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CONTINUUM PROBLEM AT MEASURABLE CARDINALS

Aleksandar JOVANOVIC
Exposition

Given any set, how to evaluate the cardinal of its power set? The above is:
known as continuum problem. In ZFC, initial ordinals can be taken to represent:
cardinals. Thence the problem reads: determine function F, so that for all
ordinals o:

(0) 2m1=(x)1:(a).

Cantor has proved that 2°*>w,, ., for all a. Therefore we can split F~
so that

¢)) Wr ) = Wy 4 f(a)

Putting f(x)=1, for «& Ord, we obtain a formulation of generalised continuum.
hypothesis (GCH).
It is known that

@ x<B implies F(x)<F()
and
(3 of Op (> g

The (3) is known as Konig’s lemma.

Here we shall first list important recent progress on the matter, assuming;
the fundamental results of Godel and Cohen are known.

In [7] Silver has proved the following theorem.

1.1. THEOREM: if w, is a singular cardinal of cofinality greater than.
o, then:
€3] VB<a2®®=wg,, implies 2“*=q,,;.

However, the problem of all singular cardinals is still unsolved. In J. Stern [8}
we found the following hypothesis on singular cardinals, for which the consistency-
and independence are open questions. HCS: let w, be a singular cardinal. Then.

“) VB<a2P=wg,, implies 2“*=a,,,.
Jensen in [6] has proved the next theorem.

57
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1.2. THEOREM_ if negation of HCS is consistent with ZFC so is the axiom
of uncountable measurable cardinals (AM). : :
For regular cardinals we have the fundamental result of Easton [3]:

1.3. THEOREM: for any function F defined on all ordinals « such that
o, is a regular cardinal and F satisfies (2) and (3), consistency of ZFC implies the
consistency of ZFC+EAr. Here EAg is the formula

VoaeD,y, (F) 2“)a‘="‘)1"(at)'

Here we note that 1.3. theorem, we found in Jech [5], theorem 37, in
a somewhat different notation. There presented formulation is adjusted for the
following theorem that we have proved. Let F and f be defined by (&) and (1).
From Chang and Keisler [1], section 4.2. we know that if there is an uncoun-
table measurable cardinal then there is a normal ultrafilter on it.

1.4. THEOREM: let k be an uncountable measurable cardinal and let D
be a normal ultrafilter on it. Then

%) {B<K:21#1=|B[+*}& D implies 2k=Fk*,
©) HCISIECN

Above [X| denotes a cardinal of X, H is ultraproduct modulo normal
D

filter D. (5) says that if continuum hypothensis is true on a set in D, then it is
true at measurable cardinal k. Hence it implies that the value 2% is determined
when continuum hypothesis holds on a set in D. (5) is the special case of (6)
which can be read as: the number of cardinals « such that k<a<{2%, is con-

strained with the value of |J] f(®). Here f(B) is a nonempty subset of k,
D

which enumerates the cardinals from wg to 2.

Now it is evident that the axiom of uncountable measurable cardinals con-
tradicts the Easton’s result given in 1.3. theorem; to check that, let kK and D
be as in 1.4. theorem. Define F '

F(a)= a+ 1 iff aszk and cf o, =0,
{oc+2 iff o=k

This F satisfies (2) and (3), so by the conclusion of 1.3. theorem we can take
as axiom

YV aE Dy (F) 2°% =03 .

But the set of all regular cardinals less then k belongs to D. Hence by (5)
2k=Fk+*, contradicting F(k)=k-+2 which means that 2¥=k++. Moreover, since
(5) is a special case of (6), similiarly to above we see that if F violates the (6)
ZFC4+AM +EAp is inconsistent. What with the opposite question? Taking into
account Silver’s result that the comsistency of ZFC+AM implies the consis-
tency of ZFC +AM +GCH, we state the conjecture: let F be defined on all «
for which w, is regular and let F satisfy (2), (3) and (6). Then the consis-
tency of ZFC-+AM implies the consistency of ZFC-+AM4-EAr.
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As we have seen above, the continuum problem was separately treated for
singular and regular cardinals. But according to (6), may F be such to prevent
the existence of measurable cardinals? Then in ZFC+EAr, HCS would become
a theorem.

Proof

First we list two D. Scott’s results on normal measure, as we found them
in the section 4.2. of Chang-Keisler [1].

DEFINITION. A filter D over a measuralbe cardinal &k is said to be
normal if:

1. D is an k-complete nonprincipal ultrafilter;

2. in the ultrapower |[(K, <), the k-th element is the identity func-
D

tion on k.

2.1. THEOREM: let k be an uncountable measurable cardinal. Then there
is a normal ultrafilter over it.

2.2. THEOREM: if k is a measurable cardinal and D a normal ultra-
filter on it then

(Rk+1), e>g1;I<R(B+1), .

2.3. COROLLARY: let ¢(x) be a formula. Then
Rk+1), €) =0 k) iff <k:(RE+1),E)|ze@}ED.

As a consequence of the above we note that the set of strongly inaccessible cardinals
less than k belongs to D. Also

[ TTR@+D]=2-
2.4. THEOREM: let D be an ultrafilter over a cardinal k£ .Let
A={4, <A>=1;.[ Cky<). If fE*k and f@)£ &
when BEkL, then
| {)Tf ®|=]{etcu:g%< /5 |.
PROOF: let geﬁq f(®). Then g&*k. Define
[
L. gD={heagc fB):{i<k:g()=h@}ED}.

2. gr={hE¥k: {i<k:g()=h()}ED}.
It is clear that gDCg%[. Define =: ]| f(B) — 4, by ng,,=gg. wis 1-1. For,
D
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if gp#hp and gp, hDEI;I f(®), then gpMhp= . Suppose that mgp=mhy.

Then gj"} =h%l, and hence {i<k:g(i)=h()}cD. It follows that h,=g, Con-
tradiction. Put F= {g?)[e%[: g%l< 4 f%[}. We shall prove that =([] f(®)="F.
D

Let gDEI;I f(®. Then {B<k:g@<f(@®)}=kED. It follows that gh< ,f¥%,

Hence g%EF. Let now g%IEF. Then x={B<k:g@)<f(B)}ED. Let gk be
such that _
g@=g@ if Pex

g@®=1 if Bckw
Then gegh Py g Theref gp=2% and th
gc€g,. But ge:B]_;[kf(@) and gDEI;[ f(B)- Therefore ©g,=g, and thus
7 maps | [ f(8) onto F.
. D

2.5. THEOREM let k be a measurable cardinal, D a normal ultrafilter
over k. Then W={A, < H=Hplk, <> is well ordered with the relation. < ,.
Order type of W is greater than 2.

PROOF. By lemma 4.2.13. from [1}, <, is a well ordering. Further
2= |TTR@+DI<|T] K <><2
D

Hence order type ot A>2*% and obviously or A<|2¥|*+; defining b as b(B)=
=|R@+1)|, we see that b€*k and hence b,cU. The proof then follows.
from 2.4. theorem and the fact that by, is not the last element in .

2.6. COROLLARY for every fp&¥U there is an crdinal v, so that fj, is the
Yy—th element of ¥, and |II, f(B)|=|v,|; for every ordinal x<or¥ there is
an f*<kk, such that fp is the x-th element in 9.

Now we can give the proof of 1.4. theorem.

Functions F and f are defined by (@} and (1); if B<k then of|B|<k,
wg<k, F(B)<k, 2°P<k and f(B)<k. Hence the restriction f},&*k and (f})pE
EI,I ¢k, <. We define

Gr={gpEN:gp<,fp} and

H= {hDegt . {ﬂ<k N h (p) E[O‘)B’ mB+f(3))ﬁca,d} ED}.

That is, for hp,cH, h(B) is a cardinal and wg<h@E<wg,,@). Hence, for every
hp € H, there is some g, & Gy so that

(* {B<k:h(B)=0g, @} ED. Define n: H— G, with
T hp=gp iff (+).

It is easy to check that why does not depend on elements of hp and that =
is 1—1. Therefore
| HI<|Gpl-
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Let » be a cardinal such that k<{x<<2*. By the 2.6. corollary there is

an f*E&*k, such that f5 is the x4 ordinal in ¥, eg. v« =x. From the same
corollary

[T ® =161 =] %] =x
For the function g with the domain k, define the functicn

lg|=<g® |:B<k).
I r®il=1TLr@-x

‘We have

That implies
|Gy [ =2 and v, 2%,

which means that |f*] is at least x-th element in . Since |f*[p<,fp

{B<k:|f~@)|<f*@B)}ED), by choice of f* must be f*=,|f*| and hence
X={B<k:f*@) is-a cardinal} & D.

Since fo=u>k and D is normal, we have

{<k: /@ =preD.

Let Sinac (k) be the set of strongly inaccessible cardinals less than k. As we
noticed, Sinac (k)& D. Now we have

either {B<k:f*(B)>wg, @} ED
or {B<k:f*B)<wg,r@)€D.

In the first case we would have

{BekNSinac (k) :/*B)=>wg, s =b B} ED,
which would imply
2<[ T r<® [=]TT @]

DN\S (Sinac (k)
Hence 'fo>2k, contradicting assumption for x.

Thus {B<k:f*B)<ows, @D
Since x>k and f*=p|f*| we have

{B<k:f*B)Elwp, v, @) Card}ED.

It follows that there is some A,& H, so that f*E#hy, or equally 1, € H. Since
x#%’ implies fp#fp, we have

|k 29N Card| = | (k, 2N Card | =|f(®) <[ HI<I G| = [T f®).
thus completing the proof of (6). Now let
X={B<k:218'=|B[*}&D.



62 Aleksandar Jovanovié

This means that f(8)=1, when BEX. But from (6) we get
[f®|<|TT @ |=1. Hence 2¢=k+.
DNS(x)

NOTE: in the above proof we had f}, defined on all <k; to apply the
Easton’s argument we need f}, to be defined on y={B<k:wg is regular}.
Since y& D, such a difficulty can easily be avoided.

From above it follows that actually

2k Lk 1or AT (S, )
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