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REPRESENTATION THEOREM FOR MINIMAL a-ALGEBRAS 

Kanji NAMBA 

The purpose of this paper is to state some properties of minimal separating 
a-algebras and of a-compact topological spaces. Original motivation of this work 
is to consider the problem of existence of a minimal separating a-algebra without 
any singleton. This fine problem, comes from a problem of statistics, is proposed 
by H. Morimoto who communicated me the following elementary but funda
mental example of such a a-algebra which appears in [18]: 

Let X be an uncountable set and x be an element of X, then the a-algebra 
consisting of subsets A of X with the property that "xEA and A is co-coun
table or xEA and A is countable" is minimal separating and does not con
tain {x}. 

In statistics, various a-fields are considered as mathematical expressions of 
statistical experiments. In some special cases, one of the properties of the a-fields 
with statistical relevance called "pairwise sufficiency" reduces to their separating 
property. 

Existence of minimal pairwise sufficient a-fields is of interest and the a-field 
given at the outset of this paper is one such example. It naturally leads to the 
question as to whether any more examples exists and, further, how they are charac
terized, and these are exactly the problem treated here. 

Considering the structure of the above example, it is natural to imagine that 
there are many other types of such a-algebras, and this is realized by considering 
a natural correspondence between the notions of minimality of a-algebras and a-com
pactness of related topological spaces, and that of a-complete 2-valued measures 
and limit points of a-topological spaces. 

The author wishes to express his thanks to Prof. H. Morimoto for his generous 
support and encouragement. 

• Work supported by Grant in Aid for Scientific Research 1977 section D #264054, section 
A #234002. 
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1. Definitions, notions and elementary properties 

We begin with the notions and definitions of concepts needed for the des
criptions and discussions below. A cardinal number k is called regular if it is not 
a A sum of smaller cardinals for all A<k. A set B consisting of subsets of X is 
called a k-algebra over X provided that it is closed under complementation and 
A-union for all A<k. Cl)l"algebra is usually called a er-algebra, that is, closed under 
complementation and countable union. k-algebra B is calIed a separating algebra 
if for any distinct elements x, y of X, there is a set A of B such that xEA but 
yEEA, in other words if 

VAEB(xEA=yEA)-x=y. 

k-algebra B is called minimal if it is minimal in the sense of set inclusion. A subset 
{Gi : iEI} of k-algebra B is called a generator of B if it is the smallest 
k-algebra containing the subset. For a k-algebra B the following two properties 
are equivalent: 

(a) B is minimal separating, 

(b) {G,: iEI} is a generator of B if and only if it separates the points of X. 

Let {Gi : iE/} be a generator of separating k-algebra B over X, and put 

GiO=G, and G/1 =X -G,. 

Then there is a natural correspondence j between X and a subset Y of 21 which 
consists of functions with domain I and values in 2={0, I} in such a way that 

By this correspondence j, the set X may be considered as a subset Y of 21 and 
B may be considered as a k-algebra over Y with the generators 

Y1k={pE Y:p(i)=k}, 
because of the property 

G1k=j-l (Yilt) 

and inverse image keeps complementation and union. Of course such B is always 
a separating algebra. 

Let a be a subset of I with the cardinality less than k, that is, #a<k, by 
a neighbourhood of pE Y of 21 we mean the set 

U (p; a) ={qE Y: V iEa (p (i) = q (i»}. 

The k-topology of Y is introduced by the system of neighbourhoods 

Up={U(p; a):aCI,#a<k}. 

Cl) and Cl)l-topology are usually called weak and er-topology, respectively. A k-to
pological space Y, i.e. the subspace Y of 21 with k-topology, is called A-com
pact if for any function which associates p with its neighbourhood U(p; ap), there 
is a subset b of Y with #b<A such that 

YC U U(p; op). 
pEb 
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It is well-known that this property is characterized by the following properties: 

(a) Let {OJ :jEJ} be an open covering of Y, then there is a subset b of J with 
#b<A such that 

YC U 0,. 
'Eb 

A dual form of this expression is: 

(b) Let {Cl :jEJ} be a family of closed subsets of Y with less than A intersection 
property, that is 

# b<A-+ n Cj =/= {O, 
jEb 

then their intersection is not empty, namely 

n C,=/= {O. 
jEJ 

Let X and Y be k-topological spaces of 21 and 2J, respectively. Then a 
function f: X-+Y is called uniformely continuous if there is a function 

g: Pk (J) -+Pk (l) 

where PJc(/)={aC/: #a<k} such that for all bEPk(J) and pEX 

U(p; g(b»CU(f(p); b). 

Let A be a subset of k-topologicaI space Y of 21. Then a subset a of with 
#a<k is called a support of A if for every p, qE Y, 

ViEa (p(i) = q(i» -+pEA ==qEA. 

A subset A with support is closed and open, i.e. a elopen set of Y. Let B* 
be the set of all such subsets of Y. Then B* is a k-aIgebra provided that k is a 
regular cardinal. It is also clear that B* is a separating k-algebra including the 
k-algebra generated by its basic open sets. 

Let Y be a k-topological space of 21. Then it is called a k-space if for any 
subset a of 1 with #a<k, there is a subset b of Y with #b<k such that 

Ye u U(p; a). 
pEb 

By this definition, we have that k-compact k-topological space is a k-space. 

2. k-compactness and minimality of k-algebras 

We begin with an easy property of k-spaces. 

LEMMA 1. In k-space Y of 21, the k-algebra B* of sets with support of 
cardinality less than k coincides with the k-aJgebra B generated by the basic open 
sets of Y. 

PROOF. Let A be an element of B*, then there is a subset a of -I with 
#a<k such that 

A= U U(p; a). 
pEA 
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Since Y is a k-space, there is a subset b of Y with #b<k such that 

U U(p; a)= U U(p; a)= U n Yjp(i)' 
pEA pEb pEbiEa 

By the definition of B, it is closed under less than k union and intersection. 
Therefore we have 

This means that B=B* by the inclusion mentioned above. 
Next lemma reveals a property of minimality of k-algebras. 

LEMMA 2. Suppose that the k-algebra B generated by all the basic open 
sets of k-topological space Y of 21 ia a minimal separating k-algebra. Then Y 
is k-compact and hence a k-space. 

PROOF. Suppose Y is not k-compact, then there is a function 

p-?U (p; ap) 

such that for any subset b of Y with #b<k, we have 

Y - U U (p; op) -=/= 0. 
pEb 

Let BI be the set of all A in B with the following property: 

(1) There is a subset b of Y with #b<k such that for any q, rE Y 

q, rEt: U U (p; ap) -?qEA=rEA. 
pEb 

Since k is a regular cardinal, we have that BI is a k-algebra. Now we shall show 
that BI is separating. Suppose p-=/=q, then since B is separating, there is a set 
A of B such that pEA but qEEA, so we have 

pEAnU(p; ap) and qEEAnU(p; 0p)' 

By the definition of Bl> we have An U(p; ap) EBI and so it is separating. By the 
minimality of B, we have B=BI. 

Since the basic open set YjO belongs to B for every i, we have a subset 
bi of Y with #bl<k such that 

q, rEE U U (p; ap) -?(qE Y/osrE Yio)' 
PEb j 

Hence there is a function s: [_2 such that 

We consider a neighbourhood of s in k-topological space 21, 

W(s, a)={pE2': iEa(p(i)=s(i))}. 
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For any subset a of I with #a<k, we put 

b= Ubi' 
lEa 

then we have #b<k and 

0:;l:Y - U U(p; ap) C n Y/ s(/} = YnW(s; a). 
pEb lEa 

Now we shall show that s is an element of Y. 
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So suppose sEE Y and let p* be a fixed element of Y. Let B2 be the set of all 
A in B with the following property: 

(2) There is a subset a of I with #a<k such that any for qE Y 

qEW(s; a)~(qEA p*EA). 
By the relation 

W(s; U a/)= n W(s; al)' 
IEc IEc 

we see that B2 is a k-aIgebra. Now we shall show that B2 is separating. let p, q be 
two elements of Y such that p=/=q. Then we have p=/=p* or q:;l:p*, so we may as
sume p=/=p*. Since p*, q, s=/=p, there is a subset a of I with #a<k such that 

q, p*ct U (p; a), U (p; a) n W(s; a) = 0. 

This means that for any rE Y, we have 

rEW(s; a)~(rEU(p; a) p*EU(p; a». 

By the definition of B2, we have U(p; a)EB2 and qEEU(p;a). This means that B2 
is separating and so by minimality of B, we have B=B2. By p*:;l:s, there is a subset 
a of I with #a<k such that 

U(p*; a)nW(s; a)= 0. 

Since U(p*; a)EB2, there is a subset a1 of I with #al<k such that 

rEW(s, al)~(rEU(p*; a)==p*EU(p*; a»). 

We consider a point 

q*EY- U U(p; ap)CynW(s; aUal) 
pEc· 

where c* = Ubi' then by q*EW(s; ai...Jal)CW(S; a), we have 
iEaual 

q*EU(P*; a). 
This contradicts with 

U(p*; a)nW(s; a)= 0. 

This contradiction shows that sE Y, that is Y is close. 

Now we consider the neighbourhood U(s; a1). Then by putting 

b*= U bt 
tEas 
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we have :j:j:b*<k and 

Y - U U (p; ap) C U (s; as) = Y () W (s; as). 
pEb* 

This means that 

which contradicts to the choice of U(p, ap). Hence Y is k-compact. 

LEMMA 3. Let X and Y be k-topological spaces of 21 and 2J. If X is 
k-compact and f: X-+Y is continuous, then f is uniformly continuous and the 
image f(X) is k-compact. 

PROOF. Let f: X-+Y be continuous and a be a subset of J with :j:j:a<k. 
By the continuity of f, there is a subset ap of I such that 

f(U(p; ap»CU(f(p); a). 

By the k-compactness of X, we have a subset b(a) of X with :j:j:b(a)<k such 
that 

Now we put 

xc U U(p; ap). 
PEb(a) 

a*= U ap' 
pEb(a) 

For qEX, there is pEb(a) such that qE U(p; ap), so we have 

rEU(q; a*)CU(p; ap)-+f(r)EU(f(p); a). 

This means that 

f(U(q; a*»CU(f(P); a)=U(f(q); a), 

so f is uniformly continuous. 
To each q in f(x), let there correspond bq, any subset of J with :j:j:bq<k, 

and consider the function 

q-+V(q; bq) 

defined on f(X). By the continuity of f, there is a similar 

p -'? U (p; ap) 

on X such that 

Since X is k-compact, we have a subset c of X with :j:j:c <k such that 

XC U U (p; ap). 
pEc 

Hence we have 
f(X) C Uf(U(p; ap»C U V (f(p); bf(p»· 

pEc pEc 

This means that f(X) is k-compact. 
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LEMMA 4. Let X and Y be k-topological spaces of 21 and 2J. If X is k-com
pact and I: X~Y is a 1-1 onto continuous function, then 1-1 : Y~X is uni
formly continuous. 

PROOF. Let A be a closed subset of X. Then A is k-compact as a closed 
subset of X, so I(A) is k-compact and so a closed subset of Y. This means that 
the image of a closed set is closed, and since I is I-I onto, the image of open 
set is open. By the relation I(U)=(f-1)-I(U), we have that the inverse image of 
an open set U by 1-1 is open. This means that the function 1-1 is contionuous. 
Since Y -I (X) is k-compact,l-l is uniformly continuous. 

LEMMA 5. Let X be a k-compact subset of 21 with k-topology. Then the 
k-algebra B generated by the basic open sets of X is a minimal k-algebra. 

PROOF. Let {Gj : jEJ} be a separating subset of B. By B* we denote the 
k-algebra generated by {Gj:jEJ). Now we define a function I: X ~2J by the 
relation 

f(P)(j)=k-=:pEGjk 

where Gjo=Gj and Gj1 =X-Gj. Since X is k-compact and so a k-space, we 
have that every element of B has a support. This means that the above function 
I is continuous. Since {Gj :jEJ} is separating, I is I-I. Let Y be I (X), then 

I:X~Y 

is a I-I onto continuous function. Hence its inverse 

1-1: Y~X 

is uniformly continuous. This means that for any i of I, there is a subset bi of 
J with #b'i<k such that 

f- 1 (V (f (P); bi» C U (p; {i}). 

By the compactness of Y, there is a subset c of Y with #c<k such that 

y= U V(q; bi)' 
qEc 

Hence by the relation 

pEf-1 (V (q; {k}»-/(p)(k) = q(k). 
we have 

1-1 (V (f(p); bl» = n f- 1 (V (f(p); {k}» = n Gk/(p)(k)' 
kEbl kEbl 

Hence by the definition of B*, we have 

U(p;{i})= U n Gk/(q)(k)EB*. 
/(q)EC kEbl 

q (i)=p(i) 

Since {U(p; {i} : i E I} is a generator of B, we have B =B*. This means that every 
separating subsets of B is a generator of B, hence B is a minimal separating 
k-algebra. 

Combining these lemmas, we have the following 
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THEOREM. Let X be a subset of 21 with k-topology. Then the k-algebra 
generated by the basic open sets of X is minimal separating if and. only if X is 
k-compact. 

3. Examples and remarks 

Let X be a totally disconnected k-comp1ete topological space, that is, any 
distinct points of X are separated by a elopen set and the intersection of less than 
k open sets is again an open set. Let {Gt : iEl} be a separating elopen basis of X. 
Then X can be considered as a subspace of 21 with k-topology. In the k-topolo-
gical space 21, the element of X, the closure of X, means a k-additive 2-valused 
measure on k-algebra B determined by the basic open sets of X. The cannonica1 
relation of point p of X and measure p.p is 

pEA=p.p(A)= 1. 

Since in the k-topologica1 space X, we have the relation 

( U Av) = u Av 
'lEa 'lEa 

for every a with #a <k, the additivity condition follows.. And if A EB, then 
it has a support a with #a <k and so 

AnX-A= 0. 

Conversely any k-additive 2-valued measure p. : B-+2 determines an element of 
21 by p(i)=l-p.(Gt) which belongs to the closure of X in 21. Hence the elosure 
X is just the set of all k-additive 2-valued measures on B. An element of X is 
called a principal or a point measure and an element of x-X is a non-principal 
measure. The notion of k-additive 2-valued measure and k-complete maximal 
filter or ideal are considered as alternating expressions of the same concept by con
sidering the element of 2={0,1} as quantity 0,1 or as truth value ° = falsity, 
1 = truth. 

Next, we shall give some examples of k-compact sets by showing the following 
lemma 

LEMMA 6. Let A be a cardinal number. Then the set 

X?-={fE21: #{iEI:f(i) = l}~A} 

is k-compact in the k-topological space 21 if and only if 

PROOF. First, if there is some 'Y) which satisfies 

A~'Y)<k~'1)). 

then X?- is not k-compact. Because we can take a subset a of I with #a ='Y). 

then we have 
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We associate a neighbourhood U(p; a) for every p of X", then no less than k 
union cover X" and so it is not k-compact. The case k~"A is trivial. 

Next, we shall show that V'"A<k(r/,<k) implies the k-compactness of 
X". Let U(p; ap) be a given neighbourhood of p in X". We shall show X" can be 
covered by less than k union of U(p; ap)'s. Let I be a function with the domain 
in I and values in 2, we denote by 1* the function 1* : /-+2 defined by 

1* (i) = {/(i) if iEdom (I) 
o if i El - dom (I) 

By the induction on v, we define a subset ay of I as follows 

ao=a0* 

where {O is the empty function. For a successor ordinal, we put 

where Ila is the restriction of I to a. For a limit ordinal, we put 

ay = U a,. 
"<v 

We shall show that #ay<k for all V<A+, the smallest cardinal greater 
than A. Since the case that v is a limit ordinal is clear by the regularity of k and 
"A +~2).<k, we shall show that #av<k implies #aV+l <k. So we consider the set 

dv = {/I av :/E X~J, 

then by the assumption of #a and by the property of A, we have #dy~ #a/<k, 
so using #aUI Qy).<k for each lEX", we have 

(1) 

(2) 

#aV +1 ~ 2: #af*<k. 
ff;'dv 

Next, we consider two cases 

aV+l-ay= {O for all V<A+. 

The case (1): For every IEXA, we have 

For any lEX)., consider (flay)*EX", then by (1), we have 

IEU «(11 ay)*; aUI Qy).)' 

so we obtain that 

X). C U U (1*; a,.). 
fEdy 

This means that X" can be covered by less than k union of given neighbourhoods. 
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The case (2): We put 

Av = {fEX"}. : a(f I av)" - av=/=<l>}, 
and assume that 

Then we have for all v <)"+, 

Suppose thatf(i)=O for all iEav+1-av, then 

(fl aV+l)* = (fl av)*' 

Hence we have 

This contradiction shows that for all v<)"+, there exists an iEaV+l - av such that 
f(i)=1. This means that 

# {iEI:f(i) = I}>)", 

which contradicts the assumption fEX"}., and so we have 

X"}.=X"}.- n Av= U (X"}.-Av)· 
v<"A+ v<"A+ 

LetfEX"}.-A.,. Then we have that aUlayl*Cav and so 

X"}.-AvC U U(f*; afo). 
fEdv 

Hence we have 

where d* = U dv and the condition #d*<k follows from )"+:::;;2"A<k. There-
v<"A+ 

fore X"}. can be covered by less than k unicn ef given neighbourhocds. Any way, 
the space X"}. is k-compact. 

By the proof of above lemma, we have that if a family D of subsets of I 
satisfies the condition 

(1) 

(2) 

aED, bCa-+bED, 

#a<k-+ #{bED: bCa}<k, 

then the set of all representing functions of the sets in D is k-cempact. For example, 
if D satisfies the conditions and a partial ordering ~ is defined on I, then the 
set D' of elements of D which is well-ordered or linearly ordered by ~, sati~fies 
this condition. Hence if k=(2"')+, then the set of all well-ordered countable sub~ets 
of I is k-compact. But of course this set is not CUI-compact, namely not a-compact, 
if I includes a countable increasing sequence. 

By using Lemma 6 and the property that the continuous image of a k-com
pact set is k-compact, we have that 

XI,"}. = {qE21 : #{iEI: q (i)=I=f(i)}~)"} 
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is k-compact for any!: 1--+2 and A such that 'VYj <k (",,/·<k). Hence any closed 
subset of less than k union of such X1,A is also k-compact. 

Now, we consider the case k>w, for example k=Wb then for any Yj<k 
and n<w, we have Yjn=Yj<k. By this, the set 

X:={fE21: #{iEI:f(i) = l}<w}, 

being a union of countable k-compact sets, is k-compact. Since each point of 
this set is not an isolated point, the k-algebra determined by this- k-compact set 
is an example of a minimal separating k-algebra without a singleton. Since there 
is no restriction on the cardinality of index set I, each cardinality determines at 
least one non isomorphic minimal separating k-algebra without a singleton. One 
may consider, may be pathological, the k-compact space consisting of all finite 
sets, in which case the minimal separating k-algebra consists of elements which 
are not sets but classes. 

Now we consider, for example, the space wl with k-topology. Since each 
natural number n of cu can be considered as an element of 2e.> by usual binary 
expansion, we may consider 

So we have that the set 

XC: = {!Ecu1 : #{iE/:!(i):;60}<w} 

is le-compact, and the le-algebra generated by its basic open sets 

{lEX: :f(i) = n} 

is minimal separating and have no singleton. 
One intuitive example of minimal separating er-algebra would be as follows: 

Suppose there are at most countably many particles and their states, the family 
X of all positions and states of finite particles in, for example, n-dimensional 
Euclidean space forms a er-compact set, and the er-algebra determined by this 
topological space is minimal separating er-algebra without singleton. 

We consider the property 

(*) 

If A<le and k is regular, then (*) implies 

k A= 2: Yj"<k2 =k<k+ 
71<k 

hence k+ also satisfies the property (*). On the other hand, if cf(k), the cofi
nality of k, satisfies cf(k)~A, then cf(kA»A, by Konig's theorem, so we have 
k+~kA and so k+ does not satisfy the property (*). The least cardinal greater 
than Yjo satisfying (*) is defined by k=(YjOA)+, because (Yjl)A=Yjo"-<k. 

If for example the continuum hypothesis 2e.> =CUl is true, then 

{fE21: #{iEI:f(i) = l}~cu} 

is k-compact for k=CU2, CU3,'" but not for k=CUb CUe.>+h'" 
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Interesting problem concerning this is the problem of implication 

'Vn<oo(2c,) = OOn+l)-+2c,)c,) =OOc,)+1 

which is proposed by R. M. Solovay, and is called the singular cardinals problem 
And this problem is equivalent to OO",+2-compactness of above set Xc,) under the 
assumption of 

'Vn<oo (2c,)n = OOn+1) 

Another interesting problem is explicit characterization of 001 or a-compact 
sets, for example the existence of a-compact set which is not included in the conti-
nuous image of the set of the form xt. And the characterization of the structure 
of complete Boolean algebra determined by closed subsets of 21 divided by the 
ideal of k-compact sets. 

The case k =00 is well-known case of weak topology, by Tihonov theorem 
the topological space 21 is compact, hence a subset is compact if and only if it 
is closed. This means that the oo-algebra (Boolean algebra of clopen sets) B generated 
by basic open sets of X is minimal separating if and only if X is closed. There is 
natural correspondence between the closure X of X and the set B* of all maximal 
filters (or ideals) of B. 

We have already mentioned that every k-compact k-topological space X 
of 21 is a k-space. Now we consider the problem of converse implication. That 
is, whether every closed k-space in k-topological space in 21 is k-compact or not. 

When I =k, this property is known as tree property. To explain about this, 
we define the notion of binary tree, here we say simply a tree. A subset T of 
P = U 2V is called a k-tree if the following conditions are satisfied: 

v<k 

(a) fET, gEP, gCf-+gET, 

(b) O<#(Tlv)<k where Tlv={fET:dom(f)=v} and v<k. 

A function I: k_2 is called a total branch of T if 

'Vv<k (fl vET). 

We say that a cardinal k have the tree property if every k-tree has a total branch. 

LEMMA 7. k has tree property if and only if every closed k-space in the
k-topological space 2" is k-compact. 

PROOF. Let T be a k-tree without any total branch. For any lET, we as
sociate a function 1* : k-3 defined by 

1*(v)={f(V) if vEdom(f) 
2 if v Ek-dom (f). 

Then by the inclusion 3C22, we may consider 1* as an element of 2" by 
3"C(22)"=22xk=2". Now we consider a subset T* of 2" defined by 

T* = {f* E 2k :fE T}. 
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Then T* is a k-space. Since T has no total branch, T* is a closed subset of 2k 
and each point of which is an isolated point. Let U(p ;ap ) be a neighbourhood 
of p in T* with 

Then by #T*=k, we have that T* cannot be covered by less than k union of 
such neighbourhoods. This means that T* is a closed k-space which is not 
k-compact. 

Next, suppose k has the tree property and X be a closed k-space which is not 
k-compact. Let {U(P; vp) :pEX} be a covering of X by which X cannot be 
covered by less than k union of the sets. Let T be the set of functions defined by 

T={fl v :/EX, T cannot be covered by <k of U(p; vp)'s}. Since X is a 
k-space which is not k-compact, T is a k-tree. Hence, by tree property of k~ 
T has a total branch I: k-+2. But since X is closed, we have lEX. This means 
that lE U(f; 'If) and so I1 vfEi:T, which is a contradiction. 

Followings are known examples about this notion: 

(1) cu has tree property. This is known as Konig's infinity lemma or Brower's fan 
theorem and is a special case of Tihonov's compactness theorem. 

(2) CUI does not have tree property. Such an example is known as Aronszajn tree 

(3) (Specker) if a regular cardinal k satisfies 'rIv<k(2v~k), then k+ does not 
have the tree property. 

(4) (J. Silver) if k is a real valued measurable then k has tree property. 
It is known, by R. M. Solovay, that the consistency of existence of 2-valued 

measurable cardinal and that of real-valued measurable cardinal are equivalent 
under ZFC, Zermelo-Fraenkel set theory with axiom of choice. And every real
-valued measurable cardinal is weakly inaccessible cardinal less than or equal 
to 2"', every 2-valued measurable cardinal is strongly inaccessible, that is, k is 
regular and 'rI v<k (2v<k). 

In the case k is strongly inaccessible, every subset X of k-topological space 
21 is always a k-space, and the property 

'rIv<k(#(T/ v)<k) 

is always satisfied. In this case k is called weakly compact. That, is, a cardinal k 
is weakly compact if 

2k with k-topology is k-compact. 

Followings are known about this notion: 

(1) the fir'>t strongly inaccessible, the first Mahlo cardinal is not weakly compact_ 
More generally the first cardinal satisfying 'ltll property is not weakly compact. 

(2) every measurable cardinal is weakly compact and it is a limit of weakly com
pact cardinals. 

J. Silver proved that the consistency of existence of weakly compact cardinal 
implies the consistency of 

"CU2 as tree property" 

with the exioms of set theory ZFC. 
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More general case is considered and it is called strongly compact, or simply 
compact, cardinal if for any set 1 

21 with k-topology is k-compact. 

This notion is also described by using tree like structures. A subset T of 

P={f/ a:aC1, :J:I:a<k} 

is called a k-function tree if the following conditions are satisfied: 

(a) 

(b) 

fET, gEP, gCf-+gET, 

O<:J:I:{fET:dom(f)=a}<kfor'o/<k and :J:I:a<k. 

A function f: 1-+2 is called a total function of T if 

VaC1(:J:I:a<k-+flaE1). 

We say that a cardinal k has the k-function tree property if every k-function 
tree has a total function. For strongly inaccessible cardinals, strong compactness 
is equivalent to function tree property. For example, we know the followings; 

(1) every strongly compact cardinal is measurable. 

(2) (V openka-Hrbacek) if strongly compact cardinal exists then V =l=L(a) for 
every set a. 

(3) (R. Solovay) 2"=)..+ for every singular strong limit cardinal greater than a 
compact cardinal. 

(4) if there exists a strongly compact cardinal, then the first strongly compact car
dinal can be the first measurable cardinal. 
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