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DESCRIPTIVE SET THEORY AND INFINITARY LANGUAGES

John P. BURGESS

Kurepa trees, partitions, Jensen’s principles, large cardinals, and other notions from com-~
binatorial set theory play an enormous role in the model theory of generalized-quantifier languages.
(See e.g. [29].) Borel and analytic sets, Polish group actions, and notions from descriptive set
theory can play almost as large a role in the model theory of certain infinitary languages. (See
[31] and [32].) The present paper is a study, by the methods of descriptive set theory, of the class
of strong first-order languages. These, roughly, are the infinitary languages which are strong
enough to express wellfoundedness, at least over countable structures, yet weak enough that the
satisfaction relation is Aj-definable.

Examples, culled from the literature of exotic model theory, are present in § 1. The set-
-theoretic machinery for their study is set up in §§2-4. §§ 5 and 6 are devoted to an exposition
of the properties shared by all strong first-order languages. Most notably: There is a quasi-
constructive complete proof procedure involving rules with ¥y premisses for any strong first-order
language, and even the weak version of Beth’s Definability Theorem fails for every such language.

Many of the results in this paper date from the author’s days as a student in R.L. Vaught’s
seminar at Berkeley, 1972-73. At that time I had the benefit of correspondence with Profs. Barwise
and Moschovakis, and especially of frequent discussions with Prof. Vaught and D. E. Miller.
Most of this work was included in [6], and a few items have appeared in print ([5]; [8], § 2).
More recent discussions with Miller led to the discovery of the proof procedure and the counter-
example to Beth’s Theorem alluded to above, and to the writing of this paper.

§1 Some Infinitary Languages

Throughout this paper structure means infinite structure and vocabulary (set
of predicates, function symbols, and constants) means countable vocabulary. Re-
ferences for some possibly unfamiliar notions such as primitive recursive (PR)
set functions or A;?FC definability are recalled at the beginning of §2.

1.1 Borel-Game Logic L.n
We introduce codes for Borel subsets of the power set o as follows:

E0)={0, n):nCo}; Sa+1)=5@U{{, e):ecB(®)} for a even; o+ 1)=
=5@U{2, N fro> @} for « odd; EN)=U{8(@@:a<A} at limits;
&=8(»,;). The Borel set J3(¢) coded by ec§ is determined as follows:
B0, n)={uCow:ncu}; B, e))=complement of RB(e); B2, )=
= U{B(f@) :nEo}.
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The class of formulas of L,p in a vocabulary R is the smallest class which
(i) contains the atomic formulas of R; (ii) is closed under negation —; (iii) is
closed under (single) quantification V, 3; (iv) is closed under conjunction and
disjunction A, V, of arbitrary sets of formulas, so long as the result has only
finitely many free variables; and (v) is closed under the following operation:
Given ec@ and I# @ and formulas ¢4 ...15(%; ... %, ¥,...7,) indexed by
I<o with free variables as shown, we may form the following formula ¢ (1, . .. u):

(*B) Niect1V¥v Vel Aper Vo, Vierd, - ..
v Mt Uy, VoL V)YE T (O)

The class Lop(R) of sentences of L.p in vocabulary R consists of those for-
mulas without free variables.

Satisfaction for L,p is defined as follows: Given an R-structure % and
by...5&|¥U|, the formula @ (u,...u,) of (*B) suggests an infinite game for
two players PRO and CON. CON opens by picking i,c1, a,&|¥%|. PRO res-
ponds with i1, a,&|U|. And so on until infinite sequences i=i,, iy, i, ...
and a=a, a;, a,... are generated. PRO wins if {n:W|[=qpi...;x(br ... by,
ay...a,)}EB(e). Since the set of pairs i, a constituting wins for PRO is a
Borel subset of I©x |%|®, by Martin’s Borel Determinacy Theorem [22], either
PRO or else CON has a winning strategy for this game. We define A |[=¢ (b, ... b;)
to hold if PRO has the winning strategy.

If we wish to identify formulas with set-theoretic objects, we can proceed
much as is done in [17] for L,,,. In particular we take nonlogical symbols to
be just certain hereditarily countable sets. We can identify the formula of (*B)
with, say, (e, (ps:6&I<%)). It is then not hard to see that sentencehood for
L.p is a PR notion.

1.2. PROPOSITION Satisfaction for L.p is A,ZFC.

PROOF. Any notion defined by a reasonable induction from A,%FC notions is
AZFC, so it suffices to show satisfaction for a formula of L.p can be defined
in a AZFC fashion in terms of satisfaction for its subformulas. We consider
the case of the formula ¢ introduced by (*B). Fix % and b,... 5, €|¥U| as in
the definition above of satisfaction for ¢. Let f:I<®x|¥|<@— {0, 1} code
satisfaction for subformulas of ¢:

flo,(@y...a))=0>U|=gs(b...b, a,...a,)

A strategy for PRO in the game associated with ¢ is essentially a pair of
functions P :I<@x |UA|<e— I, T:I<ox|A|<® - |A|. Applied to sequences
i=iy, iy, i,,... and a=q,, a;, a,,... & and T produce the sequences:
@ s=1ip, o () (@N)s iys F (Gos 1) (@5 @)))s By

t=a,, T () @) a1, T (g5 1)y (5 @), G- -

Let 6,=06,(.%, 7, i, 2) be the finite sequence of the 0% through »* terms of
s, and define 7, similarly from t. In this notation, U |=¢(b;...by) iff:

) 3 strategies o, 7 Vi€ o, a€|UA|® {n:f (s, T)=0tE B ()




Descriptive set theory and infinitary languages 11

Now it is well known that every Borel subset of the power set of @ can
be obtained from clopen sets by the fusion operation (1). Indeed the usual
proofs of this fact reveal that we can obtain an operation (4) representation
of A(e) in a PR fashion from the code e, i.e. there is a PR function </
from & to the power set of 2<9x w<® such that for all x&2«:

{n: x(mM)=0}G B(e) > IyCaw® Vn(x|n, y|n)& A ()
Thus (2) is equivalent to:
3) 3.7, TVi,aVx€2¢VyCw®dn
(x (M FS(©ns ) V(x| 1, y|B)E A (A, €)

where, let us recall, (I, ) codes the complement of 73 (e).

Now for given strategies .7, 7 let 2=2(.%, J) be the set of all four-
tuples i,=(iy, &y ... i), 8, =(@p, @y ... @), E=(%0, X -« Xpna1)s N=Wos Y1+ - Vans1)
such that for all m<2n+1, x,,=f(c,, 7,) (Where o,, 7, are the obvious initial
segments of the sequences in (1)) and (€ |m+1, y|m+ 1)EH((1, €)). Partially
order 2 by letting one four-tuple p be below another g if every component
of p extends the corresponding component of ¢. Then (3) is equivalent to:

4 @ 3.7, T (2 is wellfounded)

Moreover, the existence of a winning strategy for PRO is equivalent to the
nonexistence of a winning strategy for CON, so (a) is equivalent to:

e ® —3.%, T (2 is wellfounded)

where @' is defined dually to £. Examination of the construction shows 2, 2’
are obtained in a PR fashion from ., 7 and the data ¢, . Every PR function
is AZFC, as is the notion of wellfoundedness. Further Martin’s Borel Determi-
nacy Theorem, which implies the equivalence of (4) (a) and (b) is provable in
ZFC. 1t follows (4) provides a AZF¢ definition of satisfaction for ¢ in terms
of satisfaction for its subformulas ¢,, as required.

13 Lp

For any uncountable cardinal x, the formulas of L,y are those formulas
of L, which, as set-theoretic objects, are of hereditary cardinality <<x; briefly:
L.p=LogNH(x). Up to a harmless relabelling, these are precisely the formulas
with <<» subformulas; and for regular x constitute the smallest class closed
under —, V, 3; under A, V for sets of <x formulas; and under operation
(*B) for index sets I of cardinality < x.

1.4 Vaught’s Closed-Game Logic Leg

Let e§ be a code for {w}. For this e (*B) can be written more per-
spicuously:
(*G) /\,oeIVvo V;le,Elvl ves /\,,QJ,O,,_,',‘ (ul ce U, Voo .Vn)

The sublanguage of L.p obtained by allowing only this special case of (,.B)
we call L,g. We also set L,;=LuwgNH (). Vaught [31], [32] has extensively
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investigated L., g, and formulas of form (*G) with I countable and the o,
quantifier-free formulas of L, are called Vaught formulas. The game associated
with (*G) is closed, and since the determinateness of such games can be proved
in ZFC-, satisfaction for L. is AZFC-.

Other fragments of L. can be obtained by restricting the matrix of (+B)
to other special forms, e.g. the Gs-game logic of [6], ch.4C.

1.5 On Keisler’s L(w) and Related Languages

We form L.gp by restricting the game prefix in (*B) to allow only
quantifiers: Given e&cg and ¢,, nCw, we form:

(*QB) “v’voav1 Vv, 3v,... {0 @, (uy . Uy, vy V)YETB(E)

which can be regarded as a formula of L.p by inserting vacuous propositional
operations.

Lo, 08=LwoaNHC coincides with the restriction to HC of the language
Keisler [16] calls L(w). This observation justifies our assertion in [5] that satis-
faction for L(0)NHC is A,ZFC,

L,g¢ is obtained by similarly restricting L., q. Moschovakis and Barwise
[2] have studied this language, which (unfortunately) is sometimes called Lx¢.

Though obviously (considering propositional logic) L, g6=LwgeNHC
is weaker than L, ¢, Vaught [32] remarks that over countable models with some
coding built-in (e.g. models of arithmetic) the expressive power of the two languages
coincides.

1.6. Propositional Game Logic

We form L.pg by restricting the game prefix in (*B) to allow only proposi-
tional operations. Thus given ec§ and I# @ and formulas qq(u; ... ux) all in
the same free variables, we form:

(»PB) Nier Vier Apct Viger- {1 Quiy ... in(Uy « .. )}EB(€)
This is equivalent to a formula of L, viz:

M Vgp<o, 1 A Vo A

i=ipiy ... ' yEwe "‘naCw
Ve, € y|n+DEK @
(Am<n, Em=0 Po, A Amsn, E(m)=1— Poy,)
where </ (e) is as in § 1.2 and ¢, is the obvious initial segment of:
Bos o (o) Bys oF (Ugs 1))s s - -

In particular, wellfoundedness cannot be expressed in L wpg. Lo,ps=LopsMNHC,
however, still vastly exceeds L., in expressive power, since if the formula in
(*PB) is in L., ps, We can only say the equivalent formula (1) is in L,, where
A= (2N)+,

L.pc and L, pc (defined the obvious way) have been studied by Green
(10}, [11}.
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1.7 Solitaire and Souslin-Quantifiers

We form Lusp (resp. Lose) by restricting the game prefix (*B) (resp. (*G))
to allow only 3 and V. Formulas of these languages correspond to games in
which PRO makes all the moves and CON is a passive spectator, Lesp and Lese
coincide in expressive power. Indeed we can assign in a PR fashion to every formula

of the former an equivalent formula of the latter.
For
(*SB) VierIVicrIVierIv, .. {n Qi iy oot Voo o . VYEB ()
is equivalent to: '
M \ el eV nel E V.ve:»"’ /\nEwV e, @& yint1yec (o)
(V mcn, Emy=0 Pig.o.imA N\ mcn, Emy=1"1 Py ims)

and hence to:

(2) VioelvyoEm HVO\/ i;EIV.lemavl' T /\nemVEGZ"‘”. G (0. y)EH (2)
etc as in (1).

Distributing 3 through V and vice versa, we also see that any formula
of Le.se is equivalent to a formula of L..,. Malitz has shown that the class of
wellorderings of type a-+a« cannot be defined in Lo, while Takeuti has observed
that it is definable in L, gg.

Further restricting (*SG) to allow only 3 produces Legse. Lo, gse=
=L,0s¢NHC has been studied by Moschovakis and others under the name
Souslin-Quantifier Logic. Note that the usual formula expressing wellfoundedness
still belongs to this language.

1.8 Souslin Logic

Restricting (*SG) to allow only V produces L pse. Explicitly this language
allows:
(xPSG) VietVietVier-- Anco®@ity...in
Lyps¢=La psc\H(x*) has been called x-Souslin Logic, or just Souslin Logic
for x=¥,, and has been extensively investigated [9], [10], [11].

Of course (cf. §1.6) L.pse does not exceed L., in expressive power; but
Souslin logic vastly exceeds L. For example, the class of countable well-
founded structures is a PC for Souslin logic, since a countable A= (|U |, EY) is

wellfounded iff it can be expanded to a model (|%|, E%, RY) of:
R linearly orders the universe in order type w A
WVicoVicoVinco - An®n

where ¢, expresses that the i,.¥ element in the R-order stands in the relation
F to the i, % element. This means that the wellordering number of Souslin logic
is >y, the wellordering number of L. In fact, it may be as large as ,;
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see [7]. It is perhaps worth noting (following Vaught) that Souslin logic and
L, pe coincide in expressive power. For

) . NipcoVicoNbcoVico o An@iiy...in
is equivalent to
VioemVilewV.iZEm v /\n‘]’io.ix---ln

where the ¢, are determined as follows: For cCw<® let #(c) be the natural
code for o, 20 3¢ 5 | . For ©=(j,, ji» - .- Jo) let ¢, be the conjunction
for all o=(i,, YRR im) With F(0)<n of @i, Pigkys Pigkoiys Pigkoiykys « « - » WhETe
ko=Jucns Ky =Jacioins - - - -

Green [11] shows that for all » the wellordering numbers of »-Souslin logic
and L, , p; coincide and equal the least ordinal not H(x*) recursive in the sense
of [4). Moreover she shows for cf x>, x-Souslin logic and L., coincide in
expressive power.

1.9 Kolmogorov R-Operation Logic

The formation rules of L, allow us, given formulas indexed by (I<¢)<¢
to form the following horror:

(*R) oo VP00 Vios o1 A i, V02 Vi, o3 - - -
Vnoeo)\/ iloavlo A iuvvll \ iug.!vlz A iuvvls te
Ampeco Niw ¥V Vi 351 Nip, V50 Vi, 3055 -
voo N Plioo.oin. o Gron . virny) Uy - Uies Voo - - Veny)

For fixed ¥ and by...bxc|U| the obvious game of length w2 associated with
(*R) is equivalent to the following game of length w, in the sense that the same
player has a winning strategy: CON picks elements of I and || which we call
fgo and agp. PRO then has three options: to challenge immediately, to pick elements
we call iy;, @p; and then challenge, or to pick such elements without challenging.
If PRO does not challenge, CON then picks elements we call ipy, agp, and PRO then
again has the same three options. If PRO eventually does challenge just after
fongs don, have been picked, PRO then also picks elements we call iy, a39. CON
then has three options analogous to those PRO had earlier. If CON does not
challenge, PRO picks another pair of elements, and CON has the same three
options, and so on. If CON eventually challenges after i1, a;,, have been picked,
he also picks elements we call i, az9, and PRO has three opticns again, and so on.
In the end, PRO wins if either each player challenges infinitely often and the matrix
of (*R) comes out true with the a’s replacing the v’s and the b’s the u’s, or if at
some point it is PRO’s option to challenge and he lets infinitely many moves go
by without doing so. We leave it to the reader to see that this game really is equi-
valent to that suggested by (*R). Note that the set of sequences ic 1%, ac|U|,
which constitute a win for PRO is a Borel (in fact, Gs) set. This means we can
associate to each formula of L.z, in a PR fashion, an equivalent formula of
L.z, and former language can be regarded as a sublanguage of the latter in a
generalized sense.

Ly,r=L.gNHC was mentioned under the name L2 in [8], § 2. The langu-
ages L, v>w,, mentioned there are all sublanguages of L.p in the same sense
that L.p is.
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§ 2. Some Definability Theory

For any vocabulary R, let X(R) be the set of all R-structures with
universe w. KCX(R) is invariant if for all Y€ XR), A== B K implies Y<K.
We will be concerned with four classifications of invariant subsets of X (R).

2.1 Recursion Theory

Let X (R) be the product of one copy of 2¢" for each m-ary predicate in
R, one copy of w®” for each n-ary function symbol, and one copy of for each
constant. Any xS X (R) corresponds in an obvious way to an U,cX(R). E.g.
if R has just one binary predicate, x&29%® corresponds to the structure con-
sisting of universe « equipped with the binary relation whose characteristic
function x is. KCX (R) is called invariant if the corresponding subset of X (R)
is. This amounts to invariance under a natural action of the group w! of
permutations of » on X (R); see [32].

At least for finite R, we can classify subsets of X'(R) as =21 AL ari-
arithmetical, HYP, DI | L analytical, etc. according to their definability
by various types of formulas of second-order arithmetic. For the elements of
this theory see [27], ch. 14—16. If we allow parameters to appear in the defi-
nitions we obtain the boldface notions 22, etc. By tedious but routine coding,
these boldface notions can be applied even to infinite R. We call a subset of
EA) §12, etc., if the corresponding subset of X (R) is.

2.2 Topology

Give 2={0,1} and « the discrete topologies. Give each 2/, o’ the product
topology (making them homeomorphs of the Cantor and of the irrationals, res-
pectively). Give each X(R) the product topology. Finally give £ (R) the topology
that makes x— %, a homeomorphism. Then each of these spaces is Polish
(separable, admitting a complete metric). We may classify subsets as open, closed,
F,, Gs, Borel, analytic, co-analytic (CA), PCA, projective, etc. For the elements
of this theory see [19].

2.3 Set Theory

We assume familiarity with the Levy hierarchy of formulas of the language
of set theory. The appendix to [2] contains a useful summary of the needed mate-
rial. A class K'is 2,(V) (resp. Z,(V)) if it is definable over the universe V of set
theory by a X, formula without parameters (resp. with parameters). II,(V) is
defined similarly; and K is Aq(V) if both Z4(¥) and II.(V). The boldface notions
are defined similarly. K is Ap%, where T is a fragment of ZFC, if it is An(V)
by Xy and I, definitions whose equivalence is provable in 7. K is A7, if of form
{x:(t, x)EK'} where X' is A,7, and r is a parameter. We are most interested
in the cases T=KP (Kripke-Platek admissible set theory, with Infinity), ZFC™
(Zermelo-Frankel set theory with Choice and without Power Set), and ZFC.
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HC=H (¥,) is the set of hereditarily countable sets. KC HC is Zn,(HC) (resp.
Za(HQC)) if K is definable over HC by a X, formula without parameters (resp.
with parameters from HC). The II and A notions are similarly defined.
Familiarity with the primitive recursive (PR) set functions of [14] is also
assumed. These functions include all functions with reasonably simple inductive
definitions. They are all AXP. A class K is PR if its characteristic functicn is,
and is PR if of form {x:(#,x)EK’} for some PR K’ and some parameter ¢.

2.4 Model Theory

Let L* be a language. A class K of R-structures is an elementary class
for L*, in symbols EC(L¥), if Kis of form Mod (p)={A:A[=¢} for some
9EL*(R). K is a pseudo-elementary or projective class for L*, in symbols PC(L*),
if for some vocabulary S disjoint from R and some sentence ¢'EL*RUS)
such that K is the class of all R-reducts of models of ¢’. Equivalently, K is
PC(L*) if it is of form Mod (3S¢") for some existential second-order sen-
tence 3S ¢, o' €L*(RUS). By abuse of language, we call KCX(R) EC(L¥*)
or PC(L¥*) if it is the restriction of such a class to structures with universe o.

For the definition of language in the abstract see [2] or [3] (Where langu-
ages are respectively called systems of logics and logics). We call a language L*
first-order if:

(1) Sentencehood for L* is a notion PR, or PR in parameters from HC;
or the restriction of such a notion to some H(x).

(2) Satisfaction for L* is a notion A(V), or Ay(V) in parameters from
HC; or the restriction of such a notion to & some H (»).

These conditions correspond roughly to absoluteness as in [2] (where the
terminology first-order is given some intuitive justification). All the languages
of §1 are first-order, as is each L ,. We call a first-order language strong if:

(3) L* is closed under —, V, 3; under countable A, V ; under substitution
of formulas of L, for predicates; and the functions corresponding to these closure
conditions, e.g. the function ¢——¢, are PR, or PR in parameters from HC,
or the restriction of such functions to some H(x).

(4) The class of countable wellfounded structures is PC(L* NHC).

Much of (3) is included in the definition of language in [3] (though not in
[2]). These closure conditions guarantee that any PC(L*) class of R-structures
is of form Mod (3 S ¢') where S contains just a single binary predicate not in R.
{4) corresponds roughly to the notion not bounded below «; of [2]. The languages
of §1 are, but L, is not, strong.

2.5 Connections Among the Classifications

Addison [1] observed that for any of the spaces we have been considering,
the class of open sets and the class of 2 sets coincide, and similarly: 1] = closed,

3} =F,, =G, Al=Borel, Si=analytic, I} = C4, Sj=PCA.
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Ryll-Nardzewski, using Lopez-Escobar’s Interpolation Theorem for L,
showed that for invariant subsets of L (R), Borel= EC(L,,.). Also analytic=
PC(Ly,e). See [20].

Kleene [18] in effect showed that for subsets of any of the spaces we
have been considering Zh, =23, (HC). (Note that these spaces <L (R), X (R) are
PR in parameter R, and are subsets of HC.)

Lévy’s Teorem {(cf. Appendix to [2]) tells us that each H (x) is an elemen-
tary substructure of the universe ¥ with respect to Z; formulas. It follows that
for subsets of HC, 4~‘.‘.1(1‘IC)=§’-l (V) in parameters from HC.

Barwise [2] in effect shows that for cardinals x> and for invariant
classes of structures, PR in parameters from H (x)=AfP in parameters from
H (%) =EC(L,.). -

Jensen and Karp apparently knew that for subsets of the spaces we have
been considering, /}} =PR in parameters from HC.

Vaught’s work [32] discloses the following: For a fixed Polish space, let
2 (0)=Borel sets; 2 (a+1)=72(x) plus complements of sets in 2 (x) for «
odd; 2 (x+ 1)=sets obtainable from sets in 2 (x) by (4 for « even; U (A)=
= U{Z(®): «<<A} at limits; Y =7(w,). Where the fusion operation (4) given
sets A4, cEw>®, produces Urco®(Nnceo drjn. Classically the sets in ! are
known as C-sets, and it is known < (1)=analytic sets. Then for invariant
subsets of <L (R), C-sets=EC(L,,), and moreover there is a level-by-level
correspondence between the Zi-hierarchy and the complexity of sentences of
L,6, with analytic= EC (Vaught sentences), where the Vaught sentences are, as
in § 1.4, the simplest sentences of L, - L. Moreover Ryll-Nardzewski’s
equation Borel=EC (L) can be improved to establish a level-by-level corres-
pondence between the Borel hierarchy and the complexity of sentences of Ly, q.

We extended this work of Vaught’s to scme other hierarchies in [8], §2
and [6], ch. 4. The following has been noted with varying degrees of explicitness
by several people:

2.6 PROPOSITION. For any strong first-order language L*, for invariant subsets
of &L R), Z1(V) in parameters from HC=PC(L*NHC).

PROQF. That every PC(L*NHC) class is Zi(V) in parameters from HC is im-
mediate from the fact that satisfaction for L* is. To prove the converse fix a Z;
formula ¢ and a parameter 1< HC defining an invariant XC<L(R).

Let & be the binary predicate of the language of set theory. The class
of countable wellfounded & -structures is PC(L¥NHC). Say it is Mod (IS Y)
where $ESL*({&S}US)NHC. Define inductively for xEHC a characterizing
formula yx, of Lu,. by letting x,(») be:

AyexFUCVY, (W) A VUCSVV yexty (4).

2 36oprEK panosa
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Let F be a singulary functiqn symbol, and let T, a.t be constants. We assume
these symbols and & and the symbols in S are all distinct from the symbols
of R. Let T=RUSU{F, r, a, t}, and let o< L(T)NHC be the conjunction of:

(1) A large enough finite fragment of ZFC.
Q) %

G) %z (N~ %)

(4) a is an r-structure with universe o

ORIOR
(6) F is an injection ~ range F = universe of a.
Plus for each m-ary predicate RER:
(g Vv(xf(v) = Vv . Y RO..Vv)o (FE)... F)E
the a-interpretation of the symbol v))

and similarly for function symbols and constants. Here in (4), (6), (7), the de-
finitions of structure, universe, and interpretation are to be written out in terms
of & using the usual set-theoretic definitions.

If A=K, then by Lévy’s Reflection Principle there is a countable transi-
tive model M of enough of ZFC with t, A& M and M { (¢, %). Using such an
M it is easy to construct a &L (T) with Lt and &[R=9.

Conversely given &¢ with @|R=%, (1) and (2) guarantee that & is
up to isomorphism a transitive set. Then (3), (4), (5) guarantee that the inter-

pretation a* of g in € is an R-structure satisfying the definition of K. (We
use here the fact that a X, statement true inside some transitive set is actually

true in the universe V.) Finally (5), (6) guarantee that 2[:—‘—:58, so by invari-

ance of K, =K.

2.7 Summary
For any strong first-order language L*, and for invariant subsets of % (R),

we have:
(a) Al —Borel =PR in parameters from HC = EC (Lo,.),

(b) Xi =analytic = PC (Ly,.) = EC (Vaught sentences),
(6) Z3=PCA=3, (HC)=X,(V) in parameters from HC=PC(L*N\HC).

§3 A Question of Vaught

3.1 PROPOSITION. For any first-order language L* and for invariant subsets

of <L (R), we have:
EC(L*NHC)CAj= A, (HC)
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PROOF. We only give a sketch since our proof has appeared in [21]. The inclusion
and the identity are immediate from 2.7 (¢). We tacitly assume R is nontrivial,
i.e. contains at least one binary predicate E. We say ASX({E}) codes x&HC

if A=(TC(y), &) where TCY)={y}uyuuyuuy ... is the transitive
closure of y. An example to show the inclusion is proper is provided by

e R): JeSL* (RNHC (A}, EY) codes o AU |~ —9)}.

Vaught has asked whether for any invariant A; KC</ (R) there is some
first-order language L* for which K is EC (L*ﬂﬁC). We will show this ques-
tion cannot be answered in ZFC.

3.2 A Positive Answer

For any partially ordered set of forcing conditions (PO set) 2, let V7 be the
corresponding extension of the universe of set theory. (If you will, the Boolean-
-valued model associated with the complete Boolean algebra of regular open
subsets of /@) For 51mphcity let us assume R finite. Then we may define KC X (R)

to be absolutely Az if there exist T3 and II; formulas o, ¢ in a parameter t
from, say,w®, defining K, such that for any PO set /:

[6)) V2 =Vx (o @t X) (¢, X))

Here we are usihg elements ¢ of ¥V autonymously (writing ¢ rather than ¢Y).
We extend this notion in the obvious way to %L (R). Note that if K is inva-

riant, then so is the set defined by ¢ and ¢ in any V?, since
@ —3x, y A=W A )N Y, Y)

is a true I'Ié statement, and H{ statements are absolute by Shoenfield’s Theorem.
We show now how, given an invariant absolutely Aé KC% (R) to constrult a
first-order language L*C HC for which K is an EC. We begin by fixing defi-
nitions of the corresponding subset of X (R) satisfying (1) above. To further
simplify matters we suppose R contains just one binary predicate E.

For an arbitrary R-structure ¥, let /2 () be the PO set of the injective
elements of [¥|<®, partially ordered by reverse inclusion, i.e. the usual condi-
tions for adjoining a genmeric bijecticn between w and |%|. Let X (%) be the
following term of the forcing language for 2 ():

{(p, (m, m), D)): pPERE) Am, nSdom pA
((m, ) EEXNi=0)V ((m, ) CEXNi=1))}

i.e. the canonical term for an element x of X (R) with %, ==%. By (1) and (2)
we have:

A3) V2 = o (1, x ) > P2, ¥ (X))

2
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@ V2D zo @, 2 W) o HEXR) A=A ()
" SVYYEXR) U, = — o (1, )

Any permutation # of w induces an automorphism H, of @) and a
permutatlon i " of the terms of the forcing language. For any p,gE® )
there is an A such that p, H}(q) are compatible (weak homogeneity). For any
h, X )k is still a term for an isomorph of U. It follows by (4) there cannot
exist p, g=P () one of which forces ¢ (¢, ¥ (U)) and the other of which forces
its negation. Thus:

(5 Either V2™ —o (1, ) or else ¥Z |- —o(, @A)
Let K+ ={:V? D =o @, x Q).

K+ is invariant. For if =<9, there is an isomorphism /2 (&)= () such
that the induced map on terms carries X (Q) to x ().

K*NZ(R)=K. For if xEX®R) and U, €K, then ¢(¢, x) is true and
remains true in V7 ) by Shoenfield’s Theorem whence by (4) V7 Ay |=
I=e(t, & (), ie. A, &K+, Conversely, if A, EK, by (3) and (4) A EK™.

K+ is A, (V) in parameter 7. For ¢ is equivalent over all models to some
%, condition 0; and by the general theory of forcing there is a X, €’ such that
for all PO sets /2, all p&7p, and all terms 7, 17254 =0, 2) iff 0 (2, p, ¢ 0
holds. Since, 72 () and x (%) are PR functions of ¥, this implies K+ is Z, (V)
in parameter 7. Using ¢ in place of ¢ we get II, in place of X,.

Now let L* be a language with but a single sentence p— HC, and U|=p
iff A€ K+. L* is certainly first-order, and we can without difficulty fatten L*
up to a strong language witheut losing the first-order property. (Cf. [2].)
Finally, K is EC(L*).

The Solovay Absoluteness Theorem, {23], p. 152, implies that if Vx3IA A —
— (»),<@, then every A} set is absolutely Aj. Thus if enough large cardinals exist,
Vaught’s question has a positive answer. '

3.3 A Negative Answer

It is wellknown that any class K which is 2, (V) in parameters from HC
having w, &K contains a closed unbounded (CUE) subset of ,. It is also
wellknown that if F assigns to each countable ordinal « a wellordering of ®
in type o, and for i=2"(2n+1)Cw, D;={a: m precedes n in F(o)}, then
for some i, neither D; nor o, —D; contains a CUB set. Finally it is wellknown
that if o,’=0, then the function F may be taken to be X, (V) and hence
(since its domain is ORNHC) A ,(HC). On this assumption, for suitable i,
K={UcX({E}): A is a wellordering with order type &D;} is a subset of
L ({E}) which is invariant (in & ({E)})) and A,(HC) hence A}, but which can-
not be the restriction to %L ({E}) of any (fully) invariant class which is A, (V)
in parameters from HC. Thus if oF=w,, Vaught's question has a negative answer.
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§ 4 Approximation Theory

Let L*, L° be languages. By an approximation function for L*, L° we mean
a function @: ORXL*—L® which preserves vocabulary; is PR, or PR in
parameters from HC, or is the restriction of such a function to some H(x); and
which has the property that for any sentence ¢ of L* the following is valid:

S Amd /\aEORe(“, (P)-
4.1 LEMMA. There exists an approximation function for Le¢, Lug-

PROOF. The basic idea goes back to Moschovakis [25]; see also [31].

We define by induction of subformulas two preliminary functions 4, %:
ORXL,@¢=L, The easy clauses of the induction are:

A%, 2 9)=—1 A (%, 9) o (@ =9) =7 (¢ )
A AD)=V{A@ ¢):9E D}

A VO =V {A@ 90D}

F (@ AN®)=F (@ VO = A{F (% 9):9€ D}
ALY V)=V A9 A IV =TV A 9)
F (% Vo) =F (& Ive) =V v L (= ).

For ¢ given by (*G) of §1.4 the definition is more complex. Fixing « and ¢
for the moment we define auxiliary functions 4%, ,%* with domains OR x [<®,
OR respectively, by a subinduction:

A* (0, 6)= An<iengtho A (% P5)

A*B+1,0)= ViercA* B, o71)

A% (A 6)= Np<a A* B, 0) at limits

F*B)= Anco Aoctm Vv,.. Vny (A* B, 0) > A* B+ 1, ).
We then set:

A @, 9)=cA* (@, 0)

& (@ @) =F* () AncoNocin Vyy.. Vi T (¢, 90)-

Readers of [31] should then have no difficulty in verifying that the follo-
wing are valid:

(D) F (2 @) > S (B, ) for a<fp
(@) Vacor L (@ 9
(3) I (% @)~ (P> A (x, @) for all «
4@ 9 Vacor (F (@ @) A A (%, 9))
(5) 9> Aacor (S (@ §) > A (@, ).
So it suffices to set & (a, 9)=(F (@, ¢) = 4 (%, ¢)).
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4.2 APPROXIMATION THEOREM. Let L* be any first-order language. Then
there exists an approximation function for L*, L.

PROOF. By the Lemma it suffices to obtain an approximation function for
L*, Lo For simplicity we will consider only the vocabulary R = {E}, E a binary
predicate, and we will assume satisfaction for L* is 2;(V) (no parameters). On
these assumptions the approximation function will be PR.

From the X, definition of satisfaction we obtain a I} formula 8 defining
S={(x, »EXR): Fec L* R)NHC (y codes ¢ AU—¢)} and a X formula 6-
defining the set S~ obtained by replacing ¢ by —¢ in the definition of S. (Cf.
proof of Prop. 3.1.) The statement:

D 3% yO0 @A~ (x5 VAL =)
is I}, hence absolute.

From 0 we can obtain the index of a recursive functional F such that
(x, »Es iff:

(2) 3z F(x,y, z) is wellfounded.

By Shoenfield’s Theorem, the required z can be found in J(x, y), the class of
sets constructible from x, y. Hence (2) is equivalent to the existence of a<<w,
such that:

3) 3,&€J,(x,y) F(x,y,z) wellorders o in order type <o where J, is the
o' level of the constructible hierarchy. From (3) we can readily obtain a =i
formula ¢ such that the following holds:

4) Vx,p 2, 2 (U, is embeddable in Wy - (x, ¥, 2) =Y (x, y, z'))) and
for any x, y and for fixed « and z wellordering w in order type «, (3) is
equivalent to ¢ (x, y, z). Note that (4) is I}, hence absolute.

From this { we can compute the index of an RE set W such that ¢ (x, y, z)
is equivalent to:

) IwcweVnCo(x||n,y|n, z||n,w|\n)Ew

where x ||n denotes the restriction of x to (n+ 1) x (n+1) for xCX(R) (=2¢%9),

Now let ¢ be a sentence of L* (R), U an arbitrary R-structure. Let @ =2 (),
x=x @) be as in §3.2. Let 2 =2 (p) be the PO set of forcing conditions for
making TC(p) countable (i.e. for making ¢ HC), and let y=y(p) be the
canonical term for an element of X(R) coding ¢. Now if A|—¢q, then A, ¢
satisfy the X, definition of satisfaction for L* in V, and will continue to do
so in V?*2_ Hence in that extension x and y will satisfy the ¥, definition
0 of S. Conversely, if A= 19, x, y satisfy 6=~ in ¥?*2 and so by (1) do
not satisfy 6. So A|—=q iff V?*2|—0(x, y). By our detailed analysis of 0
above, this condition is equivalent to:

6 VP2 |=3a<e,I2EXR) U= (2, E)AY (X, 3, 2)-

rer ok ik
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For fixed « €OR, let R («) be the PO set of forcing conditions fer collap-
sing «, and let z(«) be the canonical term for an element of X (R) with
A, =~ («, €). We claim (6) is equivalent to the existence of x such that:

) yPRLXRON = (x, y, z(a)).

For if (7 holds for some «, then the T} statement 3z, is a wellordering
AV (x, ¥, 2) holds in V?*2*R@ and hence by Shoenfield’s Theorem in
v#*2 5o (6) holds. Conversely, suppose (6) holds and let B=card (@ x 2)*,
so B is still uncountable in V?*2  For any pep, g2, there will exist
p<p, g <q and a<PB such that (p’, ¢q’) forces Iz, ==2(a, S)AY (X, y, 2).
It follows (p’, ¢’, I) forces the same thing, where /, is the trivial element of
R(P). By (4),(p', ¢, Ip) forces Iz U, =B, €)AY (x, ¥, 2)), and since p, g were
arbitrary, (7) follows.
Now fixing « and R="2R («), z=2z(x), (7) is equivalent to:

(® yPx2xR _3 wEweYnCo(x|in, ylin, z||n, wljn)EW.

For p&/? with dom p=n, define £ (n, p) to be what p forces x||n to be. Thus

for i, j<n, (E(n,p)) (G, j) is 0if (p(i), p(/)EEY, and 1 if not. Let , { be simi-
larly defined. Then we claim (8) is equivalent to:

O  VpER4GC2, ry,ERIP, <Py §:<qp N<Ty AW, W, EG
YV D,<Pys §<qys 1, <P 3P3<D3s 3Gy, 131, I W, W3C ...
L YREm P, M, qy), S, (W W)EW.

We will omit the proof of this equivalence, since it is a special case of more
general theorems of [15]. Now (9) is equivalent to the following sentence
holding in A:

(10) Nioea ¥ Vg Vip—1 distinct Ay o A, c2
Viycod Vg« o - Vigrig—1 distinct Vg a0 Vri<re Voo, wicws -«
oo A Ve with & n(n, g,), S, 1)y (oo W) EW
(Atisnein=0 Vi EV; N Nijsn & 6n=1 TViEV))

where here distinct means not merely that v, ... are distinct from each other,
but also that they are distinct from v,...v,_;. Tedious but routine coding
(cf. Vaught’s remarks [32], § 3, on the closure of L, ¢ on passage to weak
second-order logic) produces a sentence 2 («, ¢) equivalent to (10) which belongs
to L,g, and is independent of . It suffices to set €(«, p)=—12 (a, —¢).

§ 5 The Anti-Beth Theorem

Beth’s Definabillity Theorem for a language L* asserts that for any voca-
bulary R and any binary predicate S and constants ¢, d not in R, that if ¢&
L*(Ry{S}) is such that any R-structure 9 has at most one expansion to a model
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of o, then there exists 0 SL*(Ru{c,d}) such that for any R-structure ¥, if U
has an expansion to a model of ¢, then (¥, {(a,5): (A, a, b) | 0}) is that expan-

sion. Replacing ‘‘at most one” by ‘‘exactly one” produces the weak version of
Beth’s Theorem.

5.1. ANTI-BETH THEOREM. Let L* be any strong first-order language. Then
even the weak version of Beth’s Theorem fails for L¥*N\HC.

PROOF. It may help to isolate first the descriptive-set-theoretic content of the
construction. Let X=2«%«, We think of subsets of X*, as n-ary relations on X,
writing Z(x;...xn) for (x;...xs)EZ. For x&X, iCw, define (x);EX by
G k)=x(1,2) Qk+1)).

Suppose we are given a family I' of subsets of and relations on X contai-
ning a TC X2 such that for all x:

(1) U, is wellfounded «» Iy T(x,y)
and satisfying:

@ TCA}

(3) All closed sets belong to T’

(4) I is closed under countable —

(5) T" is closed under taking inverse images under continuous functions
We show how, given an arbitrary A} set K, to construct a II}HET such that:

(6) Vx3ly H(x,¥)
() Vx,y (H(x,y) = (K (x) =y (0, 1)=0)).
To begin with, fix [I} sets P, Q such that:
(8) Vx(K(x) =>3yP(x,5) > =3 yQ(x,)).
Define a I~I} set A by:
() A%, ) (0, 0=0AP(x,(3)g)) v (¥ (0, 0) =1 Q(x, (3),))-
Note:
(10) Vx3y A(x, y).
Let B, be a II} set uniformizing 4, i.e. B,CA4 and
(11) Vx3!y B,(x, ).
By the standard analysis of I~I} sets there is a continuous Fj: X2— X such that:
(12) Vx, y(B,(x, y) = Ur, (x5 is wellfounded).
Define:
(13) C,(x,y, z,uy e z=F (x, ) ~ T (z, u).
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Note the graph of F, is closed so by (3), (4), C,&I'. Moreover by (1):
(14) Vx,y(B,(x, ) =3z, uCy(x,y, z, u)).

By (2) C, is z}i, so there exists a I}} set D,C X5 such that:
(15) Yx,p, 2z, u(C, (x, y, z, uy<>3Iv D, (x, y, z, v)).

Let B, be a Hj set uniformizing D, so:
(16) Vx3ly,z,u,v B, (x,y, z,u, V).

Reviewing the construction, it is clear the same y is involved in (11) and (16).

Now iterate the above steps, picking F,: X5 — X, C,CX7, D,C X8, etc.
In the end we define:

(17) E,(x, ») & B, (x, 0y - - - (Dans3)s

(18) G, (x, PN Cu(x (- - (y)3n+5)'

Since the maps y — ((»),...(»);) are continuous, the E, will be l}} and, by (5),
the G, will belong to I'. Finally, set:

(19) H(x,y) <> VnE,(x,)).

Reviewing the construction, and noting that (), (0, 0)=y (0, 1), we get (6), (7).
Moreover:

(20) Vx,y(H(x,) <> VnGy(x, 3),
which, with (4), implies H&T

Now to apply this construction to model theory. For nEw let R"=
{R,...R,} where the R; are binary predicates, and let S"=R*"U{@®, @}, where
@, ® are binary function symbols. Let L* be a strong first-order language.
By the definition of strong, cf. § 2.4, there is a sentence v< L* (R) N HC such
that the class of countable wellfounded R!-structures is Mod (3R, 7). Define
TCX? by:

QD Tx») oAy nl=m

and let I' be the smallest class containing T and closed under (3)—(5) above.
It is wellknown that for any Borel ZC X" there is a sentence { & L, (S") such
that for all x;...x,:

22) Z(x;. .. x) > WUixyooxy +5 x) =8

where +, x are the usual arithmetical operations on w. Now the closure condi-
tions required of I' correspond to the closure conditions satisfied by strong
languages: (3) corresponds to L, CL* (4) to closure of L* under countable
A, and (5) to closure under substetution of formulas for predicates. Exploiting
this correspondence, for every Z& ' we can find a € in L¥* N HC satisfying (22).
This, with 2.7 (c), implies (2).
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Let now a AJKCX be given, and suppose K is invariant. Let H be as
constructed above from K, and let nEL*(S)NHC correspond to H. Let
@& Lo, (S°) express that @, ® are up to isomorphism the usual arithmetical
operations on . Let ¢=(p, An)V (—9, AVu,v—1R, (u,v)). Then by (6) every
Si-structure U has a unique expansion to a model of ¢. Suppose 6 L* (S'U
U{c,d}) is as required by Beth’s Theorem. Using the closure properties of
L* we can obtain from 0 a ¢S L¥S)NHC expressing that 6 holds of the
identity element of @ and the identity element of ®. Then by (7):

(23) Vx (K)o WUy, +, x) =)
It is not hard to see no ¢ satisfying (23) can exist if K is the counterexample con-

structed in the proof of Prop. 3.1. This contraditiction shows Beth’s Theorem

fails. &

§ 6 Some Model Theory

We collect here what is known about first-order languages from §§1-5,
from Barwise’ work [2], and elsewhere.

6.1 DOWNWARD LOWENHEIM-SKOLEM THEOREM. Let L* be a first-
-order language, » an infinite cardinal, cpEL*ﬂH(x*) A a model of 9, Z a
subset of || with card Z<x. Then there is a substructure LCU with ZC| 8|,
card [8]|=x%, and Q- o.

PROOF. This is Prop. 2.1 of [2]. For the languages of § 1, a direct proof using
Skolem functions is possible.

If L¥ is a language and U, & are structures of the same vocabulary, we
say A and & are L*-elementarily equivalent, in symbols ¥=*L, if they are
models of exactly the same sentences of L* We say U~ if there exists a
family _%° of partial isomorphisms between U and & with the back-and-forth
property (VfE FVac|UA|FbE|8| fU{a, )}EF and vice versa).

6.2 KARP PROPERTY. Let L* be a first-order language. Then for all struc-
tures U, &, A=*Q iff A~L.

PROOF. For =, this is due to Karp. For the general case it is Prop. 2.5
of [2]. The equivalence of =* and ==, is greatly strengthened by the Approxi-
mation Theorem 4.2.

We say a sentence ¢ in vocabulary R is compact if for any vocabulary S
disjoint from R, where we here allow, contrary to our convention everywhere
else in this paper, uncountable S, and for any theory TC L, (RUS), if ¢ is
consistent with every finite subtheory of T, then ¢ is consistent with T.

6.3 GOLD PROPERTY. Let L* be a first-order language, and ¢ a sentence

of L* such that both ¢ and —¢ are compact. Then ¢ is equivalent to a sen-
tence of L, in the same vocabulary.

PROOF. Gold [12] proves this for L, but examining her proof one sees it only
uses the Karp Property. —
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6.4 UPWARD LOWENHEIM-SKOLEM THEOREMS

(a) Let L* be a strong first-order language such that the class of all wellfounded
structures is PC(L* C HC). Then for invariant classes of structures 2{(¥) in para-

meters from HC=PC(L* M HC).

(b) Let L*, L¥ be languages satisfying the hypothesis of part (a). Then
L*MHC, L¥NHC have the same Hanf number,

(c) Let v be the common value of the Hanf numbers in part (b), then:

e e (@); ] <n<pr e ()5 ]

provide these large cardinals exist.
(d) Let L* be any first-order language. Then the Hanf number of L*NHC

is less than pifx—>(w)s °] if it exists.

PROOF. (a) By invariant we here mean fully invariant (not just invariant in & (R)).
(a) is then proved just like Prop. 2.6, but we need the stronger hypothesis. Of the
languages in § 1, L,g, for example, satisfies this hypothesis, while Scuslin logic
does not.

(b) is immediate since the Hanf number depends only on the PCs.

(¢) These bound were computed by Silver for the language of purely universal
sentences of L ,. Technically this language is not strong, but it is close enough
for the arguments for parts (a) and (b) to go through. These bounds apply, for
example, to L, g, but not to Souslin logic. For the Hanf number of the latter,
see [91, [73, [11].

(d) is now immediate since any first-order language can be fattend up to
a strong one. (d) is Prop. 2.4 of [2], and our 2.6 and 3.4 are more explicit for-
mulations of things implicit in Barwise’ proof. —

Craig’s Interpolation Theorem for a language L* states that disjoint PC(L¥)
classes (in a given fixed vocabulary) can be separated by an EC(L*). This is equi-
valent to the conjuction of the A-Interpolation Theorem, which states that disjoint
PC(L*) classes can be separated by a class which is simultaneously PC(L*) and
co-PC(L*), with the Souslin-Kleene Theorem, which states that any class both
PC(L*) and co-PC(L*) is EC(L¥). Ciaig’s Theorem implies Beth’s, and the
Souslin-Kleene Theorem implies the weak version of Beth’s Theorem.

6.5 ANTI-CRAIG THOREM. Let L* be a first-order language containing La,e.
Then Craig’s Theorem fails for L*.

PROOF. In Prop. 2.11 of [2] Barwise derives this from Malitz’ counterexample
to Craig’s Theorem for L., which depends on the facts that (w0, &) and (0, &)
can be characterized up to isomorphism in Le,., and that any two structures
for the empty vocabulary (vocabulary with no nonlogical symbols, just the logical
predicate =) ¥ and & satisfy A~L.

AC HC is complete IJI(HC) if 4 is II;(HC) and for any II; (HC) B there
exist a PR function F and a parameter + & HC such that B={x: F(r,x)S 4}.
No such set can be Zj(HC) or Xy (V) in parameters from HC.

6.6 INCOMPLETENESS THEOREM. Let L* be a strong first-order language.
Then the set of logically valid sentences of L* M HC is complete Il (HC).
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PROOF. Barwise, Prop. 2.15 of [2], shows this set is not Z;(HC). An obvious
simplification of his proof shows it is indeed complete Il; (HC). Given any com-
plete proof procedure for L¥* N HC, the set of valid sentences is {p : 3P (P is a
proof of ¢)}. Thus 6.6 says there can be no such proof procedure in which proofs
are countable objects and being a proof is a property A; in parameters from HC.

Let a first-order language L* be given. We introduce a proof procedure
for L*(HC by adjoining then the proof procedure for L, given in [1] the fol-
lowing rule of inference with ¥; premisses:

If =% (x, @) for all a<w,, then o,
where % is as in the Approximation Theorem 4.2.

6.7 COMPLETENESS THEOREM. Let L* be a first-order language. The above
proof procedure for L*MHC is sound and complete.

PROOF. @& L* is not valid if 3N Fa—A-F («, ¢). This is a %, statement, and
if € HC, it is true iff it is true in HC, i.e. the ordinal « may be taken <w,
and the model U may be taken countable. Soundness and completeness are now
immediate from the soundness and completeness of the proof procedure in [17].

6.7 shows validity for L¥* NWHC is X; in parameters from HC plus the

parameter ;. For particular languages from §1 similar proof procedures have
been obtained by Moschovakis (unpublished) and Green [10]. —

In the next four results R, S, T are disjoint nontrivial vocabularies,

6.8 DECOMPOSITION THEOREM. Let L* be a first-order language, ¢&
EL*(RUS)NHC. Then there exist ¢, & Lo, (R), ®<<w;, such that the followingis
valid over countable structures:

350 Voo, P

6.9 NUMBER OF MODELS. Let L* be a first-order language. & L*(RUS)N
N HC. Then up to isomorphism the number of countable models of IS¢ is

either <N, or else exactly 2%,

6.10 REDUCTION THEOREM. Let L* be a strong firstorder language. Then
for every @, EL*RUS)NHC there exist ¢, §,EL¥*RUS)NHC such that the
following are valid over countable models:

(@S~ 3SPAASY,—>3ISY)
IS (VYY) = IS (Vi)
@S9 AIS )

6.11 UNIFORMIZATION THEOREM. Assume every real is constructible. Let L*
be a strong first-order language. Then for every ¢S L*(RUSUT)NHC there
exists ¢S L*(RUSUT)NHC such that the following are valid over conuntable

structures:
3T¢—3Te

3S3ITe—> 31SITY.
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PROOF. 6.8—6.10 are the model-theoretic translations of results about invariant
T} sets in [31]. 6.9 is of course immediate from 6.8 and a theorem of Morley

on the number of countable models of a sentence of L. 6.11 is similarly the model-
theoretic translation of an invariant uniformization theorem (see [26], or [8] §1).
An (unpublished) example of Silver shows the restriction to countable models
cannot be lifted in 6.10. Myers [26] shows 6.11 cannot be proved in ZFC alone.
Cf. also [30] for related observations.

6.12 THEOREM. Let L* be a strong first-order language. Then the following
fail for L*NHC:

(a) Craig’s Interpolation Theorem
(b) The Souslin-Kleene Theorem
(c) The A-Interpolation Theorem

' (d) Beth’s Definability Theorem
(e) Weak Beth’s Theorem

PROOF. For (c) this is the model-theoretic translation of the fact that there exist
disjoint invariant ?é sets which cannot be separated by a A} set. See [2],
Prop. 2.13. (e) is Thm. 5.1, and this implies the rest.

One large problem in the model theory of strong first-order languages remains
open, which does not lend itself to abstract, descriptive-set-theoretic statement:
Can we prove for, say, L., that any sentence preserved under substructure
(resp. homomorphic image) is equivalent to a universal (resp. positive) sentence?
Harnik [13] has proved preservation theorems for L, for some symmetric re-
lations (L,-elementary equivalence, the p-isomorphism of Scott, isomorphism
of ditect squares, etc.); his results (by the proofs of [13] or by alternative proofs
due to Miller) extend to some of the other languages of § 1.
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