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ON SOME ASPECTS OF BUBBLE GROWTH RATES;
Effect of Bubble Shape

B. B. Mikié¢

(Communicated June 22, 1977)

Abstract. This work introduces a new method for evaluating bubble growth
rates for heat diffusion controlled growth in a uniformly superheated liquid. The
method is applicable to growth problems involving bubbles of arbitrary shape.
Based on a simple physical model, an explicit solution for a general case of time
varying shape is presented. For a special case of a spherical bubble, the model
yields the known asymptotic solution.

Nomenclature

bubble dome area

a parameter defined by equation (12)
a parameter defined by equation (12)
specific heat of liquid

latent heat of evaporation

Jakobi number

thermal conductivity

length of a fluid element

a parameter defined by equation (12)
a sink strength

a parameter defined by equation (12)
interface heat flux

bubble radius

radial coordinate

a variable defined by equation (10),
temperature

liquid superheat, T, — Tsat

time
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V, velocity, bubble volume
X, a coordinate direction normal to the interface

Greek Letters

o, thermal diffusivity of liquid
B(t), a variable defined by equation (17)
d, thermal boundary layer thickness
), self similarity variable; equations (5) and (17) angle, Fig. 3
v(t), a variable, equation (C4)
e, liquid density
a variable, equation (4)

Subscripts

s.i1. semi-infinite case
v, vapor

Introeduction

Bubble growth problem for heat transfer controlled growth in a uniformly
superheated liquid was considered by a number of investigators, most noteably
by Forester and Zuber [1}, Plesset and Zwick [2], and most completely by Scriven [3].
Common to all the methods was an assumed spherical shape of the growing bubble.

It is known that bubbles growing near a wall may be of various shapes,
tending to be nearly spherical if slowly growing, or oblate if rapidly growing {4].
Recently Cooper et al [5] have reported experiments on single bubbles under
simplified low-gravity conditions. The general shapes of such bubbles were shown
to change during growth, from nearly hemispherical to nearly spherical, depending
broadly on the relative magnitude of the inertial and surface tension stresses.

These are approximately proportional to (1/t) and (1/)t) respectively. Hence
the former predominates for small ¢t and the latter for large ¢.

At present there is no available method for evaluating evaporation rates
at the bubble interface for bubble shapes other than spherical.

The objective of this work is to develop a method for determining the tem-
perature field over the bubble dome, and thus the vapor generation rates at the
vapor-liquid interface. The method does not determine the bubble shape or changes
of shape during the growth but rather predicts vapor generation rates for a given
change of shape.

The work is not concerned with the microlayer contribution. This is not
intended to imply that the microlayer contribution is insignificant; the adopted
approach simply reflects the fact that the phenomenon considered — effect of
bubble shape on evaporation rates — applies mainly to the bubble dome contri-
bution. The microlayer contribution could be added by some of the methods already

developed, e.g. ([6].
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Model and Analysis

For a growing bubble in a uniformly superheated liquid, the thermal boundary
layer around the bubble dome is much smaller than the bubble radius (or the local
radius of curvature for a nonspherical bubble). This is because in heat transfer
controlled growth one can show that 6/R~1/Ja and in most practical situations the
Jakob number (Ja) would be much larger than one. Therefore, 3/R<Z1. Based
on this argument the temperature field in the vicinity of the interface can be des-
cribed in a plane geometry system. This is the first component of the model

As the liquid evaporates at the interface, a certain portion of the boundary
layer (Ad) is converted into vapor. The effect of this on the temperature field would
be negligible if the value of Ad/3 is much smaller than one. Since A3/3 is of the
order of CpAT/hsg, for most cases of practical interest one would have Ad/3<L1.
Consequently, the effects of liquid removal at the interface on the temperature
field can be neglected. This 1s the second component of the model.

The third component of the model is related to the stretching effects on the
boundary layer due to a continuous increase of the interface area during bubble
growth. This increase causes both a flow of liquid toward the interface and for a
control volume with fixed (undeformable) boundaries, flow of fluid out of the
control volume paraliel to the interface. A fluid element of length /, normal to the
interface, will change its length due to the interface srettching. Conservation
of mass requires /- A = constant, and therefore

dl ! dA
(1) =
dt A dt
where A4 1s the bubble dome area. Clearly (-—-f}{-) represents the liquid velocity
{

toward the interface. The value of the velocity at the interface (/=0) is zero as
a consequence of the second component of the model. Thus from relation (1)

x dA

2) V., =
( A dt

This completes the model. Figure 1 summarizes the approach.

The energy equation for assumed incompressible liquid together with boun-
dary and initial condition is:

oT oT ,0°T

PCP"S—;+PCPV.: v kc)xz 0
(3) 1=0 T=T,

x=0 T=T,

XxX=0 TI=T,

Substitution of (2) into (3) yields

(3a) . — - ——=a—=0

6*



84 B. B. Mikid

where

t dA
A dt

(4) _ g

An alternative derivation to the above formalised simplification from a general
form of energy equation, would be to write conservation and energy equations
for a control volume with a fixed boundaries. Because of the additional physical
insight one would get in this way and because the whole approach involving mo-
deling of this type is new, the alternative derivation of (3) is presented in Appendix A.

Too
—_— (—V \ —_ X C_E_Lf_! —t
—e Ix X A d¢ f —
Tsat:

Figure 1. Model

The problem considered above has a similar solution at least for values of
{ =const. With a new variable

(5) n=(1+22x/2 Vat

relation (3a) transforms into

2

éT1'2n£=0

d7? d
(6)

n=0 T=T,,

n=o0 TI=T,

which has the following solution
(7 (T —Ty) = (Too— Tya) erf [1+28)2x/2 Yut]
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The flux at the interface follows from (7) as

kAT

V7ot

The volumetric rate of vapor formation over the dome follows from the mass
balance at the interface.

(8) g =(1+27)?

dav, Aq"
dt thfg
and together with (8)
1/2 1/2
e
dt T t

Variable T as defined by (4) can be expressed in terms of parameters relating the
bubble dome area to the total bubble volume (V). Writing the area as

(10) A=sV3

where s is a time varying bubble shape factor.

One has for { from the above and (4)
2 t dV 1 ds
3 V dt s dt

The value of ¢ would be independent of time if ¥ and s could be expressed res-
pectively as

1y B

V =bt™
12 -~
(12) s=BtP)
where b, B, m and p are constant. For this case -
(13) =—§~m—|—p

If the bubble grows due to the evaporation over the dome only, one could relate
m to p (defined by equation (12) as follows.
From (9)

av A sy y2A3

ar gz e ~t1]2—p

from which
V ~ 132 +p)

Thus m Z -3p and relation (9) changes for this case into

1/2 1/2
(14) d._VmA(3+6p) Ja(__f‘.‘_)

dt i t
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For a bubble growth for which (A4/V?2/3)=s=const.,, p=0. If, in addition teh
bubble is spherical, then relation (14)k, after integration, yields the known asympto-

tic solution for the bubble radius, [2], {3].

3 \1/2
(15) R=2(——) 12 ], 1112

1

In Appendix B the same results were obtained by a method based only on
a simple physical argument dealing with changes in an effective thermal boundary

layer thickness due to the interface stretching. Moreover the method introduced in

s : t dA
the appendix is not restricted to the case when { » =const. For a general

case when £ =C (¢) it is shown that the flux at the interface can be expressed as

t-exP[fg—gdt] .

g = t kAT
lfexp[f%—c-dt]-dtj el
0

Since the above result was obtained without any additional physical interpretation
of the process over and above those already used in the analytical model introduced
in this section, one would expect that the main problem stated by relation (3a)
with {={ (¢) should also have a similar solution. And, indeed the introduction

of a new variable 7 defined as -

N=B(1) x/2Vut

]
texp t] 2
B(f)= 4

ifcxp[ ] dt] jAZd:

transforms relation (3a), after long but straightforward algebraic manipulations,
into an ordinary differential equation identical with (6). Thus the general solution
of the problem considered here is

(16)

where

(17)

(18) (T-T,)=(Tw—T) erf [B(¢) x/2Vat]

The flux at the liquid-vapor interface 1s given by equation (16) or in terms of the
surface area of the dome

(19) ~ q" =

¢

fAZdt

0

A%t ”z(kAT)
Vﬁat
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The vapor generation rate follows from (19) as

A2t 2 1/2
o i £ )
dt f Tt
[ A% dt
0
For a constant bubble shape, i.c. a constant ration of 4/v2/3 one has
Azt \'?
: =V3
[ Azdt

0

since for this case V~t3/2, as can be deduced from (9).

Discussion

The results of the analysis presented in the previous section show that when
an arbitrary shaped bubble grows without changing shape, i.e. when in expression
(11) s =const. or in (13), p =0, the flux at the interface is given by the spherical
bubble relationship:

kAT
"o __ 3
7 V‘I/T:oct

This, however, is not the case for bubbles which change their shape during
the growth process. Referring to equation (19), it is seen that fluxes either higher
or lower than those for a spherically shaped bubble are possible. A simple analysis
shows that the result depends on the area volume relation. For the relationship

given by equation (12) one can show that when §>0, the fluxes at the interface

would be higher than for a spherically shaped bubble. The opposite would be

true for -—c—i—<0. This conclusion is consistent with the physical picture: larger
4

increases in surface area for the same change of bubble volume would cause higher
stretching effects thus producing a thinner thermal boundary layer.

Concerning the overall approach adopted here we would like to make two
comments.

Firstly, the method, as presented, is based on an average stretching of the
boundary layer over the dome area. For shapes other than spherical this is an
approximation. The consequence of the approximation is to minimize the eva-
poration rate per unit area of the dome. Thus, as compared to the present model,

the deviation of the actual vapor generation rate from the rate predicted by the

spherical bubble is higher for é-SZ->0 and lower for iS—<0. This conclusion is

dat dt
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based on the following physical argument. The vapor generation rate over the

A : :
dome area is proportional to kAT %— , where 8 is an effective thermal boun-

A

dary layer thickness. The present method replaces the above with k A_TA , Where

)

]

3 is an average boundary layer thickness over the dome area; 8= _}I f dA.
A

Since the average value of (—;{) , 1.e. %— f %‘i is always greater than or equal to

1/ &, the predicted evaporation rate is either equal to or lower than the actual one.
For most cases of practical interest one would expect that the presented method is
adequate. Nevertheless, in principle the method could be modified in order to
remove the assumption of uniform stretching of the thermal boundary layer

over the dome area. In this approach one could interpret relation (1) as a condition

applied locally. The quantity t a4 would be treated as a variable around the

A dt
bubble interface. The local fluxes would still be given by relation (19) with an
A2t \'?

understanding that the quantity . has local values over the dome.

[ A2 dt

0

Integration of the interface fluxes over the dome area would then yield the vapor
generation rates. Appendix C presents this procedure along with the general
results for this case.

The second comment is related to the objectives and scope of the present
work. This investigation does not attempt a complete bubble growth solution for
which microlayer contributions and inertia effects would also have to be consi-
dered. Even within the scope of its applicability — heat diffusion controlled growth
in a uniformly superheated liquid — the method requires as an input information
on the bubble shape variations du-ing the growth process. In the present form
the work is intended mainly to indicate the consequences of changes in bubble shape
on the interface fluxes and hence, on the vapor generation rates. Apart from this,
the work introduces a new method whose applicability could be extended beyond
the specific problem considered here; for example, to the problems of bubble
growth with inclusion of inertia forces. bubble growth in a non-uniform tempe-
rature field, and bubble collapse.

Conclusions
The work presents a new approach for evaluation of bubble growth rates

in a uniformly superheated liquid. The method is applicable to problems involving
bubble shapes other than spherical The results show that for a bubble for which
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(4/V)2/3 remains constant during growth, where 4 and V are the bubble dome
area and the bubble volume respectively, the interface flux is given as

., 3)”2 kAT
? ( Vat

For a general case when (4/V)2/3 varies during bubble growth, the interface
flux can be expressed as

T

A2t Y2 pAT
qlf — ;
o
[ 42 a
0
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Appendix A

For a control volume with fixed boundaries, Fig. 2a, the flow rate out of the control
volume in the direction parallel to the interface is

oV

e—=AxA A
0 X
or per unit volume
oV 1 dA
Al mrn_ X
(A1) ° 0 X PA dt

The conservation of energy applied to the control volume, Fig. 2b, yields,

oT 0 0:T
A2 C,—+pC,— (V. T)+C,m" T—k =
( ) P pat P Pax( ) p 0 x2

0
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The third term in the above relation represents the enthalpy outflow from the
control volume resulting from term (Al). Clearly, (A2) with (A1) reduce to rela-
tion (3). It is of some interest to note here that the complete effect of stretching
on the development of the thermal boundary layer around the growing bubble
could be compensated by the introduction of an effective mass sink of strength

( 9%+ 2% ax) s [fMT+ tce (4T ox] 44
=
T - e g giaxad e T
x - ~
- l AA - Tevana £ QUG TAA
2 Q. 2b
Figure 2.

tr’

m'"”’, equation (Al). The sink is uniformly distributed for x>0 where x =0 re-
presents the interface boundary. It is evident that the sink would generate the
identical fluid flow toward the interface as the stretching effect. Also in the energy
equation, (A2), the third term could be viewed as the enthalpy removal per unit
volume due to the uniformly distributed sink (zn'"’). Thus the problem of thermal
boundary layer development around a growing bubble in a uniformly superheated
liquid is equivalent to the development of the layer in a semi-infinite medium
containing uniformly distributed sink (m'”’) whose strength is related to the in-
terface stretching, (Al).

Appendix B

The heat flux for a simple case of semi-infinite body initially at a uniform tem-
perature, T, with T=T4 for t>0 at x=0 1s given as

kAT
' 1 ”s.i."'
(B1) q et

One could interpret the quantity /ot as an ellective thickness of the thermal
boundary layer. The growth of the layer with time (which is caused by heat dif-
fusion only ) can be expressed as

ds 1 (ra)'? 7

da >t 2 e 23

(B2)
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For the case of a bubble growth one would expect that the fluxes could be expres-
sed by a relation similar to (Bl). Specifically, we assume,

kAt

(53) 7 Aot

For this case the effective boundary layer thickness is

(B4) d=A) mat

The difference between the two boundary layers (reflected by a presence of factor
A in (B4) is caused by the stretching effects at the bubble interface. For the
stretching effect alone one has 8 A=const. or

08 3
04 4

(B5)

The total change of the effective boundary layer thickness can be expressed as

ds 03 08 dd

(B6) |
dt ot 0A dt

The first term on the right-hand side represents the growth due to heat diffusion
only. We interpret the result given by relation (B2) as the growth rate by heat
diffusion only in terms of the instantaneous real thickness, i.e.

c)S_(dS) _ T
ot dt] s..

29

Thus, substituting (B2), (B4) and (B5) into (B6) and assuming that A is indepen-
dent of time, one gets,

(B7) l]/‘n:oc_ ma (t dA)lVﬂat
2:t12 27VYwmat \A dtf t
solving for A this results:
1/2
(BS) A= 1/ 1+2(’ dA)
| A dt
: . . t dA . . .
Relation (B8) is valid when e =const., consistent with the assumption that
!
A 1s independent of time. For a spherical bubble:
; dA—l and A=1/}/3

A dt
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When t_d4 is not constant, one proceeds as above starting with (B6) but when

A dt
diffirentiating 8 using (B4), A must be treated as a function of time. This yields

an extra term on the left-hand side of equation (B7). The resulting expression is
the following differential equation

2
anv (1429, 1 _,

B9
(B9) dt t t
where
t dA
10 _-
(B10) A dt

From (B9) and the condition that A is finite at t=0 there follows:
! 1/2

fexp[f—z-}—c-dt]dr

{Bi1) A=12
[
t exp f —dt
t
Or in terms of the dome area, using identity (A10).

fAz dt 112
Y 0

A%t

(B12)

For {=const. (B11) and (B12) reduce to (BS).
The interface flux for the general case follows from (B12) and (B3) as

) A2t YWPEAT

(B13) 1 ’ /ot

[ A2 adt
0

Appendix C

In case of non-uniform stretching of the thermal boundary layer over the bubble
interface, one can evaluate the interface fluxes in terms of local values of the
boundary layer thickness and then integrate it over the whole dome in order to

find the vapor generation rate.
The interface flux in this case is still given by relation (19) i.e.

o
1/2
(C1) q”=..-[A2r/ f Azdt] kAT
0

Tal
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4
where the quantity [42¢/ f A2dt] has local values over the dome.
0

Referring to Figure 3.
dA =2 rcos Ods

ds = rd/cos G, ;)'

Thus
()

(C2) dA=2nrr——=2__4g

cos (r, n)
For a fixed ® one gets

A2 t I/2 r2 .-t 1/2

(C3) t o t

- > r‘d

f A% dt cos2(r, n)

0 —_— -
v cos?(r, n)

The evaporation rate over the dome follows from

dVD 1 fqu dA
dt Py hfg

A

which together with (C1) to (C3) yields

(C4) WVb_ 2 rv(t) (i)”z J,
dt Tt
where
/2
V() = f r? czsi r4i 1/2&“P
o, cos (r, n) cos? (;: ;;.) ré dr

— —

s cos?(r,n)

The above could be simplified when changes in cos (r, n) at any particular location

are much smaller than changes in r. For this case

A2 Y2 rér Y12

fAzdt fr" dt
0 0

The choice of @, in (C4) depends on the bubble geometry and the position of
the center 0. The latter should be located on the axis of symmetry at the height

where r - cos (;:13 has a maximum (c.f. Fig. 3).
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We should like to mention that the above approach is still an approximation.
A more rigorous method would be to integrate along stream lines around the
bubble but this would require a complete solution for the flow field.

Figure 3.




