebra g by
B(X,Y) =tradxady, X,Y €g.

1t is called the Killing form. The adjoint action of a Lie group G with LieG = g
preserves B:

(1) B(Ad, X,Ad,Y)=B(X,Y), g€G, X,Yeg.
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In terms of the adjoint action of the Lie algebra this condition can be written as
(2) B(adz X,Y)+B(X,adzY)=0 X,Y,Ze€g.

This condition follows from previous relation if we remark that any vector Z € g
generates an l-parametric subgroup g: = exptZ of G with tangent vector Z at
e : dgs/dtlt=0 = Z. Then to get (2), it is sufficient to differentiate (1) with g = g;
with respect to ¢t and put ¢t = 0.

The following useful criterion of solvability and semi-simplicity of a Lie algebra
g is due to Cartan.

(4) A Lie algebra g is solvable if the commutant
[0;8] =span {[X,Y], X,Y € g}
is in the kernel of B, i.e.
B([X,Y],Z)=0 VX,Y,Z€g.

A Lie algebra g is semisimple if the Killing form B is nondegenerate.

1.3. Structure of complex semisimple Lie algebras.

1.3.1. Cartan decomposition of a semisimple Lie algebra. Let now
g be a semisimple Lie algebra. Since Z(g) = 0, the adjoint representation ad :
X — adx, adx Y = [X,Y] is exact, and we can identify g with linear Lie algebra
adg C der(g) C gl(g). Remark that the connected group of automorphisms Ad G =
Aut(g)o has g as Lie algebra. It is called the adjoint group.

Define a Cartan subalgebra b of g as a maximal subalgebra such that the
linear subalgebra ady, C adg is diagonalizable, i.e. with respect to some basis of
g all the endomorphisms from ady are represented by diagonal matrices. Cartan
subalgebra b always exists and coincides with its normalizer

Ng(h) ={z €g, [z,b] Ch},

and any two Cartan subalgebras are conjugated by an automorphism of g.

A linear form o on Cartan subalgebra b is called a root if the corresponding
root space
9o = {T € g, adp T = a(h)z, Vh € h}

is not zero. A nonzero vector from g, is called a root vector. Denote by R the
(finite) set of all roots. Then we have the following Cartan decomposition of g into
direct sum of subspaces:

g=b+) ga-

a€R

The main properties of such a decomposition are:
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1) (o, 98] C Ba+s, Where goyg =0ifa+ 3 & R.
2) B(h,8o) =0, B(ga,gp) =0if a + B #0.

3) R=-R 4

4) Bjy is nondegenerate and define isomorphism

B:h)* =l ar— u,=Bltoa

5) Put E = (R) = spang R, h(R) = B~'E. Then h = h(R) + ih(R) and By,
is positively defined. We will denote the corresponding scalar product on E
and h(R) by (-,-).
6) dimg, = 1.
Choose a vector E, € g, for all a € R such that B(E,, E_,) = 2/(a,a) and
put Hy = [Ey, E_,). Then [Hy, E+q] = £2E1, and g{a) = CHy + go + g0 is a
subalgebra isomorphic to sla(C). The isomorphism is given by

1 0 01 00
Hy— (0 _1), Ey+— (O 0), E_,,,+—>(1 0).
There is some freedom in choice of root vector E,. Using this freedom, one can
choose E,, a € R, such that the following commutation relations hold:

0, ifa+ B ¢R
+(p+1)E,4p, fa+B€R,

where p > 0 is the maximal integer such that 8 — pa € R. Moreover, there exist
an algorithm for determination the sign =+ in this formula [Tits].

7 1o 5] = {

As a corollary we have

PROPOSITION. The system of roots R of a semisimple Lie algebra g determines
g up to an isomorphism.

L.3.2. Cartan decomposition and root system of classical complex
Lie algebras. Now we describe the Cartan decomposition of the classical Lie
algebras

A; = 5141(C), Bi=502141(C), Ci=sp(C), D;=s0u(C)
which are tangent Lie algebras of the classical groups
SL;1+1(C), S0214+1(C), Sp(C), SO(C).

A;) Denote by e;, i = 1,...,1 + 1 the standard basis of the vector space V =
CH! and identify the Lie algebra gl(V) of endomorphisms with V ® V*. The Lie
algebra A; = sl;;1(C) consists of all traceless endomorphisms. The subalgebra

+1

h= {h=zxiei®e;‘, ZZFO}
: i=1
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of all diagonal (with respect to the basis {e;}) elements of 4; is a Cartan subalgebra
of A;. Set E;; = e; ® e} and denote by €; € h* the linear form on § defined by
€i(h) = z;. Then R = {e; — €, i # j} is the system of roots and E;; is the root
vector with root €; — ;. The Cartan decomposition of 4, is given by

Ar=h+ ZCEij'
i#j

By, Cy, D). To describe the Lie algebras By, C;, D; in a unified way, we denote
by b a nondegenerate bilinear form in the space V' = C"™ which is either symmetric
(b = g), or skew-symmetric (b = w) and by

aut(V, b) = {A € gl(V)1 b(A1 ) + b('aA) = 0}
the Lie algebra of endomorphisms which preserve b. Then
B =aut (C¥*',g), Ci=aut(C¥w), D;=aut(C¥g).
We choose a basis eg,e;,e—i, t =1,...,l of C" for n = 2l + 1 and a basis e;,e_;,

i=1,...,1 of C" for n = 2I such that the form b is given by

!
B,:b=g=e5®e3+2e2‘Vei,-

=1

i
Ciib=w=) e Ae’;

i=1

!
Dzzb=g=2e;‘Ve'_,-
i=1

where e} is the dual basis of V* and
zAYy=zQy—-y®z, zVy=zQy+yR=z

are wedge and symmetric product. Such basis is called the standard basis of V.
We identify the dual space V* with V by means of the bilinear form b:

VEV zobz=b(z,-) zeV.

Then the Lie algebras B;, D, are identified with the space A2V of bivectors and
C; with the space V2V of symmetric (2,0)-tensors. For example, a decomposable
bivector z A y defines the endomorphism z — (z A y) 2z = g(y, 2)z — g(z, 2)y which
belongs to aut(V, g).
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The set of all diagonals with respect to the standard basis elements forms a-
Cartan subalgebra § of aut(V,b). More precisely, we have |

Bi:h= {h=zl:ii'ei/\€—i},
i=1

C;:h:{h:ixpe,-Ve_i},

i=1
Dy:h= {h:ixi-e;Ae_i}.
i=1

The corresponding Cartan decomposition is given by

!
Bi=h+ Y Ceihe_j+ Y, Ceinej+ Y Ce_ihej

i,7=0 0<i<j 0<i<j

] ] l
Ci=h+ Y CeVej+ Y CeiVej+ Y CeiVe,

i’j=1 i,j=1 i,j:].
i
Dy=b+ )Y Ceine_j+ Y Ceinej+ » Ceihe_j.
1,j=1 0<i<y (12414

Denote by €;, i = 1, ..., the standard basis of h*, defined by £;(h) = z;. Then the
roots and corresponding root vectors are given in the following table.

g roots roots vectors
€i—€j,i,j>0,i-',£j e;Ne_;
By +e;,i>0 eg N\ €4

€i+é€j,1,7>0,i<j e;Nej
—€i—€4,%,1>0,1<j | e_iAe_j

Ei—EjiFE] e;Ve_;

Ci €i+€j,i75j e Ve
- k2gy e+i Vet
—€i—Ej,1F£ ] e—iVe_j
€i—€j,1#] eiNe_;

D, EiteEjT#] eiNej
—6,'—61',1:75]' e_jANe_;

1.3.3. Root systems. Let R C E = spang R C h* be the system of roots of
a semi-simple Lie algebra g with respect to a Cartan subalgebra §. Denote by G(«)
the 3-dimensional subgroup g of the automorphism group Aut(g) associated with
the Lie subalgebra g{o) = CHy + go + 9—a, @ € R. Studying the adjoint action of
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this group on root vectors, one can establish the following fundamental properties
of the set R:
i) Yo, 8 € R, (Bla) := 322 e Z;
i) Va € R, SoR = R, where S, : 8 — B — (B|a)a is the reflection with respect
to hyperplane o in E;
iii) @, Aa € R for A € R implies A = £1.

Definition. A finite set R of vectors in Euclidian space FE is called an (abstract
reduced) root system, if R generates E and satisfies i)-iii).

From the definition one can derive the following two additional properties of
root system R.

1) Let a, B € R be roots such that |8] > |a| and (e, 8) < 0. Denote by 8 the
angle between a, 8. Then all possibilities for 8, (a|8), (8|a), |3|*/|a|? are given in
the following table.

0 (alB) KBle) [8I*/Ief*
x/2 | 0 0
kw/3 -1 -1 1
37/4 | -1 | -2 2
57/6 | -1 -3 3

Let a, 8 # +a € R. The a-series of roots, containing 3 is defined as the set
of all roots of the form 8 + ka, k € Z.

2) a-series of roots containing 8 has the form {8 + ka, —p < k < ¢} where
p,q > 0and p—q = (B|a). In particular, if (8,a) < 0, then f+a € R, if f—a € R
and 8+ a € R, then (8,a) < 0.

We associate with a semisimple Lie algebra g a root system R. Two natural
questions arise: :

1) Are two semisimple Lie algebras with isomorphic root system isomorphic?

2) Is it true that any abstract root system R is the root system of some
semisimple Lie group?

The answer for both questions is positive.

THEOREM. 1) Let g resp. g’ are semisimple Lie algebras and R, resp. R' is
root system of g, resp. g' with respect to a Cartan subalgebra %, b'. Then any
isomorphism of Euclidean vector spaces (R), (R'} which maps R onto R' can be
extended to an isomorphism g — ¢’ of Lie algebras.

2) Any abstract root system R is isomorphic to the root system of some
semisimple Lie algebra. '

The semisimple Lie algebra g with given root system R C E may be con-
structed as follows. Let EC be the complexification of the vector space E and
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h = (E)" the dual vector space. Consider direct sum of vector spaces

g=b+ZCEa1

a€ER

where E,, is a basis of 1-dimensional vector space CE, associated with aroot a € R.
g become a semisimple Lie algebra with Cartan subalgebra f) and root system R,
if the Lie bracket is defined by:

[h,b) =0,
(h, Ba] = a(R)E,, h€b, a € R

_ 0 ifa+B¢&R
[Be, Eg) = {:!:(p+1)Ea+ﬁ fa+BeR .

where a-series of roots, containing 3 is given by {8 — pa, ...., 6 + ga}. An algorithm
for determination of the sign + is given in [Tits].

1.3.4. System of simple roots. The classification of root systems can be
reduced to the classification of some special bases of the Euclidean vector space E.

Definition. Let R be a root system in Euclidean vector space E. A set
I = {m,...,m} of roots is called a basis of R or a system of simple roots if II is
a basis of E and any root o € R has integer coordinates with respect to II of the
same sign:

l
a= Zkiai, kieZ
i=1

where either k; > 0,0r k; <0fori=1,...,I. If k; > 0 (resp., k; < 0), then the root
« is called positive (resp. negative).

Hence, a basis II defines a decomposition R = Rt U R~ of the root system
into disjoint sum of positive roots RT and negative roots R~ = —R*.

To construct a system of simple roots, we define the set Ep, = E*\
{Uuer(e =0)} of regular elements in E* as the set of vectors from E* on which
all roots take nonzero values. A connected component C of E/ is called a Weyl
chamber. Any Weyl chamber C is defined by inequalities C = {o1 > 0, ...,0q > 0},
where ¢; are some roots. These roots form a basis II = {a,...,0q} of R and any
basis of R can be obtained in such a way. The finite group W = (Ss,a € R)
generated by reflections S, (the Weyl group of a root system R) acts simply tran-
sitively on the set of Weyl chambers and, hence, bases of R. A practical way for
constructing a basis of R is the following;:

Choose a regular element h € E},; and define the set of positive roots RY as
the set of roots which have positive value on h:

R* ={a € R, a(h) > 0}.
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A positive root & € Rt is called simple if it is not a sum of two positive roots. The
set Il = {ay,...,0q} of simple roots is a basis of R.

Due to the formula p—q = (8|a) for a-series of roots {8 + ko, ~p < k < ¢}, a -
root system R can be reconstructed from simple root system II inductively, starting
from simple roots. At first we determine all the roots which are sums of two simple
roots, then the roots which are sums of three simple roots etc.

Similar to root systems, one can give an intrinsic characterization of a simple
root system as follows. A basis II = {ay,...,a;} of the Euclidean vector space E!
is called a simple root system if

2(ai1aj)
a;; = (o;la;) 1= ———==
J ( ‘ll J) (a],aj)
is a nonpositive integer for any i # j. The matrix A = (la;;l|, ai; = (aila;), is

called the Cartan matriz of the simple root system II. It determines IT up to an
isometry and is characterized by the following properties:
i) aij € Z, ai = 2, a;j <0fori#7;
il) a;j =0&a;; =0
iii) mi; = Q4505 = 0, 1,2,3 for i 75 j;
iv) The matrix G(4) = ||gijl|, 9ii =1, 9ij = —§/Maz, & # j is positively defined.

The last property follows from the fact that G(T') is the Gram matrix of the
basis {al/Haill}

A nice way for visualization of a simple root system Il and its Cartan matrix
A was proposed by E.B. Dynkin. He associates with II a graph I' = I'(II), which is
called Dynkin graph, by the following rules:

Any simple root a; € II is represented by a vertex of I';

Two verteces a;, a; are jointed by m;; = aijaj; = (ai]oj){aj|a;) lines;

If la,-l > ]aj|, and (a,',aj) # 0 (and hence, Qij == (ai|aj) > aj; = (ajlai)),
then we draw arrow which indicate the direction from long root a; to short root
aj.

The Dynkin diagram determines simple root system up to isometry.

Remark that if R' C E', R" C E’ are root systems in spaces E', E”, respec-
tively, then R = (R'+0)U(0+ R") is a root system in the space E = E'® E". Such
system R is called decomposable and it corresponds to a semisimple Lie algebra
which is a direct sum of two semisimple ideals. Root system is indecomposable iff
the associated Dynkin graph is connected. It is equivalent to the condition that the
associated Lie algebra is simple, or, in terms of Cartan matrix 4, that the Cartan
matrix A is indecomposable, i.e., it can not be transformed into block diagonal
form by means of a permutation of rows and the same permutation of columns.

The classification of indecomposable Cartan matrices leads to the following
result. 4
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CLASSIFICATION THEOREM. Besides the root systems Ay, By, Cy, D; of clas-
sical complex Lie algebras sli+1(C), s021+1(C), sp2i(C), soxu(C) there exist only §
indecomposable root systems G, Fy, Eg, Ev, Es.

The low index indicate the rank of the system, i.e. the dimension ! of the
corresponding Euclidean space E'. These root systems and the corresponding Lie
algebra are called exceptional. The exceptional root systems are described in the
following table taken from [G-O-V]..

Type dim G R I, 6 w
o =€ —€ip1,t <8
Es | 248 e as = €5+ €7 + €5 AutR
8 + (i +€j +ex) 8o
d=¢;—¢g
i — s ;=€ —€i+1,0 < T
Ey 133 v ar =€5+€6+E7+E8 Aut R
gitejter+e
0 =—¢e7+¢€g
8 gitejtente 6T e RS W x {£1}
0=2¢
a1=(€1—€2—63—€4)/2
' Qg = &4
ié‘iﬂ:Ej;iEi
Qa3 =€3—¢€ Aut R
Fa 152 i be,degteg/n |75 5 .
Q4 = E3 —E3
d=¢€1+¢€
Qy = —&2
Gs 14 €i —&j, *&; Qg = £ — €3 AutR
6=51—€3

The following notations are used in this table. For Fy, &;, (i = 1,2,3,4)
is an orthonormal basis of the 4-dimensional Euclidean space E%. For all other
exceptional root systems of rank [, £1, ..., €141 is the standard basis of the Euclidean
vector space R'*! restricted to the hypersurface

1+1
Elz{a=2:z:iei, in=0}.
i=1
In particular,
l 1 .,
(€ir€i) = 1 (eire5) = “x1 # J.

For Eg, € is the vector with (g,€) = 1/2, orthogonal to all vectors &;.
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We indicate the dimension of the corresponding exceptional Lie algebra g,
system of simple roots IT = {ay, ...,a;} and the maximal root é and give a descrip-
tion of the Weyl group W. For completeness, we also give a similar description for
classical root system. Here we indicate also the root vectors.

Root Root

e di II
TP 9 1mg b vectors |system R i
T+1

*
zzaei e | ei®c¢;
1

i#j
Zz;:O

A sl1+1(C) l(l + 2) €i — &5 Q; = Ef — £i+41 S[+1

eiNe—j Ei — €5
Qi =& — Ei41

! e; Nej € +€;
By sog1(C) Y2t +1) | mieine |7 P i=1.,0-1 |S-Z,
k=1 e_iNe_j | —€i—¢€j o =€
e_iNej +e; ! !
! e;Ve_j |g;—¢€j Qi = £ — Ei41
Ci pp2+1(C) b(2l +1) _;1 Tie;Ve_i |e; Ve gi+¢g; i=1,.,l-1 [ -Z!_,
= e-iVei |—&i—¢j |ag =2
! e;he—j £i —&j Qp =€ —Ei+1
Dy so(C) P2 -1) 21 Tiei Ne—; |e; Aej € +¢€j5 i=1,.,0-1 |- Z‘z-l
= e_iNe_j |~—¢e;i—¢; log=€ei_1+¢

1.4. Real forms of a complex semisimple Lie algebra

Classification of real semisimple Lie algebras reduces to description of real
forms of complex semisimple Lie algebras. Recall that any real Lie algebra £ can
be naturally extended to a complex Lie algebra g = & ® C which is called the
complexification of €. The real subalgebra = & of the Lie algebra g is called a
real form of the complex Lie algebra g. Remark that the complex conjugation of
the space g with respect to the real subspace ¢ is an antiholomorphic involutive
automorphism o of g and the real form € can be reconstructed as the fixed point
set g7 of 0.

Any complex semisimple Lie algebra g admits unique ( up to a conjugation
by an automorphism of g) compact real form. It is the fixed point set g of the
canonical antiholomorphic involutive automorphism 7 of g, defined as follows.

Let

g=h+ Z CE,

a€R
be a Cartan decomposition of g and h(R) = B~! < R > the real form of . Then

Th(R) = -1, 7E,=FE_,.
More precisely,

¢ =ih(R) + > spang(Ea + B—a,i(Ea — Ba)).

a€RYt
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1.5. Parabolic subalgebras of complex semisimple Lie algebra.

I.5.1. Regular subalgebra. Let g =h+ 3 ,.r CE, be a Cartan decom-
position of a complex semisimple Lie algebra g

Definition. 1) Subalgebra £ of g is called to be regular if [h, €] C &

2) Subset @ C R is called to be closed (or a root subsystem) if (Q + Q)NR C
Q,ie,0,8€Q,a+fER>a+FeQ.

3) Subset @ C R is called to be symmetrlc (resp. asymmetric) iff Q = —Q

(resp., QN (-Q) =0).

Any @ C R can be decomposed into a disjoint sum @ = Q° U Q%, where
Q* = QN (—Q) (resp., Q% = @\ Q°) are symmetric and asymmetric parts of Q.

LEMMA. IfQ is closed, then Q%, Q% are closed.

PROPOSITION. A closed set Q C R defines a regular subalgebra

9(Q) = ([Ea, E_o) = Ha,a € Q") + Y CE, =hg + Y  CE,.
aeQ aeQ
Its Levi-Maltcev decomposition is g(Q) = g(Q°) @ g(Q%).

Conversely, any regular Lie algebra & of g has the form t = b’ + g(Q), where
b’ is a subalgebra of ) and Q is a closed subset of R.

Ezample. A system of positive (respectively, negative) roots R* (resp. R™) is
closed and asymmetric. The corresponding Lie algebras b* = h + g(R¥) are Borel
subalgebras, that is, maximal solvable subalgebra of g. Any two Borel subalgebras
are conjugated by an automorphism of g.

LEMMA. A maximal asymmetric closed subset Q of R is the set of all positive
roots with respect to some Weyl chamber.

1.5.2. Parabolic subalgebras. A parabolic subalgebra p is a subalgebra

which contains a Borel subalgebra b.

Construction of parabolic subalgebras. Let Il is a basisof R, R= RYUR™ is
the corresponding decomposition of R and IIp C Il is a subset. Define

(o] = (o) N R, [}, = (o) N Ry.

Then R' = Ry, = [Mlp]_ U R* is a closed set. Moreover Ry = R = [llo} and
f, = BT\ [Ilo], . Hence,

mn,=h+g (Rﬂo) =3+d ([HO]) +g (Rﬁo)

is a parabolic subalgebra (pm, D b™ = b + g(R*)) with the radical 3 + g(Rg_ ) and
semisimple part g ([Ilg]). Here 3 is the B-orthogonal complement to the Cartan

subalgebra ho = (Hy,a € Rp) of g ([Ilg]) in h. We have
(38 (Mo)] =0, [3+g([lo)), g (Rno)] Cg(R,)-
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Moreover, 3+ ({Ilo]) is a maximal reductive subalgebra of g and g(Rf,) is a regular
nilpotent subalgebra of g.

PROPOSITION. Any parabolic subalgebra is conjugated to a subalgebra of the
form pr,.

Proof. The proof is immediate. Let £ be a parabolic subalgebra of g. Since
any two Borel subalgebras are conjugated, we may assume that £ contains the Borel
subalgebra bt = h + g(R*). Then ¢ =  + g(R'), where R’ D R is a closed subset
of R. This implies that R’ = Ry, for some subset IIy of II.

Remark that any subset IIy of II defines a decomposition of the Lie algebra
g into sum of three subalgebras

9 = g(—Rpy,) + &+ o(Riy, ),

where € = b + g ([Ilo]) = 3 + g([Ilo]) is a reductive subalgebra and g(£Rf ) are
nilpotent subalgebras. This decomposition is called generalized Gauss decomposi-
tion. ‘

Remark also that the center 3 of € is always different from zero and £ coincides
with the centralizer of 3:

= Z4(3)-

II. Homogeneous manifolds

A homogeneous manifold is a manifold M together with a transitive action of a
Lie group G on M. Transitivity means that for any z,y € M there exist g € G such
that gz = y. In other words, G has only one orbit on M. A homogeneous manifold
M may be identified with the coset space G/K, where K = {g € G, go = 0} is the
stabilizer (or, stability subgroup) of a point 0 € M. It is clear that K is closed,
but not necessary connected subgroup of G. Conversely, any closed subgroup K of
a Lie group G defines a homogeneous manifold G/K. There exist unique smooth
structure on G/K such that the natural action of G on G/K is smooth.

Assume, for simplicity, that the homogeneous space M = G/K is reductive,
that is Lie subalgebra ¢ = Lie K of g = Lie G admits Adg-invariant complement m
such that g = ¢ + m is an Adx-invariant decomposition. It is always the case if K
is compact. Then we can identify m with the tangent space T, M by

d
m3X & a(exth)ot_o,

where exp tX is the 1-parametric subgroup of G, generated by X.

Under this identification, the isotropy representation j of K is identified with
the restriction of the adjoint representation Adg |4 to m:

J(K) = Ad K.
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Many geometrical questions about’ homogeneous manifold M may be reformulated
in terms of the pair (G, K) of Lie group and then in terms of the corresponding
pair (g = LieG, t = Lie K) of Lie algebras. For example, the classification of G-
invariant tensor fields of given type (p, ¢) reduces to the description of (p, q) tensors
of the tangent space T, M, which are invariant under isotropy representation

j: K = GL(T,M)

of the stabilizer. Recall that j is defined by

t=0) = % (ke

) d
J(k) (d—t% ke K,

t=0

where v; is a curve with 49 = 0.

Hence, the classification of G-invariant tensor fields of type (p, g) reduces to
a description of the space TP(m)A4¥ of Ad K-invariant tensors of type (p, g) on m.

If the group K is connected (this is the case if G is connected and M is simply
connected), then
TP(m)A¢x = TP(m)*d, ¢=LieK,

where TP(m)*dt = {A € TPm, adx A =0, VX € t}, and the problem reduces to a
description of tensors on m invariant under the adjoint action of Lie algebra €.

For example, a homogeneous space M = G/K admits G-invariant Riemann-
ian metric g, almost complex structure J or almost symplectic structure w iff the
representation Ad K'|m is orthogonal (i.e. preserves an Euclidean metric on m), com-
plex (commute with a complex structure J) or, respectively, symplectic (preserves
some nondegenerate skew-symmetric 2-form).

Remark that any linear representation of a compact Lie group K is orthog-
onal. Hence, any homogeneous manifold M = G/K with compact subgroup K
admits an invariant Riemannian metric.

It is not difficult to express the condition of integrability of an invariant almost
complex structure J or an invariant almost symplectic structure w on a homoge-
neous manifold M = G/K in terms of Lie algebras g,€. Recall that an almost
complex structure J (i.e. field of endomorphisms J with J = —id) is integrable iff
the corresponding complex eigendistribution

TOM = {veT°M =TM ®C, Jv = iv}

of J with eigerivalue +i is involutive, i.e. the space of sections of T1°M is closed
under Lie bracket.

Let M = G/K be a reductive homogeneous manifold with reductive decom-
position g = k+m. Then we have natural identification &M = m®. Let Jy be an
invariant almost complex structure on M = G/K and J = Jpr|o the corresponding
complex structure on ToM = m. Denote by m!? and m% the eigenspaces of J on
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mC with eigenvalues +i and —i, respectively. They are Ad K-invariant and define
invariant eigendistributions 7'°M and T°' M of Jp;. One can easity check that al-
most complex structure Jps is integrable iff g = & +m!? is a complex subalgebra
of the complex Lie algebra g¢ = g® C.

Now we assume for simplicity, that G is connected compact semisimple Lie
group and describe all homogeneous spaces G/K which admits an invariant sym-
plectic structure w (i.e. nondegenerate closed 2-form). Let g = €+ m be a reductive
decomposition. The value w, of w at 0 = eK is Adg-invariant nondegenerate 2-form
on m,w, € (Azm*)Ad". It may be considered as 2-form wg on g with Kerwg = E.
The closedness of w means that w, is closed in the complex Ag* of exterior forms
on the Lie algebra g:

dwo(X,Y,Z) = cydw,o([X, Y], 2) =0, X,Y,Zegy,

where cycl means the sum of cyclic permutations . It is known that H!(g,R) = 0 for
semisimple Lie algebra g. In other words, any closed 2-form w, is exact: wp = d§,
where ¢ € g* is 1-form and d¢(X,Y) = &([X,Y]), X,Y € g. This 1-form ¢ is
canonically defined. Using nondegeneracy of Killing form B we can write £ (X) as

E(X) = B(hO’X) , XE€g,
where A, is some element of Lie algebra g. Hence,
wo(X,Y) = B(ho,[X,Y]) = B([ho, X],Y), X, Y €g

and
t = kerw, = Zg(ho) == {X € g, [ho, X] = 0}.

This implies that K contains the centralizer Zg (ko) = {9 € G, Adyh, = ho} be-
cause this centralizer is connected. Since element h, € g is canonically defined by
W, it is invariant under Adg. Thus K C Zg(h,). Both inclusions imply equality
K = Zg(h,). We have

THEOREM (Kirillov-Kostant-Souriau). Let M = G/K be a homogeneous
manifold of compact semisimple Lie group G with invariant symplectic structure
w. Then K = Zg(h,) is the centralizer of some element h, € g = LieG and
hence, M can be identified with the adjoint orbit M = (AdG)h, of this element.
Moreover, the value wy, of the symplectic form w at a point h € M = (AdG)h, is
given by wp (X,Y) =B (h,[X,Y]), X, Y € ToM Cpg.

COROLLARY. There exists 1-1 correspondence between invariant symplectic
structures on a homogeneous manifold M = G/K of a compact semisimple Lie
group G and elements h € g with the stabilizer K in G.

Such elements have the orbit isomorphic to G/K.

Homogeneous manifolds G/K of compact semisimple Lie group G which are
G-diffeomorphic to adjoint orbits of G are called flag manifolds.
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IIL. Flag manifolds as homogeneous spaces
of a complex semisimple Lie group

III.1. Flag manifolds of classical groups SL,(C), SO,(C), Sp,(C).
Now we describe the manifolds of complex flags and complex isotropic flags and
identify them with coset spaces of classical Lie groups modulo parabolic subgroups.

Let V = C" be a complex vector space and p = (py,...,pr) an r-tuple of
natural numbers such that 0 < p; < ... < p, < n. ‘

Definition. A flag of type p, or p-flag, is a system f = (V;,V5,...,¥;) of
subspaces of V such that V; C V;4; and dim V; = p;.

The unimodular group SL,(C) = {A € GL(C), det A = 1} acts transitively
on the set F5(V') of all p-flags. Let e,, ..., €;, ..., e, be the standard basis of V = C".
We will denote by (e, ..., ex) the complex subspace of V spanned by ey, ..., ex. The
p-flag
fo= ((eli ) epx)a <ela ey eP2)7 ooy <ela ey epr))

is called the standard p-flag (or p-flag associated with the standard basis). Its
stabilizer P; in SL,(C) consists of all upper block-triangular matrices with the
blocks of size py,pa — p1,p3 — p2,. ... Hence, we may identify F;(V') with the coset
space SLn(C)/P;.

A flag of type (1,2, ...,n — 1) is called a full flag. Remark that the stabilizer
Py n—1 of the standard full flag fo associated with the standard basis is the
subgroup B of all upper triangular matrices from SL,(C), that is a Borel subgroup
of SL,(C). The stabilizer Py of the standard flag of any type p contains B.

Now we describe the manifolds of isotropic flags which are homogeneous
spaces of other classical Lie groups SO,{(C), Sp,(C).

Assume that a nondegenerate bilinear form b in V = C” is given, symmetric
(b = g) or skew-symmetric (b = w). Last case is possible only if n = 2. The classical
groups SO, (C), Spn/2(C) are defined as the connected component Aut(V, b)o of the
group Aut(V,b) of automorphisms of V, which preserve b. As in 1.3.2, we identify
the Lie algebras so,(V) and sp, (V) with the space AV of bivectors and with the
space V2(V) of symmetric 2-tensors.

We will fix a basis e;, e_; i = 1,...,l of V for n = 2] and ey, e;,e—_;, 1 =1,...,1 -

for n = 2l + 1 such that b(e;, e—;) = d;5,b(eo, e0) = 0 and all other products are
zero. In such standard basis, the form b is given by

n=2: b=g=Ze_,~Vei, b=w=Ze_,~/\ei
n=21+1: b=g=eo®eo+Ze_iVei.

Definition. A flag f = (V1,...,V;) of type p = (p1, ..., pr) in the space (V,d) is
called isotropic if bly, = 0.
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In this case r < | = [g] The group Aut(V,b) acts transitively on the
manifold IF4(V) of isotropic p-flags, 5 = (p1,...,pr). Moreover, its connected
component Aut(V,b)o acts on IF5(V) transitively if b=w orb=gand n =20 +1,
orb=g,n =2 and p, <!. In the case b = g, n = 2, pr = [, the group
Aut(V,g)e = SO«(C) = D; has two open orbits SO (C)fo, SO (C)f1, where
Jo, f1, are flags associated with the standard basis ey, ..., €1, e_1, ..., e_; and the basis
€_1,€2,...,€l,€1,€—2,...,e_; on the manifold IF5(V') of flags of type p = (p1, ..., pr =
1), see [G-O-V]. :

Denote by fo = ({€1,.--1€p,),{€1,--,€pg), ... , (€1, ..., €p,.)) the standard isotrop-
ic p-flag in (V, b), associated with the standard basis e;,e_;, (eo)-

Ezercise. Describe the stability subalgebra py, of the point fy. For example,
for D;-case (b= g, n = 2l) it is given by

pp = (e; Nej, Vi, j; e Ae_j, s.t. if ps < 7 < ps+1, then i <p3+]~).

II1.2. Flag manifolds of a complex semisimple Lie group. Now we
define flag manifolds associated with any connected complex semisimple Lie group
G. Recall that a subgroup P of G is called parabolic if it contains a Borel subgroup
(i.e. a maximal solvable subgroup) B of G .

Definition. A flag manifold of a complex semisimple Lie group G is the quo-
tient M = G/P of G by a parabolic subgroup P.

It is known that a parabolic subgroup P of G is always connected and coin-
cides with its normalizer Ng(P) = P. This implies that a flag manifold M = G/P
is simply connected complex manifold. Moreover, M = G/P can be realized as
a closed (hence, compact) orbit of G in the projective space PV, associated with
some linear representation G = GL(V) of G (more precisely, the orbit of the highest
weight vector).

Flag manifolds of the classical Lie groups are exactly the manifolds of p-flags
or isotropic p-flags, described above.

Lie algebra p of a parabolic subgroup P is a parabolic subalgebra. Hence, we
can write

p=pm, =t+g(RY,), t=3+9(lo)), R, =R+\[),.
The generalized Gauss decomposition
g=n_+t+n, =g(-RE)+Et+g(RE,)

induces a decomposition of some open subset Greg of G into product of the corre-
sponding subgroups: ’

GregzN._'K'N+, KnN:E=N+nN_={€},
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where LieK = ¢ LieNy =g (iRﬁo). Moreover, P = K - N. This decomposition
shows that the nilpotent subgroup N_ acts simply transitively on the open dense
subset Mreg = Greg/P of the flag manifold M = G/P. Hence, any complex coordi-
nates on N_ (for example, independent matrix elements of a matrix representation
of N_) define local complex coordinates on M. In the case of Grassmannian, such
coordinates are standard local complex coordinates of the Grassmannian.

Remark that any chain of subsets
h=0cycll,Cc..clly=00

of a system II of simple roots of the Lie algebra g = LieG defines a tower of
holomorphic G-equivariant fiberings

G/B = G/Pn, = G/Pn, — ... = G/Pq = {point},
where Py, is the parabolic subgroup with tangent Lie algebra
pm; =h+9¢(Rn;), Rn, =[]_URT =[IL;ju (R \(IL],).
In particular, if II; = II;_; U {&;} = {a1,...,a;} then we have the tower
G/B = G[P(a,} =& G[P(a; a5} = - = G/ Pyq,,....c;} = - = G/G = {point}.
All fibers Py, ... .a:}/ Plan,...,a:_1} €an be identified with a primitive flag manifold,

i.e. the quotient of a simple Lie group G; modulo a maximal parabolic subgroup
P; which corresponds to the Dynkin graph of G; with one deleted root «;.

II1.3. The action of a maximal compact subgroup of G on a flag
manifold M = G/P. Recall that a flag manifold M = G/P of a connected
complex semisimple Lie group G is simply connected and compact. Then, by
Mostow theorem, a maximal compact subgroilp G of G dcts on M transitively.

From the exact sequence of homotopy groups of the fibration G™ - M = G"/GL,

one can derive easily that the stabilizer G7 of a point € M is a connected subgroup
of G7. Hence, it is determined by the Lie algebra

gz =g Np=p ={z€p, X =X},

where g™ = LieG™ is the Lie algebra of the maximal compact subgroup G” of G,
that is the fixed point set of the standard antiholomorphic involution 7. We can
write

p="LieP =3+g([ll]) + g (Bfy,) = t+9 (Bf,) -
Since the subalgebra ¢ = 3 + g (Rg,) is invariant under the antiholomorphic invo-

lution 7 and
Tg( 1‘1'[0) =g (—qulo) ’
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we get ‘
T T
g;=p"=¢ =3"+g(RE,) -

Hence, the stability subalgebra g7 is a compact form of the subalgebra t = Z_ (3).
In particular, g7 = Zg- (37) is the centralizer of a commutative subalgebra 37 of g7.
This subalgebra 3 generates a torus T in a compact connected semisimple Lie group
G7. At is known that the centralizer of a torus in a connected compact semisimple
Lie group is connected. This implies

Gl =Zg- (3") = 2¢(T) = Zg(t),

where ¢g € 37 is an element generating a dense 1-parametric subgroup of the torus
T. We get

PROPOSITION. Any flag manifold M = G/P can be identified with the quo-
tient GT /K™ of a semisimple compact Lie group GT C G modulo the centralizer
K™ = Zg-(to) of an element ty € g" = LieG™ and, hence, with an adjoint orbit
(Adg-)te-

IV. Flag manifolds as a quotient of a compact Lie group

IV.1. T-roots, T-chambers and T-Weyl group of a flag manifold.
Let M = G/P be a flag manifold of a complex semisimple Lie group G. We know
that the Lie algebra p of P has a semidirect decomposition

p=pm, =t+n=(G+g())+g(Rt\[M],).

into a sum of a reductive subalgebra ¢ and the maximal nilpotent ideal n. It defines
a decomposition P = K - N of the Lie group P.

Denote by 7 the standard antiholomorphic involution of G which determines
a compact form G7 of G. (GT is the fixed point set of 7). Then P™ = K7 is a
compact form of Lie group K and we can identify M = G/P with G"/K". We fix
a Cartan subalgebra §) of ¢ = Lie K. It is also a Cartan subalgebra of g = LieG.
We. will denote by Ry (resp., R) the root system of (h,€) (resp., (h,g)) and set
R' = R\ Rp.

We can write

b=h+ ) CEs=3+g(Ro),

$E€Ro

where 3 = Z(&) is the center of &,

=E+m\, m=ZCEa.
a€R'

We will identify m with the complexification TSM of the tangent space ToM of
M = G™/K™ at the point 0 = eK”. Then m”™ = {z € M,rz = z} is identified
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with ToM and the isotropy représentation of K™ on TS M is identified with the
restriction to m of the adjoint representation Adg- |g.
As before, we denote by h(R) the real form of the Cartan subalgebra §,
spanned by roots,
h(R) = B~Y(R),
and we put t = 3 N H(R). Then 37 = it. Remark that roots from R are real linear
forms on h(R).

Definition. The restriction @ = al, of aroot a € R’ = R\ Rg to tis called a
T-root.

We will denote the set of all T-roots by Rp. It is a finite set of nonzero vectors
in the Euclidean vector space t. In general, Ry is not a root system. '

Definition. 1) An element t € t is called to be regular, if any T-root & has
nonzero value on t.

2) A connected component C of the set treg = t\ (Uacr, {@ = 0}) of regular
elements is called a T-chamber. -

3) The subgroup WFe = {w € W,wRo = Ry} of the Weyl group W of R,
which preserves Ry is called T-Weyl group.

T-Weyl group WHe acts on the set of T-chambers, but the action is not
transitive, in general.

IV.2. Realization of a flag manifold by an adjoint orbit. We say
that an element to € g7 defines a realization of the flag manifold G"/K™ by an
adjoint orbit if it has stabilizer K7 in Adg-. Then we have canonical identification
of the flag manifold G™ /K™ with the orbit (Adg-)to such that the point 0 = eK™
is identified with %g.

PROPOSITION. 1) An element tg € g™ defines a realization of the flag manifold
M =G /K" iff ity € treq.
2) Two elements to,t; with stabilizer K™ belong to one G -orbit if they belong

to one WFo orbit:
ty = wiy, w € W Ho

CoroLLARY. The set of adjoint orbits of G™ isomorphic to M = G™/KT is
parametrized by elements of treg /W Fo.
Proof of Proposition. 1) Let to € g” has stabilizer K7. Then & = Zy- (o).
Hence, t, belongs to the center 37 = Z (§7) C h” C h of ™ and
Ro={a€R, alte) =0} = RNt .

This shows that ity € treg.
2) Let tp,t; be elements with the common stabilizer K™ which belong to
the same orbit. Then t; = Ad,to, for some g € Ng- (K7). The element Ad,
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preserves the center 37 of € and transforms a Cartan subalgebra h™ = 37 + bg of
k™ into a Cartan subalgebra §’ = 37 + b1, where ho, b1 are Cartan subalgebras of
the semisimple part [¢7,€7] of €. Using the fact that any two Cartan subalgebras
of £ are conjugated, we can change g to ¢’ = ga, for some ¢ € K7, such that
Ady preserves the Cartan subalgebra h” and its decomposition ™ = 37 + hy. Then
Ady|h™ = w € WHo. On the other hand,

t; = Adg tg = Adgr to = wip,
because tp,; € 37 and Ad,[3% =1id. O

IV.3. Closed invariant 2-forms on a flag manifold. We now state the
folowing proposition.

PROPOSITION. Let M = G7/KT™ be a flag manifold and ¢ = it + g(Ro) the
decomposition of the Lie algebra of K™ into sum of the center it and the semisimple
ideal g(Ry). There exist natural one-to-one correspondence between elements from
t and closed invariant 2-forms on M:

t3t e w e (M),

where w; is G"-invariant 2-form on M, whose value at 0 = eK" is given by
wiy = Ez;d(B ot) € A (m")* = ATy M.

Here m™ is the Ad K7 -invariant complement to €™ in g", identified with the tangent
space ToM, B is the Killing form of h*, and d : g* — A%h* is the exterior differential

dE(X,¥) = ~2£(X,¥]) X,Yegteq"

Moreover, symplectic (i.e., nondegenerated) 2-forms w; correspond to regular ele-
ments t € treg.

The proof is straightforward. Remark that a regular element ¢y € t;cg defines
an identification M = G" /K™ + Adg- itg. The corresponding symplectic form wy,
on M = Adgr itg is exactly the Kirillov-Kostant-Souriau form of the orbit Adg- tq:

w,, (X,Y)=B(,[X,Y]), X, YeT,MCyg .

IV.4. Decomposition of the isotropy representation into irreducible
submodules. Now we fix a system of simple roots IIp of the root system Rg and
denote by R‘D*' , Ry the corresponding systems of positive and negative roots.

Definition. A root a € R' = R\ Ry is called K-simple, if o — ¢ & R for any
¢ € RZ.
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ProposITION.  There exist natural one-to-one correspondence between
T-roots, irreducible Adg--submodules of the complexified tangent space m =
Yacr CEx = (m’)c of the flag manifold G™ /K™ and the set of K-simple roots
from R' = R\ Ry, given by

RT3&<==>ma= Z CEa<=>(6‘)-’

where (&)_ is the lowest weight of irreducible Adg--module mg.

For proof see [Sieb), [Al-Per], [G-O-V].

IV.5. Invariant complex structures and Kahler metrics. A regular
element ty € t defines a partial order in t*. We say that a T-root & is positive (resp.,
negative) if a(tg) > 0 (resp., &(tg) < 0. A positive T-root & is called simple if it is
not a sum of two positive T-roots. The set IIT = {&, ..., &m }of all simple T-roots
is called a T-basis. It is a basis of t* such that-any T-root & can be written as linear
combination & = ) k;&; with integer coefficients k; of the same sign (all k; > 0 or
all k; < 0). The T-chamber C(t) which contains ¢ is defined by inequalities

C(tg) = {C-Yl >0,..,0y, > 0}

Denote by
= {al = (dl)—, ey Om = (dm)"}
hY

the set of the corresponding K-simple roots. Then II = Il UII' is a system of
simple roots of R. It contains IIp and depends only on T-chamber C(to).

PROPOSITION. [Al-Per] There exist natural one-to-one correspondence be-
tween
1) T-bases It = {@1, ..., 8m };
2) T-chambers C = {&; > 0,...,am > 0};
3) systems 11 = {(&4)-, ..., (&) } UIlp of simple roots of R which contain fixed
system Iy of simple roots of Ry;
4) decomposition R' = R, UR'_ of R' = R\ Ry into disjoint union of asymmetric
closed subsets R!, and R = —R!,; :
5) invariant complex structures on flag manifold G7 /K™ (defined up to a sign).
Proof. Let Il = {&y, ...,4m } be a T-basis. Then C = {63 >0, ...,am > 0} is
the associated T-chamber. (The proof is the same as for ordinary Weyl chamber).
Now we put II' = {(61)_, ..., (Gm)_}. It follows from the properties of weights of
an irreducible representation of semisimple Lie algebra, that II = IIo UTI' contains
a basis of t*. Using the formula for a-series of roots, one can prove that scalar
product between different elements from II is nonpositive. This implies that II is a

basis of R.
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Denote by R = [[];, R~ = [II]- the corresponding systems of positive
and, respectively, negative roots and put R}, = R'N R* = R* \ [lIp}+. Then it
is clear that R, , R_ = —R!, are closed sets of roots and R' = R/, U R_ is the
disjoint sum. Now we define a decomposition of the complexified tangent space
TEM = m = m!® + m®, where m!® = g(R/,), m% = g(R").

Since the subspaces m'?, m®! are Ady--invariant, they can be extended to two

complex invariant distributions T1°M and TO'M. We define an invariant almost
complex structure J on M = G7/KT such that T'°M and T M are eigendistri-
butions of J with eigenvalues +i and —i, respectively. Since €+ m!® is a subalgebra
of g, J is integrable, see section 2.

Conversely, any invariant complex structure J on M = G7/K7 defines a

decomposition
m=m4+mfl rml®=mol

of m into a sum of two Adg--invariant subspaces m'?, m% such that € + m!? is a
subalgebra. Denote by @, resp., @~ the set of roots associated with root vectors
from m!®, resp., m®'. Then Q~ = —Q and R = Ry U Q U (—Q). The closed set
Ry U Q is parabolic in the sense of Bourbaki, and hence it contains some system of
positive roots R*, such that R* D R}. Then it is clear that Q C R*. Denote by
II the system of simple roots from R*. Then II D Il and the restriction of roots
from II' = II \ Il to t defines a T-basis. O

COROLLARY. There exists natural one-to-one correspondence between regular
points to € t and invariant Kahler metrics gi, on flag manifold M = GT/K".
The metric g;, associated with point ty is given by g, = wy, (-, J-), where wy, is
the symplectic form associated with to and J is the invariant complex structure,
associated with T-chamber C 3 tg.

Remark. If we change J to complex structure J' associated with other T-
chamber, then we get invariant pseudo-Kahler metric g, i.e. a pseudo-Riemannian
metric with Levi-Civita connection V9 such that V4J' = 0.

IV.6. Invariant Kahler-Einstein metrics. Let IIy = {¢1, ..., #x} be fixed
basis of the root system Ry and Il = IIp UII', II' = {ay,...,an,} is a basis of the
root system R, which contains IIg. We will denote by aj, ..., @,, the fundamental
weights associated with simple roots a;, ..., an, i.e.

— 2(&51 aj) .

(@ilaj) = ey 0ij, (@ilg;) =0 Ve, € Ilp.

The fundamental weights @; form a basis of the space t* dual to t (and isomorphic
to t via Killing form). The natural isomorphism between t* and the space Q2(M)¢
of invariant 2-forms on M is given by

* - 1 i _
t'o¢= Zk,—ai S we = -2;d§ =i Z {Elayw* Aw™%,
a€R]
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where w, are 1-forms on m, dual to Ey,wa(Eg) = dap. One can check that w is
Adg--invariant 2-form on m” = To M. Hence, it defines an invariant 2-form we on
M = G"/K™. Two-form wg is integer, i.e. defines an integer cohomological class,
iff the coordinates k; are integers. The 1-form

is called Koszul form. It is a linear combination of weights @; with integer positive
coefficients n;:
m
g = Z n,—&i.
=1

The numbers n; are called Koszul numbers.

PROPOSITION. [Al-Per] The 2-form w, associated with Koszul form o is the
invariant nondegenerate closed 2-form which represents first Chern class of the in-
variant complex structure J, associated with (I, Ily). Moreover, the corresponding
metric g, = wy(-,J+) is an invariant Kahler-Einstein metric.

IV.7. Painted Dynkin graphs and classification of flag manifolds.
Definition. 1) Let g be a complex semisimple Lie algebra.and € a complex reductive
Lie algebra which is isomorphic to centralizer of some element t € g. The Dynkin
graph T' of the root system R of a g with some vertices painted in black is called
a painted Dynkin graph of type (g,¥), if after deleting black vertices we get the
Dynkin graph of the root system Ry of &.

2) A bijection € : IT = V(T') between-roots of some basis II of R and vertices
V(L) of T such that I" becomes the Dynkm graph of I1, is called an equipment of
the painted Dynkin graph T

We will denote by Iy and IIp the subset of white and, respectively, black
roots from II (i.e., the roots associated with white and, respectively, black vertices
of I'). A painted Dynkin graph of type (g,%) with an equipment defines a flag
manifold M = G7 /K", where G is the compact form of the Lie group G with Lie
algebra g and K7 is the subgroup of G7 associated with the compact form & of
the Lie algebra &(IIw) = h + g ((w)).

Remark that the Weyl group W of R acts on the set of equipments of a painted
Dynkin graph I on the right and equipments €, € ow, w € W define G-isomorphic
flag manifolds.

Assume that there exist equipments of T’
e:OI—=>V([), & :0'->V(D),

which define nonisomorphic flag manifolds (that is the subalgebras E(IIW) and
(11} ) generated by white roots are not conjugated). Changing €' to &' o w for
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appropriate w € W we may assume, that II' = II. Then &’ = a o€, where a is an
automorphism of the underline Dynkin graph T of I’ which is not an automorphism
of the painted graph I" (that is oIl # ITy/). This is possible only when a connected
component of T' has type 4;, D; or Eg. We have

PROPOSITION. Let I be a painted Dynkin graph and T’ underlined Dynkin
graph.

1) If T has no nontrivial automorphism or any automorphism of T' is an
automorphism of ' (i.e. it preserves the set of white vertices), then all equipments
of ' define isomorphic flag manifolds.

2) Let € : I — V(T') be an equipment of I which defines a flag manifold
M and « is an automorphism of I' which is not an automorphism of I'. Then the
equipment £ = avo¢e : Il = V(T') defines a flag manifold nonisomorphic to M if
the sets Ilw,II},, of white roots associated with € and a o € are not conjugated
by an element of the Weyl group. Moreover, any flag manifold associated with an
equipment of I' can be obtained by this way.

Remark. It is not difficult to give a necessary and sufficient condition that
the set Iy, I}, of white roots associated with equipments ¢, &’ = ¢ o € are not
conjugated. For example, for I' = 4, this condition is that not all white vertices of
T are isolated.

Ezamples. 1) The equipments
Eij =& —&j
define nonisomorphic flag manifolds: projective space of lines and the dual projec-

tive space of hyperplanes.
2) The equipments

\
€12 €23 e €l-11 €23 £12

define isomorphic flag manifolds Fiz. ;—2(C1).

Definition. Two painted Dynkin graphs I', I of the same type (g, ) are called
to be equivalent if there exist equipments ¢ : IT — V(I'), &' : II' — V(I'') which
define isomorphic flag manifolds.

LEMMA. Two painted Dynkin graphs T", I are equivalent iff there exist equip-
mentse: Il - V(D), ¢ : I' » V(I") with the same set Iy of white roots.

Proof. It is clear that equipments I', I with the same set IIy of white roots
define the same stability subalgebra & = ¢(Ily) = § + g ([ITw]) and hence the same
flag manifold.

Conversely, if the equipments ¢,2’ define conjugated subalgebras &(Piw),
£(II};,), then there exists an element n from the normalizer of the joint Cartan
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subalgebra b of ¢(Ilw) and €(II},) which transforms Il onto II},. Denote by w
the corresponding element of the Weyl group W = Ng(h)/T where T the maximal
torus of G with associated Lie algebra . Then the equipments ', o w has the
same set of white roots. 0O

To state the main result which gives a classification of flag manifolds of a
given compact semisimple Lie group G7, we need the following definition.

Definition. Let G be a painted Dynkin graph of type (Dy,¥) for some &. We
say that T has class B (resp., WWB or WWW) if at least one of the right-end
vertices ay, oy is black (resp., oy, oy—; are white, but ¢;_ is black or, respectively,
Qq, a1, 0—g are white).

THEOREM. Two connected painted Dynkin graphs I',T" are equivalent iff
they have the same type (g,t) and, in the case g = D;, the same class.

Proof. Due to Lemma, the proof reduces to the construction for any two
connected painted Dynkin graphs I', I of the same type and class equipments

M-V, :I-V(I)
with the same set Iy = I1};, of white roots. It was done by Nishiyama [Nish). O
Ezamples. The painted graph T’

*—b—@—6—9

corresponds to two nonisomorphic flag manifolds of the form SUs /T2 x SU, x SUs.
They are defined by the following equipments of I':

€12 £23 €34 E45 £56 €56 €45 €34 €23 £12
*—0o——o—=6 *—o————9

Painted Dynkin graphs equivalent to I' are the following:
o —e—6—=56 &*—————0—0

-~

IV.8. Painted Dynkin graphs, T-chambers and Koszui numbers.
Now we fix a flag manifold M = G7/K7 and a Cartan decomposition

g=h+> CE,, t=h+ ) CE,

a€ER $ER,y

of the corresponding complex Lie algebras g, t. We fix also a basis Iy of the root
system Ro. Let I' be a painted Dynkin graph of type (g,€). We say that an
equipment ¢ : II — I is admissible if the white roots of II form the set Ily. Let

HB = H\Ho = {al,...am}.
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Denote by aj, ...., &y, the corresponding fundamental weights:

2(aia aj) —_

—5,", 5,’1-1 =0
(ag,a) 0 (@l

(Gilay) =

PROPOSITION. There exists natural one-to-one correspondence between T-
chambers of a flag manifold M = G™ /K™ and admissible equipments ¢ : II — T.
The T'-chamber associated with an equipment € : II — I is given by

C= {t = }rf_::ciB‘lo‘z,-, zi> 0},

i=1

where B is the Killing form and &; are fundamental weights associated to the black
roots a; € II\ Il = IIg. The corresponding invariant complex structure J is
defined by the decomposition of the complexified tangent space

TEM=m= Y CE,
a€R'=R\Rq

given by m = m!® + m%, m!® = g(R), m® = g(R.), where R}, = R' N R*,
R* =[II],. The Chern form of J is given by

i
ws = — Z (ola)w* Aw™®
27 acF, 3

where w, are 1-forms on m, dual to E,, wo(Eg) = 844, and

m
a=Enid,~= E (4]

) =1 QER{’_

is the Koszul form and n; are some natural numbers (Koszul numbers).

If g is one of the classical Lie algebras A;, By, Cy, Dy, then the Koszul numbers
can be calculated as follows [Al-Per]:

n; = 2 + b;, where b; is the number of white roots which are connected with
the black root a; in the painted Dynkin graph I' by a chain of white roots.

In the case g = Bj, the white long roots of the last right white chain are
counted with multiplicity two and last short root is counted with multiplicity one.

In the case g = C}, white roots of the last right white chain are counted with
multiplicity two.

In the case g = Dy, the last white chain which define the root system Dy is
considered as a chain of length 2(k — 1). If one of the right end roots is black and
the other is white, then the coefficient b; near the black root is equal 2(k—1), where
k is the number of white roots connected with the black root. The calculation of



32 D. V. Alekseevsky

Koszul numbers for flag manifolds of exceptional Lie groups is an open problem.
We see that the Koszul numbers of an invariant complex structure do not depend
on equipment of a painted Dynkin graph I, but only on T

The following proposition gives an explanation of this phenomenon.

PROPOSITION. Lete : Il =2 I, ¢ = II' = I' be admissible equipments of
painted Dynkin graphs ', I" which define a flag manifold M = G” /K. Denote by
C,C' (resp., J,J') the associated T-chambers (resp., invariant complex structures
on M). Then the following conditions are equivalent:

i) the painted graphs I, T are isomorphic;
ii) T-chambers C,C' are equivalent with respect to T-Weyl group Wre:

C' = wC for some w € WFo;

iii) the complex structures J, J' are G-diffeomorphic, i.e. there exists a diffeomor-
phism f of M which commutes with G such that f*J =J'.

Proof. Let T be a painted Dynkin graph and € : I = V(I'), &' : II' - V/(I')
two admissible equipments of I' which define a flag manifold M = G"/K™. Then,
using case by case study of the root systems R for all simple Lie algebras g, one can
check that there exists an element w € W#o such that II' = wIl. Hence, admissible
equipments ¢,¢’ of T' defines W Ro-equivalent T-chambers C,C':

C' =wC.

Conversely, let C, C' = wC, w € WFo be two W Fo-equivalent T-chambers. Denote
by IT = IIo UIlg, II' = Il U II'; the corresponding systems of simple roots. Then

Hl = wII, HIB = wI'IB, ’wHo = Ho.

This shows that the corresponding painted Dynkin graphs are isomorphic. It re-
mains to show that WERo-equivalent T-chambers C,C' = wC correspond to G-
diffeomorphic invariant complex structures J,J' on M = G7 /K.

It is known that a G-diffeomorphism of M which commutes with G is given
by
n:gK" = gK'n=gnK", gKk" € G /K",
for n € Ng-(¢"). We may assume that Ad, preserves the Cartan subalgebra f of
. This means that the group Ng-(¢7)/K7 of G-diffeomorphisms of M = G" /K™
is identified with a subgroup of the T'-Weyl group

WEh = {AeW = Ng-(h)/T, ARy = Ry} .

Now the equivalency of ii) and iii) follows from the fact that T-Weyl chamber C and
invariant complex structure J determine each other. If II = Il UIlp is the system
of simple roots, associated with C, then m!® = g ([IIg]) is the i-eigenspace for the
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corresponding complex structure J. Conversely, if m1° is i-eigenspace for an invari-
ant complex structure J, then IIg is the set of all simple roots from asymmetric
closedsystem R, = {a € R, E, € m'®°}andC ={t €t, o(t) >0, Vaellg}. O

Remark. It is not difficult to prove that two invariant complex structures
J,J' on a flag manifold M = G™/K7 are diffeomorphic iff the corresponding T-
chamber C,C’ are Aut(R, Rg)-equivalent, where Aut(R, Rp) is the group of all
automorphisms of R, which preserves Ry.

IV.9. Some examples. Now we illustrate the general theory by some
examples. For simplicity, we will consider only flag manifolds of the group of type
Ay

Any painted Dynkin graph of type A; is equivalent to a painted graph I' of
the following type:

Besides the left chaine of black vertices of length m > 0 (which may be absent),
all other black vertices are isolated. The lengths of the chains of white vertices are
n>ne>..>ng), k>0andli+1=3 n;+m.

Such a graph I' will be called standard. It defines two nonisomorphic flag
manifolds of the type

M= SU,+1/lf(1)m x S(U(ny) x .. x Ulng)),

if T" has no nontrivial automorphisms or not all white roots are isolated (i.e. n; > 1).
In other cases, I’ define unique flag manifold M.

To describe all equipments of the described standard graph and the graph
equivalent to its, it is useful to change the notation for the vectors of the standard
basis of the space R‘*! as follows. We denote by

1 1 k k
01y« 30ms€la-nn sEnyrer sETseve 1Epy

the vectors of the standard orthonormal basis of the space RF!, restricted to the

hyperplane
h(R) = {a: € IR"H,Z:M = O}.

Then the root system R of A; is given by

R= {(Sij = (5, et (5_7', i&'é‘j = i(di - E}), Egj = 6? - E;, 6?; = E? - 63} .

To simplify the notation, we also set €®® = 2 — g8. We define the standard
equipment of the standard painted Dynkin diagram I' as follows.

11 1 12 2 2 23 _3 k—1k _k 3
812 823 Omep €1 Eny—1n{ = fl2 €ny—1nf €12 € €12
¢ —@ +° O——H -~ et Qe ¢ o o DRIl - S -

E"kalnk
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Now we describe admissible equipments of all painted Dynkin graphs, repre-
senting the flag manifolds of the types |

M-’_—'SUG/TlXS(UzXUg) and M=SU7/T2XS(U2XU3). |

We consider only one of two such manifolds for each of the groups SUs and SU;.
The equipments associated with other manifold of such type can be obtained by
symmetry of Dynkin graph.

Case of the manifold M = SUs /U x S (U x Us); g = As, E=C2+ A; + A,

1.1 .12 _2 _2
S1e7 €13 €7 £5; £

2 .2 21 1 _1
€12 f23 € £12 €251

11 2 2 2
€19 €201 d1e] £1p €33
6—0—e—0—35
2 2 .2 1.1
€12 €33 €301 b1 €5,
o——_G—o—eo—o

112 .2 .2 2
€12 € iz €33 €301

2 2 .2 _21 1
0167 €13 €33 € €12
*—-—-b6——e—03

Hence, on the flag manifold M = SUs /U x S (Uz x Us) there exist 6 distinct
invariant complex structures. They are mutually non-G-diffeomorphic, but only
three of them are mutually not diffeomorphic.

Case of the manifold M = SU;/ (Ul)2 XSUy xUs);g=A6, E=C3 + A + Ay

2

1.1 1 12 2
012 26y €15 £33 £° €13

2 .21 1 1 1
€19 € €15 E23 €301 d12
o ——o—O————e

2 .2 .21 1 1
012 d28y €13 €7 €13 g

12

11 2 2
€12 €23 £ €1z €261 d12

2 2 2 1,1 1
d167 €15 €202 826y €35 €33
*r——o———0—o—9

5}2 Eés Eé&l O12 625?5?62
——b—o—o—0—@
h 5%2 €13 5552 525% 5?2
*—————e——e—9
efa €381 Siel €1g £fy €362
o——0——0—6—6—@
€12 53‘51 12 d26] €1, €
o—0—o———5—3b

1,1 2 2
Eiz g23€2301 §12 G267 €13
o—o-——&—8——>0



Flag Manifolds 35

Other 10 admissible equipments are obtained from described ones by transposition
(81, 62), which belongs to the T-Weyl group. Hence, we have 5 different painted
Dynkin graphs, which corresponds to 5 mutually nondiffeomorphic invariant com-
plex structures. Each of these graphs has 4 admissible equipments. These four
equipments determine four different but diffeomorphic invariant complex struc-
tures, which is devided into two pairs of G-diffeomorphic complex structures. The
G-diffeomorphic complex structures is associated with two equipment of the graph,
which are related by the transposition (4, d2).

REFERENCES

[Al] Alekseevsky D.V., Homogeneous Einstein metrics, Diff. Geom. Appl., Proc. Conf.,
Brno, 1986, 1-21.

[Al-Per] Alekseevsky D.V., Perelomov A.M., Invariant Kdéhler-Einstein metrics on compact ho-
mogeneous spaces, Funct. Anal. Appl.2:3 (1986), 1-16.

[Bes] Besse A., Eistein Manifolds, Springer-Verlag, 1987.

[B-F-R] Bordemann M., Forger M., Rémer H. Homogeneous Kdehler Manifolds: Paving the way
towards supersymmetric sigma-models, Commun. Math. Phys. 103 (1986), 605~648.

[Bor] Borel A., Kdhlerian coset spaces of semi-simple Lie group, Proc. Nat. Acad. USA 4D
(1954), 1147~1151.

[Bor-Hir] Borel A., Hirzebruch F., Characteristic classes and homogeneous spaces, Amer. J. Math.
80 (1958), 458-538.

[Bourb] Bourbaki N., Groupes et algebres de Lie, ch. 4~-6, Hermann, Paris, 1968.

[G-O-V] Gorbatzevich V.V., Onishchik A.L., Vinberg E.B., Structure of Lie groups and Lie
algebras, Enzycl. Math. Sci. 41, Lie groups and Lie algebras-3, Springer-Verlag, 1993.
[Kos] Koszul J.L., Sur la forme hermitienne canonique des espace homogenes complezes,
Canad. J. Math. 7 (1955), 562-567.
[Nis] Nishiyama M., Classification of invariant complezx structures on irreducible compact
simply connected coset spaces, Osaka J. Math 21 (1984), 89-69.

[Sieb] Siebenthal J., Sur certains modules dans une algebre de Lie semi-simple, Comment.
Math. Helv. 44 (1969), 1-44.

[Tits] Tits I., Sur les constantes de structure et le theoréme d’ezistence des algebres de Lie
semi-simples, Publ. Math. THES 31 (1966), 21-58.

Gen. Antonova 2, kv. 99
117279 Moscow
Russia

abaQ@math.genebee.msu.su



