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CAPILLARY SOLITARY WAVES AND THEIR
DISINTEGRATION ON THE SHELF

Viadan D. Djordjevié
(Communicated May 18, 1977)

1. Introduction

The interest in studying various problems of nonlinear wave theory in the
presence of some kind of inhomogeneity in the direction of the wave propagation
has increased very much recently. The source of inhomogeneity in the case of sur-
face waves is mostly the varying depth of liquid, in the case od magneto-acoustic
waves in a plasma — the varying density of plasma, in the case of lattice waves
— the varying mass etc. It has been shown in all these cases that the problem re-
duces to one of well known equations of nonlinear wave theory, as for example
Korteweg-de Vries (K-dV) equation, nonlinear Schrddinger (NL-S) equation and
others, with varying coefficients. K-dV equation with varying coefficients for
surface waves was derived by Kakutani (1971a), for magneto-acoustic waves by
Kakutani (1971b) and by Asano and Ono (1971) and for lattice waves by Ono
(1972). A general form of NL-S equation with varying coefficients was conjectured
by Ono (1974) and the concrete equation for surface waves was derived by Djor-
djevi¢ and Redekopp (1977a).

A general theory of these equations was given on the example of K-dV
equation by Ono (1972) and by Johnson (1973). The main and the most interesting
result of this theory is referred to the evolution of nonperiodic waves of permanent
form based on the balance between nonlinearity and dispersion, so-called solitons,
between two homogenous regions. These regions in the case of surface waves may
be composed of two regions of constant, but different depth to build the shelf.
It was shown on that occasion that a soliton can disintegrate by passing from the
deeper region onto the shallower one into more solitons whose number n depends
on the depth of the shelf, the so-called eigendepth 4 in the following way (g is
the depth in front of the shelf):

h, [n(n 1)]—‘”9
hq 2
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The corresponding result for packets of surface waves, which are, as known, go-
verned by NL-S equation was given by Djordjevi¢ and Redekopp (1977a) for the
case of the disintegration of a concave E solution:

_}_z_l___[n(n-k 1)]-—3/27

h, 2.

When surface waves are in question, in all afore-mentioned papers only
pure gravity waves were treated, i.e. the effect of capillarity was completely ignored,
which means that relatively long waves have been had in mind. For relatively short
waves capillarity has to be taken into account. It is well known on the other
hand that capillarity very often leads to qualitatively new phenomena,as for example
second-harmonic resonance, see Leibovich and Seebass (1974) and resonant inter-
action between long and short waves, Djordjevié and Redekopp (1977b). This is
the reason that the disintegration of capillary solitary waves on the shelf is consi-
dered in this paper. It is shown that the disintegration of a soliton on the shelf is
possible also by increasing the depth of liquid. It is shown, too, that for relatively
great capillarity only one soliton can emerge. We will call the depth of liquid on
the shelf in this case the charateristic eigendepth. It is shown that it can be less
as well greater than the depth in front of the shelf.

Since we anticipate here to have relatively short solitary waves and since the
existence of solitary waves is possible only in relatively shallow liquid, i.e. in a
liquid whose depth is much less than the wave-length, it means that the depth has
to be very small, i.e. we will work with a thin film of liquid.

2. K-dV equation with varying coefficients for capillary solitary waves

We will consider the problem following Fig. 1 (z points vertically
upwards):

Fig 1.

A solitary wave formed in the region x<<0 on the free surface of a liquid of constant
depth Ay is propagating in the direction of x. In the region x>0 the depth 4 (x)
is changing slowly in a certain way. The evolution of the solitary wave ought to
be determined in this region taking into account capillary effects. We will choose

the following scales: / for x, hg for z, hand §, I/} ghy for (time (g-accele-

ration due to gravity), |/ gh, for u-velocity in the direction of x, kg Vgho/l for
w-velocity in the direction of z, pghy for p-pressure (p - density of the fluid) and
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ogh?y for T-surface tension coefficient. The governing nondimensional equations
for perturbed quantities and the boundary conditions on the bottom and on the

free surface will be:
ur+uux+ Wi, = — Dy

W, +uUw, +ww,= —p,

u,+w,=0
dh
z= —h{(x): W= u
z (x) T
(1)
z=C(t, x)- w=,,+u+{,
h,2 ..
p=C _;';"T 2 32
t +-f2-c,,2)

As it is usually the case in nonlinear wave theory, see for example Johnson (1973),
we will introduce the far field coordinates 1n the following way:

X

dx | _
- .[C(E) hEmes

where e=afhg<€l is a small parameter representing the slope of the wave. We
obviously allow the speed ¢ of the wave to vary slowly in the direction of the wave
propagation due to the presence of the inhomogeneity. We will further assume that:

h2
?—ks k=0(1),

with what we actually provide the desired balance between nonlinearity and dis-
persion necessary for the existence of solitary waves and that the depth is changing
slowly in such a way that:

dh

ZE =h"=0(1).
We will now expand all unknown quantities in the following asymptotic series:
u U, u,
- > Yo + &2 " +
p P, P,
Q %, Gt

and, substituting them into (1), expanding the boundary conditions at z={ (¢, x)
around the undisturbed free surface z=0 and equating the coefficients of llke

powers in &, we will have in the first approximation:
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. | Clige = Pos
i  pe=0 ;
. Uoz +.CW =00 I
@ 7= -—h: w, =0
z=—h: .  wy=0
z=0: = — Cor
Co
The solution of this system is. eas:ly obtained to be:
(3) Uy ="CyfCs Wy Z-;h Govs Po= =L

with ¢2=h, while {; remains Lndetermmed SO fara If the procedure is continued
until the next approx1mat10n we shall use (3):

CUyr —Pyr = C0 .cor +elo

z+h
p;z= Co‘r't
U+ Wz = = € (c")
| ' CJE
2= --— h: -WI— A -Cg
C
z=0: w, = — A
h
kT .
.p1=cl_7cuﬂ:’t-

The solution of this system can be obtained in a similar way. {; remains under-
termined, but an equation for Co in form of a secularity condition emerges:

2h kh 3T
| C C + — C : Cm--l-—““( 2 )COTT-,;:.O,

c
that just represents the desired K-dV equation, describing the propagation of a

solitary wave over an uneven bottom. With ¢=}h and introducing =3 T/h2
we will have: -

" ' kh
2VhC+2|/hcog+ L et 3 (1—6)%ere=0.

It is obvious that ¢=3/W,, where, W, 1s a local value of the Weber number. For
c=0, i.e. in absence of capillarity, the equation (4) reduces to the known equation
by Johnson (1973). In contrast to the case =0, however, the coefficient of the

(4)
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diSpersmn term {y.oc Of the equation (4) can be positive or negative depending o

<1, which means that both convex and concave solitary. waves are possible:
For example for h=const. say h= 1 c=0c9==3T and one-solitary wave solution
of the equatlon (4) will be: | - ~

(3) Co= £, sech2\l/4k|31°ffo_0l ( + %o E), G, 1.

where ag=0(1)>0 1s the amplitude of the wave. It can be easily shown that non-
linearity affects the speed of a concave (op>1) solitary wave in such a way that
it decreases with the amplitude.

For o=1 the influence of dlspersmn is lost and nomnlinearity prevails, leading
to the breaking: of the wave.

3. Disintegration on the shelf |

As mentioned in the introduction, the theory by Johnson (1973) will be
apphed here in order to study the disintegration of capillary solitary waves on the
shelf, i.e. at their propagation between two regions of constant depths. It is as-
sumed thereby that the change in the depth is in some sense rapid, i.e. the change
occurs over a short distance. By the substitution:

.
o=

the equation (4) goes into:

kh
P (1 6) Hzee=0,

6  2VhHi+—— HH.+
:, - * i/ h
with what the derivative of the varying depth of liquid, which may be very great
in the region of the sudden change in depth, is removed from the coefficients of
the equation, (4). It is noticed that this i1s a highly nontrivial step whose importance
has been emphasized by Djordjevi¢ and Redekopp (1976¢). It was shown by Johnson
(1973) that the flow on the shelf can now be described by means of the equation (6)
with A= "hl const., where /1, is the depth of liquid on the shelf. One-solitary wave
solution in the region in front of the shelf, where A=1 is assumed, which follows
from. (5) for £=0 will serve as the boundary condition. Therefore, we will have:

hl ﬁ”h

where 61=06y/h;2 with the boundary condition:

_ Ja
= () — . 2 0
& =0: H= 4+ a,sech T\/ k[ 1—o,]"

Hence, the problem 1s reduced to a K-dV equation with constant coefficients and
consequently 1s simplified very much, because the inverse scattering method can
be employed, Miura (1968). In order to use directly the result of this theory, referring

3e
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to the dlsmtegratlon of solitons on the shelf, it is necessary to transform a little
the equation (7). Introducing: |

é kmgl_al) aaﬂdH Zkhlzﬂ?l.(l"al) I}

one can obtain:

Ht +6HH,. + H . <0
with the boundary condition:

. 3, 3 a,

; =0 H= + sech? ¢ \/-— :
: 2kh* (1-0,) 4k|1—o,|

A formula for the eigendepth follows now simply:

l-e, n(n+1)
9"‘(1—%) 2

where n is the number of solitons, or:

1 -og, n(n+1)
m(h2-o) 2

Following conclusions can now be drawn.

a) 61=1 depending on cp=1, i.e. a convex (concave) capillary solitary
wave can disintegrate only onto a sequence of convex (concave) capillary solitary
waves — transition from a convex solition to a concave one and vice versa is not
possible on the shelf. At the head of a sequence of convex (concave) solitons, a
soliton with the biggest (smallest) amplitude will march, because it propagates with

~ the biggest speed.

b) For o¢<1 the disintegration of a soliton on the shelf is possible only by
decreasing the depth of liquid (Fig. 2). The number of solitions increases infinitely

when h1—>-|/_ Of course, for ao=0 the result by Ono (1972) and Johnson
(1973) cited in the 1ntroduct10n is obtained.

¢) For 6y>1, i.e. for concave solitary waves, the situation is essentially dif-
ferent because the disintegration of a soliton is possible by decreasing (Fig. 3) as
well as by increasing (Fig. 2) the depth of liquid. In addition, one soliton in front
of the shelf can emerge into.only one soliton on the shelf. We will call the correspon-
ding eigendepth the characteristic eigendepth and denote it by 4. For 1<0y<9,
h1, <1 and for 6¢>9, h1,>1, see the curve denoted by n=1 in Fig. 3. Occurrence
of the characteristic eigendepth can be explained in the following manner. On the
shelf only depth of liquid is changing suddenly, not the flow parameters. Therefore,
a solitary wave formed in the region x<<0 transforms only partially by passing
over the shelf. For n=2,3, ... it represents for K-dV on the shelf (7) an arbitrary
perturbation on the free surface, which eventually emerges into 2,3,... solitons,
while for n=1it fits exactly into the one-solitary wave solution of the equation (7).
It is noticed (Fig. 3) that the eigendepth for n=2,3,... in the region h;<l1
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. 4
is extremelly small, because it is bounded by the vertical asymptot A, = 2 ]

nin+1)

of the curve og=0¢(h;; n). For example, for n=2 and 6¢=5, 4#;=0,005 and
consequently this region is without any practical importance. The number of soli-

tons increases infinitely when h; — 0 and & —V o,
In both cases b) and ¢) the eigendepth increases with oy.
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