
350PHUK pago6a MaiiieMaiiiu'IKoiuHciiiuiiiyiiia, H06acepuja,K16. 2 (lO), 1977.
Recueil des travaux de l'Institut Mathimatique, Nouve/le serie, tome 2 (lO), 1977,

Symposium: Set Theory. Foundations of Mathematics, Beograd, 29. 08. -- 2. 09. 1977.

PRESENTATION OF NATURAL DEDUCTION

R. P. NEDERPELT*

Introduction

The merits of a system of natural deduction are not only determined by its
value as a logical system in itself. Since it formalizes deductions in a manner close
to intuitive reasoning, natural deduction can also be used as a (logical) framework
for mathematical argumentation. One may say that many mathematical texts
are tacitly based on a form of natural deduction, as regards the logical part of the
deductive patterns.

laskowski and Gentzen constructed the first systems of natural deduction
in the early thirties (see Prawitz [7, appendix CD. Many suggestions have been
made since with a view to formalizing the natural deduction structure pre£ent in
usual mathematical reasonings.

Text-books concerned with logic on this basis are, for instance, Quine [9J,
Suppes [IOJ and Kalish-Montague [5J. The incorporation of a natural deduction
system in the common mathematical practice can be very useful, in particular for
didactical purposes.

In section I of this paper we shaIl propose another system of natural deduc
tion, resembling that of Kalish and Montague, which can be used for the logical
part of mathematics. The system to be described is quite satisfactory in practice,
as became apparent when applying it to undergraduate mathematics tuition.

A natural way of reasoning in mathematics has, however, more aspects than
the logical ones. These other, non-logical aspects were isolated by N.G. de Bruijn.
His investigations led to a system called "the mathematical language Automath"
(see [1]), which may serve as a formal notational system for rendering mathematics
in a natural manner. The system is founded en typed lambda-calculus, not on
axiomatic set theory.

* The author is employed in the Mathematics department of the Eindhoven University of
Technology in the Netherlands. -

Thanks are due to N.G. de Bruijn, D.T. van Daalen and R.c. de Vrijer for helpful com
ments, and to A.V. Zimmermann for remarks concerning the English language.

115

116 R. P. Nederpelt

In section 11 of this paper we shall describe, in coherence with section I,
the major principles of such a "system of natural reasoning". The description will
be rather informal and incomplete.

It will also be shown how the rules of natural deduction can be expressed
within the system, so that an important part of natural reasoning finds a formalized
counterpart. In systems like this, a large part of everyday mathematics can actually
be expressed, as is shown in e.g. Jutting [4] and Zucker [11].

The structure underlying a system like de Bruijn's can be made clearer by
uniformations, leading to a system which is a typed lambda-calculus, the types
themselves having a lambda structure. This uniform system will be described in
section III of this paper. It does not have the natural aspects of the other systems.
It has, however, a relatively simple and transparent structure and is therefore very
useful for theoretical investigations into "systems of natural reasoning", e.g. with
respect to (strong) normalizability. We shall give a precise description of this
system and summarize some of its properties.

I. A practical system of natural deduction

With the aim of obtaining a practical system for natural deduction, directly
applicable in everyday mathematics, we reformulate the introduction and elimi
nation rules for 1\, V, =>, -', \I and :3 (see e.g. Prawitz [7] or [8]), with modifi-
cations to be described below. .

Basic units in the system!> we shall call sentences, written in a sequential (not
a tree-like) order, one sentence below the other. A sentence can express something
like an axiom, a theorem, a definition, an assumption or a derived statement. If
desired, one may add comments, e.g. containing justification for a derived sta
tement. Such justifications may be based on logical rules (like the introduction and
elimination rules), on premisses, valid assumptions and previous results, but also
on mathematical arguments; this part of the reasoning is not formalized in the
present system.

As primitive symbols we have the logical constants 1\, V, =>, -', \I, :3 and
contradiction. We do not consider the logical constant <=? primitive; it can be
defined in the usual manner in terms of 1\ and =>.

We note that in mathematical practice the following observation is often
used: if "Fimplies G" is a derived rule, then a proof of F suffices as a proof of G.
(Thus a proof of b is also a proof of a => b, and so on.) We embody this meta-rule
in the present system, for practical reasons.

A. Introduction rules

Assumptions play an essential role in natural deduction. They are generally
used with the purpose of simplifying in a natural manner the statement which has
to be proved: a particular related statement is temporarily taken as an added datum,
another statement, simpler than the original one, is the new object for proving.
As soon as this aim is achieved, the assumption is "discharged", and the original
statement has been proved.

This way of dealing with assumptions will be expressed in the notations used:
sentences which are assumptions will be specially marked by a box; the range of

Presentation of natural d~duction 117

validity of an assumption will be marked by a vertical line starting from the left
end of the box.

Thus doing it becomes apparent how the outer structure ef a statement to be
proved is reflected in its proof, as is often the case. For example, a proof of
VxEA [P(x) =>Q (x)] will usually have the following shape:

Let xEA I

Assume P (x) I

Q(x)

For presenting an outer proof structure in this manner it is desirable to organize
a proof in such a way that validity ranges of assumptions are disjoint or nested:
one should arrange these validity ranges in a bIcck configuraticn as is known
from programming languages.

From this example it may be seen that the sentence "Let xEA" will appear
as an assumption in our V-introduction rule. Our preference for assumptions
rather than parameters in this rule is prompted by mathematical practice: in a proof
of VxEA [P(x)], the natural first step is: "Let xEA".

It will be clear that the latter sentence is not an assumption in the proper
sense, as it also introduces the variable x. There is, however, a strong analogy
with "normal" assumptions of the kind "Assume p", notably with respect to
validity and use. Therefore we shall all the same call "Let xEA" an assumption,
distinguishing this kind of assumption from the other by using the word "let"
instead of "assume".

Our V -introduction rule deviates from the usual rules. Our argument for
this is that the two "natural" proofs for a V b look like a proof of an implication;
for example: start with; "Assume I a" and derive a proof of b. Because our
system is based on classical logic (see subsection C), the usual V -introduction rules
are derived rules. (We confine ourselves to one rule for V -introduction and one
for 1\ -introduction, the symmetry of V and 1\ being presuppmed.)

Thus we propose the following standard proof schemes for intrcduction
of 1\, V,::>, I, 'land 3, respectively:

1. ., .
Assume I a I Assume a I Assume a I

a

2
b b contradiction

b - - - ,

conc1.: a 1\ b cone!.: aVb cone!.: a::>b conc1.: ,a

118 R. P. Nederpelt

Let xEA

tEA

P(x) P(t)

concl.: VxEA[P(X)] concl.: 3xEA [P (x)]

In applying any of these schemes one should insert (from above downwards)
a sequence of sentences in the place of the dots, each sentence being justifiable in
the sense explained before.

B. Elimination rules

We denote the legitimacy of a deduction of G from F by:

F.'. G. As elimination rules for 1\, V, =>, -', V and 3 we propose:

al\b.· .a

aVb, a=>c, b=>c.·.c

a=>b, a.·.b

-, a, a.'. contradiction

VXEA[P(X)], tEA. ·.P(t)

3xEA [P (x)], VxEA [P (x) => Q] ... Q

In the 3-eIimination rule Q must not depend on x.

In a way, each elimination rule is the inverse of the corresponding introduc
tion rule (cf. Prawitz [7, p.33]). There is, however, an essential difference in use
between the two kinds of rules which, in our opinion, disturbs the symmetry:
in principle, introduction rules give the general structure of a proof (cr. what has
been mentioned in subsection A), elimination rules, however, are used for procee
ding stepwise in the body of the proof. The difference in the notation of introduction
and elimination rules, as shown above, reflects this asymmetry.

C. Double negation rule

Because logic, as it is generally used, is classical, we add the double nega
tion rule:

The absurdity rule (contradiction .'. a) is now a derived rule.

Presentation of natural deduction 119

The main difference between the logical system described above and the
usual Gentzen-type systems are found in the \/- and V -introduction rules. The
block structure for validity ranges of assumptions is also present in the system of
KaIish and Montague ([5]). The latter system employs an existential instantiation
rule instead of the usual 3-elimination rule (cf. the comment by Prawitz on this
subject in Appendix C of [7]).

The system outlined above is suitable for tuition purposes. It has the advan
tages of natural deduction, both in setting up proofs and in understanding them.
It also agrees closely with usual patterns of reasoning: a proof written with the aid
of this system scarcely deviates from usual proofs, the differences being hardly mOTe
than boxes and validity lines.

On the other hand, as stated in the beginning of this section, formalization
in the above system is not pushed very far. There are no formal devices for frequently
occurring mathematical routines, like applying a theorem or a definition, justifying
a deduction step, and so on. In the next section we shall describe how these sides
of mathematical reasoning can be effectively formalized.

H. A system for natural reasoning

We shall describe a system with a wide range of applications and a high level
of formalization. The system now to be proposed is natural in the sense that it is
closely related to the usual way of reasoning and proving in mathematics. In the
first instance, the system refers mainly to the nonlogical part of mathematics.
However, rules oflogic can be expressed and applied in the system. One may choose
natural deduction as a basic for logic, in the manner of the previous section (as
we do in 11 F), thus preserving the "natural" character of the system.

The system is directly derived from the "mathematical language Automath",
designed by N.G. de Bruijn for rendering mathematical texts in a formal way
(see [1]). Various versions of this language have been developed by de Bruijn, in
cooperation with, among others, D.T. van Daalen, L.S. Jutting and J. Zucker
(see [2]). Most of the features of these various versions will be present in the "system
for natural reasoning", which we shall describe in this section.

A text formalized in such a system consists of a sequence of sentences, con
structed one by one in accordance with the rules of the system, the "syntax". We
shall not discuss the syntax rules in detail. For this we refer to the precise definitions
of a few Automath systems in [2] or [3].

A mathematical text selected for being formalized in a system like the one at
issue must not show any omission in its chain of reasoning; if necessary, it must
be made complete. An appropriate "translation" of that text, i.e. a formalization
in the system, will be complete as well, in the sense that every sentence can be
mechanically verified as to correctness according to the syntax. The latter property
obviously implies that one may attach a high degree of mathematical cogency to
.a text, which has been translated and verified in such a system.

A number of mathematical texts have actually been formalized in systems of
this kind. For example: Jutting has translated a well-known mathematical text
(see [4]), and the formalized text has been verified by means of a computer programme;
Zucker formalized a part of classical real analysis (cf. [11]).

120 R. P. Nederpelt

A. Typing

In mathematics one usually attaches types to objects; one says: x is a natural
number, p is a proposition. In our system we incorporate a relation "s has type t"
in a formal way, denoted as s: t.

We fix two basic terms: 7t' and 't', representing the type of all propositions
and the type of all "classes", respectively. For example: (p ~ q) : 7t' and N : 't'.
(Here N denotes the class of all natural numbers). A class like N can be the type
of some term of lower rank, as, for instance, in the sentence x : N. But a pro
position like p ~ q can likewise be the type of some term, viz. its proof, as we shall
now explain.

It is common in mathematics to deal with proofs of propositions only at a
meta-Ievel. Contrary to this, we shall incorporate proofs as terms in our system,
denoted and manipulated just as the other terms in the system. This idea is well
known (for references: see [11, p. 135]). It is based on the observation that a proof
of a proposition results from a kind of "construction".

As type of a proof we take the proposition it proves; if t is a proof for
p => q, we write t: (p ~ q). Conversely, if r : 7t' and t : r then (proof) t as
serts (proposition) r.

By the above agreements concerning typing we obtain a hierarchical relation
between terms of the system. Terms 7t' and 't' are (the only) representatives of
the highest level of ah/ltraction, to be assigned degree O. Terms like p ~ q
and N belong to a lower level (degree 1); terms like x and t belong to the lowest
level (degree 2). In the present system we restrict ourselves to these three levels.

There is a notable contrast between our relation : ("has type") and the
set-theoretical relation E("is element of"). In set-theory, an element may belong
to different classes: xEN implies xER, since NCR. As to relation:, however.
we impose uniqueness of type: each term of degree 1 or 2 has a fixed type. (For a
remark on this uniqueness: see the following subsection.) Typing thereby becomes
an unambiguous, effective procedure; this facilitates mechanical checking.

Thus, in the case that Nand R have been introduced independently.
"natural number x" cannot be considered as a real number by a direct embedding
of N into R. This has obvious disadvantages, like the necessity of some non-trivial
embedding device; on the other hand, obscuring identifications are absent.

B. Conversions

We note the complicating circumstance that a term in the system may have
different manifestations, being interchangeable by means of conversions. There
are three kinds of basic conversions. The first results from the application of a
definition to (part of) a term; this is called definitional conversion (for an example:
see subsection D). The second concerns the application of a function to an argu
ment; it is called functional conversion or [1-conversion (see subsection E). The third
is caused by the renaming of a certain variable in a few occurrences in a term.
without disturbing the pattern of binding in the term; it will be called renaming
conversion or ex-conversion.

Presentation or natural deduction 121

Conversions change a term in appearance, without changing its nature.
Different appearances of one term, related by conversions, will be called equivalent.

The above implies that the "uniqueness of type", discussed in subsection A,
should be understood modulo conversion.

C. Assumptions

In the natural deduction system of § I, assumptions appeared in two shapes ~
either in the simple version "Assume p", or in the more complex version
"Let xEA" (cf. I A). Since we regard proofs as terms, we may replace the former
version by "Let t be a proof of proposition p". The latter version becomes
"Let x be a term which has type A", in correspondence with our view upon
typing. Formally, both versions of assumptions can be denoted, quite similarly"

by the sentences 1 t : p 1 and 1 x : AI, respectively, t and x being variables, p and

A being terms. (An arbitrary assumption I U : v 1 can be correctly interpreted by

regarding the type of v.)

D. Axioms, definitions, theorems

We shall now describe how axioms, definitions and theorems can be incorpo
rated.

Axioms (including basic notions) will be denoted by means of a double box._

For example, in regarding N as a basic notion we obtain the sentence: I ~ /.
Then Peano's first axiom will be rendered by: \1 one: N 1\. Axioms may contain

one or more assumptions, like in Peano's second axiom, postulating a successor
to every natural number; we may express this axicm by means of two sentences:-

1 x : N 1 11 s (x) : N 1\. Here the assumption variable x returns in the latter

sentence.
In such cases, when a sentence depends on an assumption variable, one may

instantiate, i.e. (simultaneously) substitute a term for each occurrence of this va-
riable in the sentence. It is then a natural requirement that the substituted term has
an "appropriate" type. For example, from the last axiom one may infer that.
sCone) has type N. Analogous rules hold in the case in which a sentence depends.
on more than one variable.

Definitions will be written as in the following examples:

two: =s(one):N, three: =s(two):N,

1 y:N I plustwo (y): =~ (s(y»:N.

In the last example the definition consists of two sentences, the latter depending;
on the former.

122 R. P. Nederpelt

The three above examples concern definitions of terms of degree 2. It is also
possible to write a sentence containing a definition of a term of degree 1; such a
term defines a "class", a proposition or a predicate.

For proofs of theorems we use the same notation as for definitions that
concern terms of degree 2. We justify this policy with the following remark: a proof
of a theorem th (where th: 7t) fixes a term p with p : th, while a definition of an
"object" belonging to a "class" cl (where cl: 7t) fixes a term b with b: cl.

We shall show in an example how a theorem can be expressed (and proved).
Suppose that the relation equality for natural numbers (= N) is given as a basic.

notion by I x:NI 1 y:N 1 11 (X=NY):7t 11· Let reflexivity of =N be given

by axiom:

Ix:NI 11 refis(x):(x=Nx) 11·

Now a proof of the theorem plustwo (one) = N three can be expressed by:

proof 1 : = refis (s (s (one)): (plustwo (one) = N three).

At first sight this seems incorrect, because the axiom for reflexivity
yields the relation

refis (s (s (one»): (s (s (one» = NS (s (one»),

by substituting s (s (one» for x. But by means of definitional conversion (see
subsection B) and instantiation we may change (plus two (one) = N three) into
(s (s (one» = N (s (s {one»), by applying the definitions given above of plustwo (one),
three and two.

As some of our examples showed, axioms and definitions may consist of
more than one sentence, all but the last being assumptions. This may also be the
case with (proved) theorems. Such an initial sequence of assumptions is called a
context for the axiom, definition or theorem at issue; the assumption variables of
a context may occur in the final sentence. The interdependence may even be stronger:
each assumption variable in a context may occur in "type-parts" of assumptions
which follow in that context. See, for instance, the axiom for the double negation
rule, given in subsection F.

E. Functions

Functional abstraction and application form part of the system. For functional
abstraction we use an adapted lambda-calculus notation, demonstrated by the
following definition: idfun: =[AX : N]x : [AX : N] N. Here [AX: N]x is the
identity function for natural numbers; the type of this function, NN, is denoted by
the "type-valued function" [AX: N]N. Application of funtcion f to argument x
is denoted by {x}f A motivation of the unusual order of function and argument is
given in [6, p. 11-12].

A natural requirement regarding functions is that an argument of a function
must have a type equivalent (in the sense explained in subsection B) to the domain
of that function.

Presentation of natural deduction 123

For functions and arguments the laws of functional conversion (also called
f3-conversion) hold, allowing for example the conversion of {A HAx' : B] C into
~C, i.e. the result of substituting term A for all free occurrences of x in term C.
(We gave a general description of conversions in subsection B; q.v.)

Example: application of idfun to two yields {two} idfun, which is equivalent
to {two} [Ax' : N]x by definitional conversion. Then by functional conversion we
may change the latter into two. Hence, {two} idfun and two are equivalent: they
are both "appearances of the same term".

F. Deduction rules

As "tated before, logical rules are not primitive in the present system: one
may choose one's own logical basis. We shall show how one may incorporate rules
for natural deduction by means of axioms and definitions. In this respect the formal
correspondences between => and V on one hand and functional abstraction on the
other, can be successfully exploited.

For example, the "meaning" of p => q is that for every proof of proposition
p we may produce a proof of proposition q. This is a functional relation. Hence
it seems natural to define p => q as type-valued function [Ax' : p]q. Then application
of modus ponens can be simply effectuated by functional application (and a few
conversions) :

1 s:p 1 I t:(p=>q) I modponapp(s,t): ={s}t:q.

The "meaning" of VxEA[P(X)] is that to every x in A, a proof of P(x) can
be attached. This is again a functional relation. So one may define VxEA[P(X)] as
the type-valued function [AX : A]P(x). The role of the V-elimination rule will again
be taken over by the rule of functional application.

Contradiction may be introduced as basic notion:

11 contradiction: re 11. Then, p can be defined as p => contradiction. Now 1-

elimination becomes a special case of modus ponens.

The double negation rule has to be expressed by means of an axiom as follow,,:

I p:re I I n:, (,p) I 11 doubneg(p,n):p 11·

The logical constants 1\, V, {:::} and 3 can be defined in terms of =>,'
and V, in the usual way. The introduction and elimination rules for 1\, V and :3
.can subsequently be derived as theorems.

Ill. A uniform system

In the system of § II there exists a strong correspondence between contexts
("sequences of assumptions", see II D) and functional abstractions. For example,

the axiom I x : NI/I s(x): N 11, using a context consisting of a single assump-

124 R. P. Nederpelt

tion, could be replaced by /1 S: [Ax : N] N 1/, using functional abstraction.

The role of "instantiation", substitution of a term for an assumption variable
(cf. n D), will be taken over by functional application: s(two) becomes {two }S.

We shall now propose a uniform system, developed by de Bruijn and Ne
derpelt (see [6]), wherein, to begin with, all assumptions- are written as abstractions
of the form [Ak: L J. We denote axioms and basic notions as abstractions, too,
because one may regard these as being assumptions with unlimited validity range.
For example, the above axiom will be written as [AS: [AX: N]N].

Definitions obtain a uniformized shape as well, because instead of, e.g.,
z : =A : B, A and B being terms, we write {A} [:Az : BJ. Here variable z is defined
as being functional application term A, both having type B. The role of defini
tional conversion (replacement of z by A) is taken over by functional conversion:
{A HA z : B] C is equivalent to ~ C.

It this system we write theorems together with their proofs, in a manner
similar to that in which definitions are written. For example: {D} [:Az : El may
express theorem E and its proof D, z being a name for the proof.

In the case in which a definition or a proved theorem depends on a non-empty
context, the formulation in the present system is somewhat more complicated than
suggested above.

By means of uniformation, such as above, we obtain a simplified system,
which is a typed lambda-calculus with lambda-structured types and two constants:
'It and 't'. This typed lambda-calculus, which we call A, can be regarded as a model
for "systems of natural reasoning" like that described in § n, in the sense that
it gives a simple and uniform framework for such systems.

As an example we give the reformulation of the theorem plustwo (one)= N three
discussed in § n. In A this theorem becomes a single line, containing all needed
information:

[AN :'t'] [AS: [Ax:N] N] [A ONE:N] {{ONE} S} [A TWO :N]

{{TWO}S}[ATHREE:NJ {[Ay:N]{{y} S}S} [PLUSTWO,

[AY :N] N] [A ISN: [AX:N] [AY: N]'It] [AREFIS: [Ax:N]

{x} {x} ISN] {{ONE} PLUSTWO} {THREE} lSN.

The proof of this theorem looks similar, but for the last part

{{ONE}PLUSTWO}{THREE}ISN, which reads:

{{{ ONE} S} S} REFIS.

We do not uniformize 'It and 't' into one constant, as is done in [6], since
we wish to prevent assertions concerning propositions from having consequences.
for "classes", and vice versa. The double negation rule, for example, would in that
case imply some form of the axiom of choice (cf. [11, p. 141]).

We shall now give a precise definition of A as being a class of terms in a.
typed lambda-calculus.

The alphabet under consideration consists of constants 'It and 't', an infinite
number of variables: x, y, . .. and the improper symbols [,], {, }, A and : •

Presentation of natural deduction 125

Terms are recursively defined by:
(1) 7t and 't' are terms; each variable x is a term.
(2) If A and B are terms and if x is a variable, then lAx : A1B and {A}B

. are terms.
The relation: K is a subterm of L is the reflexive and transitive relation

generated by:
A and Bare sub terms of fAx: A1B and of {A }B.

TypeK is a partial function from the set of subterms occurring in term K
to the set of all terms, which function is recursively defined by:

(1) If variable x occurs in K as a subterm and x is bound by lAx: A1
in K, then TypeK(X)=A.

(2) (monotony:) If [AY: AlB is a subterm of K, if TypeK(B) is defined and
if TypeK(B) = C, then TypeK([Ay: A]B) = [Ay : A1C. Under analogous condi
tions: TypeK({A }B) = {A }C.

DegreeK is a partial function from the set of subterms occurring in term K
to the set of the non-negative integers, which function is recursively defined by:

(1) If subterm A of K ends in 't' or 7t, then degree[(A) = O.
(2) If subterm A of K ends in variable x, bound by [Ax: Bl, and if

degreeK(B) is defined, then degreeK(A) = degreeK(B)+1.
(In A there is no upper bound for the values of the degree function.)

Bound terms are terms without free variables.
(In bound terms all subterms have a degree and all subterms not ending

in 't' or 7t have a type.)

a.-reduction, denoted >ClP is the monotonous relation generated by
fA x: B1 C> (X fAY: Bl; C, with the usual restriction that the pattern of binding may
not be disturbed.

~-reduction, denoted >(3, is the monotonous relation generated by
{A} [Ax : B1C>(3 ~C. (In substituting A for x, variables must be renamed in
the usual way, in order to prevent "clash of variables".)

Reduction, denoted >, is the reflexive and transitive closure of both a.- and
~-reduction. If K>L, then L is called a reduct of K. (One may consider reduc
tion as "one-way conversion"; cf. § II B and E.)

Legitimate terms are bound terms K with the following property: For each
subterm of K of the form {A}B there exist C and D with the properties that
Typek(B) > [y, C1D and that TypeK(A) and C have a common reduct; here
y = degree (B) and Typek is TypeK iterated y times, which iteration is defined
in the natural way.

Now A is defined as the set of all legitimate terms.
The limitation to legitimate instead of bound terms has two reasons. The

first is of a intuitive nature: it is a natural requirement for a system, close to ma
thematical practice, that arguments A may only be related to terms B with
an appropriate functional character. That is to say, B must, in a sense, be a func-

126 R. P. Nederpelt

tion with a certain domain C. Moreover, argument A must be an object belon
ging to this domain C.

A second reason is that function applications (~reductions) to bound terms
may bring about a non-terminating process, just as in ordinary A-calculus. In
restricting oneself to legitimate terms this is impossible (see following theorem (3)).

We conclude with four theorems valuable for theoretical purposes:
(1) Church-Rosser property or diamond property: If A >B and A >C, then

Band C have a common reduct.
(2) Normalization: Every term in A has a normal form (Le. a reduct to

which no ~-reduction can be applied), which is effectively computable; this
normal form is unique but for IX-reduction.

(3) Strong normalization: For no A in A is there an infinite reduction
sequence A>~Al>~A2>~

(4) Closure: If A is in A and A >B, then B is in A.
For proofs of these theorems: see [6] and [3].

References .

[1] N.G. de BRUIJN, The mathematical language Automath, its usage, and some of its
extensions. Symposium on Automatic Demonstration, VersaiIles, Dec. 1968. Lecture Notes in
Mathematics, vol. 125, pp.29-61, Berlin, 1970.

[2] D.T. van DAALEN, A description of Automath and some aspects of its language theory.
Proceedings of the Symposium on APL, ed. P. Braffort, Paris, 1974.

[3] D.T. van DAALEN, The language theory of Automath. Thesis, Eindhoven, in preparation.
[4] L.S. van BENTHEM JUTTING, Checking Landau's "Grundlagen" in the Automath

system. Thesis, Eindhoven, 1977.
[5] D. KALISH and R. MONTAGUE, Logic, techniques of formal reasoning. New York,

1964.
[6] R.P. NEDERPELT, Strong normalization in a typed lambda-calculus with lambda

structured types. Thesis, Eindhoven, 1973.
[7] D. PRA WITZ, Natural deduction, a proof theoretical study. Stockholm Studies in Philo

sophy 3, Stockholm, 1965.
[8] D. PRA WITZ, Ideas and results in proof theory. Proceedings of the Second Scandinavian

Logic Symposium, ed. J.E. Fenstad, Amsterdam, 1971.
[9] W.V. QUINE, Methods of logic. London, 1952.
[10] P. SUPPES, Introduction to logic. Princeton, 1957.
[11] J. ZUCKER, Formalization of classical mathematics in Automath. Colloque Inter

national de Logique, Clermont-Ferrand, July 1975. Centre National de la Recherche Scientifique.

