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Abstract. This work introduces а пеw method for eva1uating ЬиЬblе growth 
rates for heat diffusion controlled growth in а uniform1y superheated liquid. Тће 
method is аррliсаЫе to growth probIems involving bubbles of arbitrary shape. 
Based оп а simple physical model, an explicit solution for а general case of time 
varying shape is presented. For а special case of а spherica1 ЬиЬblе, the model 
yields the known asymptotic solution. 

Nоmепclаtnrе 

А, ЬиЬЫе dome area 
Ь, а parameter defined Ьу equation (12) 
В, а parameter defined Ьу equation (12) 
Ср specific heat of liquid 
hfg latent heat of evaporation 
Ја' Jakobi number 
k, theImal conductivity 
1, length of а :O.uid element 
т, а parameter defined Ьу equation (12) 
т''', а sink strength 
Р, а parameter defined Ьу equation (12) 
q" interfaceheat :О.их 
R, ЬиЬЫе radius 
г, radial coordinate 
s, а variabIe defined Ьу equation (10), 
Т, temperature 
f:j. Т, liquid superheat, Т со - Tsat 
t, time 
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V, velocity, ЬиЬЫе уоlите 
х, а coordinate direction norma1 to the interface 

Greek Letters 

а, thermal difIusivity of liquid 
f3(t), а variable de:fined Ьу equation (17) 
~, thermal boundary layer tblckness 
1), self similarity variable; equations (5) and (17) angle, Fig. 3 
v(t), а variable, equation (С4) 
р, liquid density 

а variable, equation (4) 

Subscripts 

sj. semi-infinite case 
У, vapor 

Introduction 
. 

ВиЬЫе growth problem for heat transfer controlled growth јп а uniformly 
superheated liquid was considered Ьу а number of investigators, most noteably 
Ьу Forester and Zuber [1), Plesset and Zwick [2], and most completely Ьу Scriven [3). 
Соттоп to аН the methods was ап assumed spherical shape of the growing ЬиЬЫе. 

It is known that ЬиЬblев growing near а wall тау Ье of various sЬлреs, 
tending to Ье nearly spherical if slowly growing, or oblate if rapidly growing [4). 
Recently Cooper et al [5] ћауе reported experiments оп single bubbles under 
simplifi.ed low-gravity conditions. Тће general shapes of such bubbles were shown 
to change during growth, from nearly hemispherical to nearly spherical, depending 
broadly оп the relative magnitude of the inertial and surface tension stresses. 
Тhese are approximately proportional to (lft) and (1/Vt) respectively. Непсе 
the former predominates for small t and the latter for large t. 

At present there is по available method for evaluating evaporation rates 
at the bubble interface for bubble shapes other than spherical. 

Тће objective of this work is to develop а method for determining tbe tem­
perature fi.eld over the bubble dome, and thus the vapor generation rates at tbe 
vapor-liquid interface. Тhe method does not determine the ЬиЬblе shape or changes 
of shape during the growth but rather predicts vapor generation rates for а given 
change of shape. . 

Тhe work is not concerned with the microlayer contribution. Тhis is not 
intended to imply that the microlayer contribution is insignifi.cant; the adopted 
approach simply reflects the fact that the рћепотепоп considered - efIect of 
ЬиЬblе shape оп evaporation rates - applies тainlу to the bubble dome contri­
bution. ТЬе microlayer contribution could Ье added Ьу someof the methods already 
developed, e.g. ([6]. 
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Model and Analysis 

For а growing bubble in а uniformly superheated liquid, the thermal boundary 
layer аrоџnd the bubble dome is much smaller than the bubble radius (or the local 
radius of curvature for а nonspherical bubble). This is because in heat transfer 
controlled growth опе сап show that 'l5/Њ-..,l/Ја and in most practical situations the 
Jakob number (Ја) would Ье much larger than опе. Тherefore, 'l5/R~l. Based 
оп this argument the temperature field in the vicinity of the interface сап Ье des­
cribed in а plane geometry system. This is the first component of the model 

As the liquid evaporates at the interface, а certain portion of the boundary 
layer (~'l5) is converted into vapor. Тће effect of this оп the temperature field would 
Ье negligible if the value of ~'l5/'l5 is тисћ smal1er than опе. Since ~'l5/'l5 is of the 
order of Cp~T/hfg, for most cases of practical interest опе would have ~'l5/'l5~1. 
Consequently, the effects of liquid removal at the interface оп the temperature 
field сап Ье neglected. Тhis is the second component of the model. 

The third component of the model is related to the stretching effects оп the 
boundary layer due to а continuous increase of the interface area during bubble 
growth. This increase causes both а flo\v of liquid toward the interface and for а 
control volume with fixed (tшdеfоrmаblе) boundaries, flow of fluid out of the 
control volume parallel to the interface. А fluid element of length 1, normal to the 
interface, will change its length due to Ље interface srettching. Conservation 
of mass requires Ј· А = constant, and therefore 

(1) 
аЈ Z аА 
-=---
а! А dt 

where А is the ЬиЬЫе dome area. Clearly - аl represents the liquid velocity 
dt 

toward the interface. Тће value of the velocity at the interface (l =0) is zero as 
а consequence of the second component of the model. Thus from relation (1) 

(2) V=_xM 
х А dt 

Тhis completes the model. Figure 1 summarizes the approach. 
Тhe energy equation for ass1Jmed incompressible liquid together with Ьоип­

dary and initial condition is: 

(З) 

дТ дТ д2 Т 
р Ср + Р Ср Vx - k = О 

дt дх дх2 

х=О T=Tsat 

х= оо Т= Т"" 

Substitution of (2) into (3) yields 

(За) дТ _~ х дТ _а.д2Т =0 
дt t дх дх2 
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where 

(4) 

В. В. Мiю~ 

~= t dA 
А dt 

An altemative derivation to the above formalised simplification from а general 
form of energy equation, would Ье to write conservation and energy equations 
for а control volume with а fixed boundaries. Because of the additional physical 
insight one would get in this way and because the whole approach involving то­
deling ofthis type is new, the alternative derivation of (3) is presented in Appendix А. 

, 

• 

\ 

(у\_!..Јд 
ТОО 

, 

• - х - А col'i; • 
х • , 

• , . . 

• • 
~d; 

Figше 1. Model 

Тhe problem considered above has а similar solution at least for values of 
~ =const. With а пеw variable 

(5) 

relation (3а) transforms into 

(6) 

d2 T 2 dT О -+ 1] = 
d1]2 d1] 

1]=0 Т=Т6ш 
1]=00 T=Trд 

which has the following solution 

(7) (Т - T.at) = (Т оо - Т,ш) erf [1 + 2 ~)1/2 х/2 v;t] 
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Тhe ћих at the interface follows from (7) as 

(8) q" = (I + 2 ~Y/2 k А Т 
V1CO~t 

Тће volumetric rate of vapor formation over the dome fol1ows from the mass 
balance at the interface. 

dVD _ Aq" 
-

dt Рућ/к 

and together with (8) 

(9) 
dV D = А 1 + 1/2 ех 1/2 

Ја· 
dt 1t t 

, . 

Variable ~ as defined Ьу (4) can Ье expressed in terms of parameters relating the 
ЬиЬblе dome area to the tota1 ЬиЬblе volume (V). Writing the area as 

(10) A=SV2/3 

where s is а time varying ЬиЬblе shape factor. 

One has for ~ from the аЬоуе and (4) 

(11) !;;= 2 t dV + t ds 
3 V dt s dt 

, . 

Тће value of ~ would ье independent of time if V and s could Ье expressed res­
pectively as 

(12) -
s=B tP 

where Ь, В, т and р are constant. For tbls case • 

(13) !;;= 2 т+р 
3 

П Ље ЬиЬblе grows due to the evaporation over the dome only, one could relate 
т to р (defined Ьу equation (12) as follows. 
From (9) 

dV А SV2/3 V2/3 
-,..., = ,...,--
dt t 1/ 2 t 1/ 2 t 1/2 - p 

from wblch 

3 
Thus т = + 3р and relation (9) changes for tbls case into 

2 

(14) dV = А _3_+_6=-р 1/2 ех 1/2 
Ја -

dt 1t t 
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For а bubble growth for which (AjV2 j3) =s =const., р =0. If, in addition teh 
bubble is spherical, then relation (14)k, after integration, yields the known asympto­
tic solution for the bubble radius, [2], [З]. 

(15) 
З 1/2 

R = 2 (1.1/2 Ја t 1/2 

In Appendix В the same results were obtained Ьу а method based only оп 
а simple physical argument dealing with changes in an effective thermal boundary 
layer thickness due to the interface stretching. Moreover the method introduced in 

the appendix is not restricted to the case when ~ = t dA = const. For а general 
А dt 

case when ~ =~ (t) it is shown that the flux at the interface can ье expressed as 

t·exp 

(16) q" = 
t 

ехр 

о 

2~dt d . t 
t 

1/2 

Since the above result was obtained without any additional physical interpretation 
of the process over and above those already used in the analytical model introduced 
in this section, one would expect that the main problem stated Ьу relation (За) 
with ~ =~ (t) should also have а similar solution. And, indeed the introduction 
of а пеw variable "rJ defined as . 

"rJ = ~ (t) х/2 v;t 
where 

r "2~ - 1/2 

t ехр dt • 

(17) ~ (t) = I ~ 
t t. А2 

--t 

,. 2 ~ dt- . dt 
t ,. 
Ј A2 dt ехр 

t о 
о -

transforms relation (За), after 10ng but straightforward algebraic manipu1ations, 
into an ordinary differential equation identical with (6). Thus the general solution 
of the problem considered here is 

(18) (Т - Т.) = (Т со - Т.) erf [~(t) х/2 v;t] 

The flux at Ље liquid-vapor interface is given Ьу equation (16) or in terms of the 
surface area of the dome 

(19) 
А2 t 1/2 

k!1T 
q" = 

t V7t(1.t 
Ј A2dt 
о 
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The vapor generation rate follows from (19) as 

dVD 
A2 t 1/2 112 IX 

=А Ја 
dt I 1tt 

Ј A2 dt 
о 

For а constant ЬиЬЫе shape, ј.С. а constant ration of А/у2fЗ 

А2 t 1/2 

I 
=VЗ" 

Ј А2 а! 
о 

since for this case V,-....,t 3/ 2, as сап Ье deduced from (9). 

Discussion 
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опе has 

The results of the analysis presented јп the previous section show that when 
an arbitrary shaped ЬиЬblе grows without changing shape, i.e. when in expression 
(11) s =const. or in (13), р =0, the flux at the interface is given Ьу the spherical 
ЬиЬblе relationship: 

q" = vзk~Т 
V1tlXt 

This, however, is not the case for bubbles which change their shape during 
the growth process. Referring to equation (19), it is seen that fluxes either higher 
<>r 10wer than those for а spherically shaped ЬиЬblе are possible. А simple analysis 
shows that the result depends оп the area volume relation. For the relationship 

given Ьу equation (12) one сап show tl1at when ds >0, the fluxes at the interface 
а! 

would Ье higher than for а spherically shaped bubble. The opposite would Ье 

true for ds < О. This conclusion is consistent witll Ље physical picture: larger 
dt 

increases in surface area for the same change of ЬиЬblе volume wou1d cause higher 
stretching effects thus producing а thinner thermal boundary layer. 

Concerning the overall approach adopted here we wou!d like to make two 
-comments. 

Firstly, the metl1od, as presented, is Ьазеd оп an average stretching of the 
boundary layer over Ље dоше area. For sl1apes otl1er than spherical tћis is an 
approximation. The consequence of the approximation is to minimize the eva­
poration rate per unit area of the dome. Thus, as compared to Ље present model, 
Ље deviation of Ље actual vapor generation lЋtе from Ље rate predicted Ьу the 

.spherical bubble is higher for ds >0 and lower for ds <о. This conclusion is 
а! dt 
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based оп the fol1owing physical argument. Тће vapor generation rate over the 

dome area is proportional to k~T dA, where ~ is an effective thermal Ьоип­
~ 

А 

dary layer thickness. Тhe present method replaces the above with k ~ ! А ,where 
~ 

-
8 is an average boundary layer 

understanding that Ље quantity 

- 1 
thickness over the dome area; ~ = -

А 
dA. 

А 

Integration of the interface tluxes over the dome area would then yield the уаро! 
generation rates. Appendix С presents this procedure along with the general 
results for this case. 

Тће second comment is related to the objectives and scope of the present 
work. This investigation does not attempt а complete ЬоЬblе growth solution for 
which microlayer contributions and inertia effects would also have to Ье consi­
dered. Even within the scope of its applicability - heat diffusion control1ed growth 
in а uniformly superheated liquid - the method requires as an input information 
оп the ЬоЬblе shape variations du -ing the growth process. In the present form 
the work is intended mainly to indicate the consequences of changes in ЬоЬblе shape 
оп the interface tluxes and hence, оп the vapor generation rates. Apart from this, 
the work introduces а пеw method whose applicability could Ье extended beyond 
the specific problem considered here; for example, to the problems of ЬоЬblе 
growth with inclusion of inertiaforces. ЬоЬblе growth in а non-uniform tempe­
rature field, and bubble col1apse. 

ConclusioDS 

Тће work presents а пеw approach for evaluation of ЬоЬblе growth rates 
in а uniformly superheated liquid. Тhe method is аррliсаblе to problems involving 
ЬоЬblе shapes other than spherical Тће results show that for а bubble for which 
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(А/п2ј3 remains constant during growth, where А and Vare the bubble dome 
меа and the bubble volume respectively, the interface flux is given as 

" 3 1/2 k!l Т 
q =-

1t voct 
For а general case when (Ајп2ј3 varies during bubble growth, the interface 
flux can Ье expressed as 

q" = 
1/2 k!l Т 

---
V'ltoct t 

Ј A2 dt 
о 
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Appendix А 

For а control volume with fixed boundaries, Fig. 2а, the flow rate out of the control 
volume in the direction paral1el to the interface is 

or per unit volume 

(Аl) 

_р д Vx !lx!l А 
дх 

т'" = - р 
д Vx 1 dA 
дх =р А dt 

Тhe conservation of energy applied to the control volume, Fig. 2Ь, yields, 

(А2) 
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Тhe third term in the аЬоуе relation represents the enthalpy outflow from Ље 
control volume resulting from term (Аl). Clearly, (А2) with (Аl) reduce to rela­
tion (3). It is of some interest to note here that the complete effect of stretching 
оп the development of the thermal boundary layer around the growing bubble 
could Ье compensated Ьу the introduction of an effective mass sink of strength 

r 
i\. - - ") 

"-
• 

.Ау.. • ...... 
• о 

о 

О -.- .. -.., ... . . .... 
"v 

• ,..--- .... , 
..... х 

2.0.. 2.Ь 

Figure 2. 

т"', equation (Аl). The sink is uniformly distributed for x~O where х =0 re­
presents the interface boundary. It is evident that the sink would generate the 
identical fluid flow toward the interface as the stretching effect. Also in the energy 
equation, (А2), the third term could Ье viewed as the enthalpy removal per unit 
volume due to the uniformly distributed sink (т'''). Thus the problem of thermal 
boundary layer development around а growing ЬиЬblе in а uniformly superheated 
liquid is equivalent to the development of the layer in а semi-infinite medium 
containing uniformly distributed sink (т"') whose strength is related to the in­
terface stretching, (Аl). 

Appendix В 

The heat flux for а simple case of semi-infinite body initially at а uniform tem­
perature, Т.,,, with Т=ТВае for t>O at х=О is given as 

(Вl) 
" k6.T 

q а. ј. = y~oc t 

One could interpret the quantity Y'~ ос t as an effective thickness of the thermal 
boundary layer. The growth of the layer with time (which is caused Ьу heat dif­
fusion only ) can Ье expressed as 

(В2) 
d а 1 (~OC)1/2 ~OC 

dt , .. ј= 2 t 1/ 2 = 2а 
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For the case of а bubble growth one would expect that the fluxes could ье expres­
sed Ьу а relation similar to (Вl). Specifically, we assume, 

(В3) 
" k6.t q =-:-:-;== 

лЈ!1tосt 

For tbls case the efIective boundary layer tblckness is 

(В4) 

Тhe difIerence between the two boundary layers (reflected Ьу а presence of factor 
л in (В4) is caused Ьу the stretcblng efIects at the bubble interface. For the 
stretcblng efIect alone one has 3 А =const. or 

(В5) -=--
дА А 

The total change of the efIective boundary layer tblckness саn ье expressed as 

(В6) 
d3 д3 д3dА -- +-­
dt дt дА dt 

The first term оп the right-hand side represents the growth due to heat difIusion 
only. We interpret the result given Ьу relation (В2) as the growth rate Ьу heat 
difIusion оnlу in terms of the instantaneous real tblckness, i.e. 

д3 d3 1tOC 
-- --
дt d t s.i. 23 

Thus, substituting (В2), (В4) and (В5) into (В6) and assuming that л is indepen­
dent of time, оnе gets, 

(В7) 

solving for л tbls results: 

(В8) 

А dt t 

t dA 1/2 
1+2 

А dt 

Relation (В8) is valid when t dA =const., consistent with the assumption that 
А dt 

л is independent of time. For а spherical bubble: 

t _dA = 1 and л= 1/Ј!3 
А dt 
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When t dA is not constant, one proceeds as above starting with (В6) but when 
А dt 

diffirentiating 8 using (В4), л must Ье treated as а function of time. Тhis yields 
an extra term оп the left-hand side of equation (В7). Тhe resulting expression is 
the following differential equation 

(В9) 

where 

(в 10) 

dл2 + (1+2Q л2 - 1 =0 
dt t t 

~= t dA 
А dt 

From (В9) and the condition that л is :finite at t=O there follows: 

t ,. 2~ . 
ехр dt dt 

1/2 

(В 11) 
л= 

I о .'" t 
• 

. "2~ 
texp dt 

~" 
t 

• 

Or in terms of the dome area, using identity (А 10). 

1/2 

(ВI2) л= 

For ~=const. (Вll) and (ВI2) reduce to (В8). 

Тhe interface tlux for the general case follows from (ВI2) and (ВЗ) as 

(В1З) 
q" = 

1/2 k!l Т 
---

t V7tcxt 
Ј A2 dt 
о 

Appendix С 

In case of non-uniform stretcblng of the thermal boundary layer over the bubble 
interface, one can evaluate the interface tluxes in terms of local values of the 
boundary layer tblckness and then integrate it over the whole dome in order to 
find the vapor generation rate. 

Тhe interface tlux in tbls case is still given Ьу relation (19) i.e. 

t 

(Сl) q" = А2 t/ 
о 
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t 

where the quantity [А2 t/ Ј A 2dt] has local values over the dome. 
о 

Referring to Figure 3. 

Thus 

(С2) 

For а fixed Ф one gets 

A2 t 
(С3) 

t 

dA=27t rcos Ф ds 

-+ -->о 

ds=rdjcos(r, п) 

dA = 2 7t г2 со~Ф -+ d 
cos (г, п) 

1/2 
-- t 

-+ ->-
cos2 (г, п) 

-+ -+ 
о cos2 (г, п) 

Тће evaporation rate over the dome follows from 

dVD 1 
---

dt Р. hfg 

which together with (Cl) to (С3) yields 

(С4) 
dV 
--""D = 2 7t V (t) 
dt 

where 

тt/2 

А 

q" dA 

ос 1/2 

Ја 
7tt 

1/2 

г2 cos q> 
v(t)= -->о -->о 

г4 t 1/2 
--------~t------- dq> 

cos (г, п) 
-фо 

-->о -->о 

cos2 (г, п) 
-+-->0 

О cos2 (r, п) 
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Тће above could Ье simplified when changes in cos (г, п) at any particu1ar location 
are much smaller than changes in г. For this case 

А2 t 1/2 

t 

Ј A2 dt 
о 

-
г4 t 1/2 

t 

Jr4 dt 
о 

Тhe choice of ФО in (С4) depends оп the bubble geometry and the position of 
the center о. Тће latter should ье located оп the axis of symmetry at the height 

-->о -->о 

where г· cos (г, п) has а maximum (c.f. Fig. 3). 
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We should like to mention that the above approach is still an approximation. 
А more rigorous method would Ье to integrate along stream lines around the 
bubble but tbls would require а complete solution for the flow field. 

cLf\ = 2'I1'rcos'f &tS 

а5= rci'f 
cos(r, п) 

• 

I 
• 

• 

• 

• 

• 

-1'\ 

(7, п) 

c.os'f d.s 

• 

Figure 3 . 
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