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APPLICATION OF ANALYTICAL COMPLEX FUNCTIONS FOR THE
INVESTIGATION OF SOME CLASSES OF VORTEX FLOWS

Mane Sasic
(Communicated June 29, 1977)

Regardless of the possibilities of modern electronic computing machines,
it is still of considerable interest to find exact solutions of the equations of motion
of fluids, although they can be found by means of some more severe limitations.
The flows best investigated so far are, most certainly, the potential flows of an
incompressible fluid, which, on the other hand, cannot be arrived at because of the
viscosity existing in each real fluid. These flows have been best studied thanks partly
to the properties of the analytical complex functions, i.e. functions the real and
complex parts of which satisfy the Cauchy-Riemann equations. In the papers
cited a method is mentioned that was established for the study of vortex flows of
the real fluid, this method being based on the application of nonanalytical complex
functions, that is complex functions depending upon the complex variable x4-iy
and its conjugated value x—iy. Some new solutions were obtained, while in some
already known solutions a physical interpretation was attributed to certain
constants,

In this paper the following question was put forward : do there exist some
vortex flows, for the investigation cf which the analytical complex functions could
be used, i.e. complex functions that are exclusively related to the investigation of
potential flows of an incompressible fluid? The answer is positive: there exist such
functions. One of such classes of vortex flows was related to the analytical complex
functions by Konstantin Voronjec, while certain resu'ts in this connection were
obtaincd by the author of the present paper. These results were not published so
- far, and their publication is being undertaken at the present occasion as yet an other
appreciation of our great teacher, Professor Konstant:n Petiovié Voronjec.

If a stationary pseudo two dimensional flow (v,=0) of an incompressible

fluid (div v=0) is considered, provided v || rotv, then the dynamical equations
are automatically satisfied, and the energy c¢f the fluid flow remains constant in
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the flow space in terms of time. For the investigation of the kinematics of such
flows the following equations are available:

o, (c)'vy a'vx)__o, 2. (t)vy t)vx)__o’

ox Oy ox 0y
o) 0 0 0 0
v, —% v, %0, L=,
0z 0z ox Oy

The third equation of this system shows that the velocity square does not depend

: : : 0
on z, because that equation can be rewritten in the form of — (v,2+9,%)=0,

0z
while the remaining three equations are satisfied by the functions ¢o=¢ (x, y, 2)
and ¢=1¢ (x, y,z) by means of the relations

_%9 0oy _Odp _ OY
0x ay’

2 Dy :
(2) Y=y ox

It should be noted that the functions ¢ and ¢ represent neither the velocity poten-
tial nor the flow function. In fact, ¢ represents flow surfaces, which define flow
lines at their intersections with planes z=const. On the other hand, ¢ represents
families of surfaces that are perpendicular to the surfaces ¢=const. Provided the
variable z is attributed a role of a parameter, then on the grounds of equations (2),
it is possible to conclude that

w(x+iy; 2)=0(x,y; 2)+id(x, y; 2)
is an analytical complex function, and that even its derivative

) dw
d(x+iy)

=ge~? =y,

3)

is also an analytical complex function (where v is the velocity magnitude, %

the angle between this velocity vector and the x-axis). Also, In v=Inv—i$9 is an
analytical complex function that satisfies the Cauchy-Riemann equations:

o(lnv) a(—-9) a(lnv)_ 0(—9)
0x oy ’ oy ox

(4)

The left hand sides of the equations (4) do not depend upon z, since the velocity
square does depend on Xx, y only. But, because of the conditions (2), the projections
vz and vy, of the velocity v depend on z, this requiring that ¥=4% (x, y, z). Be-
cause of (4), this function must have the following form:

8(x, », 2)=9 (x, ) + 8, (2).
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Thus, from (3) one obtains

w(x, y; 2)=e=1% [ pe=id%i d(x 4 iy),

since the function w is determined to the additive constant accuracy. The result
of the Integration 1s

(5) et [f (X, M) +ify (x, M)]=9+i{,
or
¢ (%, ¥. 2)=f; (x, y) cos 3, (2) +1, (x, y) sin 9, (2),

q’ (x! Y, Z) = _.fl (x: y) sin 32 (Z) +f2 (-x: y) COs 3‘2 (Z)

The equations (2) show that the functions fi(x,y) and f5(x,y) satisfy the Cauchy-
-Riemann conditions:

© of, _ofy  fi_ _f;

ox ay’ oy ox

Therefore, any potential flow that is determined by the complex potential
J1(x, y)+ifa(x, y), can be used to formulate these classes of the pseudo-plain
vortex flows of an incompressible fluid. In literature, these flows are called
~ helicoidal flows. The magnitude of the vortex is

2w=r0t 0= —9 —2=,

dz

It is quite natural to raise the following question: can a real fluid (v+#0,
where v is the kinematic viscosity) flow also under these conditions? This is, in
fact, reduced to the question: can the velocity projections

x= %% cos 3, (z) + o1 sin 3, (2),
o0x ox
0, = —a-é cos &, (z2) + % sin &, (2),
oy oy
satisfy the dynamic equations for a stationary flow of a viscous incompressible
fluid :
2
0 (ﬂ -2 U)=vAvx,
ox\2 o
2
(7 0 (‘U ! P U)=vﬁvy,
oy\2 o

2
9 ('v +-£-—U)=vAv,.
3
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Here, U is the potential of external forces, p is the pressure and p the fluid density.
Since v,=0, the last equation of the system (7) shows that in this type of flow,
the total energy must not depend on z. The functions f; and f, are harmonic
ones, and, therefore, |

Ao df, d*cos ¥, (2) ; of, d?sind,(2)
T ox dz? ox dz? ’

0f, d*cosd,(2) N of, d?sin$,(2)
oy dz? oy dz2
and, thus, the solution of the first equations of the system (7) is as follows:

d? cos &, (2) d*sin 3, (2)
+ 7, (x, -C.
472 J2(x, ) )

Av,

@2
-—+-p——U=v [fl (x, ¥)
2 p

Since, the left-hand side of this system depends on x and y only, we must have

d?cos &, (2) o d*sin 9, (2) o
dz? dz?
The solutions of these equations are:
cos &, (2) = —;— C,z°+Cyz+C,,
: 1 .
sin 4, (z)=-—2— C,z2+C,z+ C,.

Thus, the problem is solved formally. However, the condition
cos?$, (2) +sin? ¥, (2) =1

cannot be satisfied since the constants Cy, C,, ... are real. Therefore, the pseudo-
-plain stationary flow of a viscous incompressible fluid, in which the velocity vector

would be colinear with the vorticity rot v, cannot be established without some
special forces.

Finally, yet another class of vortex flows is obtainable by means of the analy-
tical complex functions. For example, let a nonviscous fluid (v=0) be considered.

Then, the compatibility condition for the dynamic equations (_1;: grad 2 »)=0
indicates that 2w =2 o (). By a well known methcd it i1s possible to set lines that

are orthogonal to the lines ¢. Now, in fact, we have that 7\7=grad @, where
A(x, y), for the time being is an arbitrary function of the variables x, y. The
last expression together with the continuity equation lead to the following

relationships:
1 0p 09 ” 1 09  0¢
A Ox t)y’ ¥ oy ox

Ux
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whence it follows that

_1 o )
Ap= - (grad A, grad ¢) > (. ) ,

_ 1 1 o(A, <P)
A= (grad A, grad{) = ~ o —

It is noted that 2 w=—A =0, when A=A (p). Thus, for the case of a vortex
flow A must depend on ¢ and ¢, or on ¢, only. It will be assumed that
A=f"({). Then, A =0, and

dp Of Qi=__6_)_j_'_'
o0x dy’ 0y dx

This means that ¢-4if is an analytical complex function.

Since,
drwst, Lorwt,
X 0y oy
there follows that
A¢ f” (¢) __0
f )

Since A ¢=—2 w (¢), it also follows that v2=v2({). It can be readily shown
that in this case

2o di( - U)

Finally, for the determination of the function ¢ 47 f, we shall use the plain of the
complex velocity

Ao=2Apei?
From this equation we have
In(Av)=In (Av)—1i89,
and, also,
O(Inrv) 0(-9) 0 (InAv) 0(—9)
ox oy oy ox

~Since both A and v depend only on ¢, it is convenient to consider ¢ and ¢
as variables, that is to operate with ¢ and f(¢). It that case, the Cauchy-Riemann
equations lead to the following expressions:

~d(nAv) 9% v, 0%
df o9 v, Of

d(ln)vv) 0% v, 09
if  dp o, Of
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The summation of these expressions will yield
09 (vx : 'vy) 0,
of \v, 9,

whence it follows that & does not depend on f, 1.e. that 3=3% (¢ ). Thus, both pre-
ceding equations are reduced to a single one,

d(lniAv) dId
- df deo

since the left-hand side of the last equation depends on ¢, while the right-hand
side depends on . Therefore, the solutions are as follows:

In(Ao)=kf, S=kaq,

const =k,

and, we have
d@+¥) _ -ikorin,
dz

or, finally,

]
+if= —— Inz.
@ +if L

By separating this function into its real and imaginary part, one can obtain
the functions ¢ and f. Each function ¢ (f) determines a flow field that satisfies

all conditions set.
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