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Abstract: Sensitivity analysis deals with the problem of finding an optimum solution of
a given problem on a network if some input data are not known or can be changed.
Such problems arise for example by laying out a network, by dropping out some
network elements, by changing the resources of the economical situation ete. We
present some of our results on sensitivity analysis of network flow and network
connectivity problems like maximum flows, shortest paths, minimum spanning trees
and most vital links and nodes.

Keywords: Network design, parametric analysis, k most vital elements, complexity.

1. INTRODUCTION

In the real world network problems some of input data are not fixed or not well
known. One can look for the optimum solution but how to find it among all feasible
solutions if their set is unknown because of uncertainty or missing information. If we
know the boundaries of changing of some parameters and if we allow the parameters
to vary between them it will be a class of problems of certain type and obviously the
desired optimum solution will also vary in dependence of all input data changes. Of
course one can say why to find an optimum solution if there are some uncertainties or
if there is not enough information, why not to obtain information first and then to
solve the well known problem? The reason is that if we know in advance what the
optimum solution will be for some input data we will know the consequences and if
they are not satisfactory we can avoid the situation choosing another input data. For
instance, why to lay out the traffic system in a city first and after seeing that it is not
good enough to reconstruct it instead of calculating first its capacity per time unit in
dependence of all link widths and choosing them large enough (but not too large
because of expenses) in order to obtain the desired properties of the network.
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On the other hand topological changes are also possible. What will happen if some
links or nodes of the network are damaged or switched off? Which & links (or nodes) of
the network to switch off in order to reduce the network properties we are interested
in to the necessary level? Or just the opposite: how to design the network so that the
removal of a certain number of its elements causes minimum destruction of the
network in the worst case?

Sensitivity analysis of networks deals with such a kind of questions. We start
with some notations and definitions. Let G = (V, A) be a connected directed graph with
aset of nodes V={V,,..,V, } and asetof arcs A = {A,,...,A, }. Each arc A, can be
presented as (V;, V)) or s:mply (i,7). We exclude parallel arcs and loops without loss of
generality. We assume depending on the considered problem, some arc weights like
capacity, length etc. Sometimes we shall denote the arc A, also by A;. For each
problem we give one Pascal-like algorithm for solving it. For paper length reasons, we
give up illustrative examples and figures.

2. THE MAXIMUM FLOW PROBLEM IN
NETWORK WITH GAINS (P1)

Let us assume two special nodes V, and V, called start node and target node,
respectively, and three arc weights ¢, d and g; for each arc A;. A flow in a
parametric capacity bounded netwurk mth gains is a vector x with coordinates
corresponding to the arcs, such that

0 for i=s,t

zxij_ Zgh-xﬂ = U,(I) for i=s (1)
(i, j)eA (k,)eA -y, (x) for i=j
0<x;<c;+Ad; for all arcs (i, ), (2)

where A a real number is varying in a parameter set A (let us assume without loss of
generality A = [0, 2 ]). v (x) and v,(x) are called start flow value and target flow value,
respectively. The problem we are interested in is to find a flow with 8 maximum target
value v,(x) and since there are maybe many flows with this property among all of them
to find one with a minimum start value v,(x). Such a flow is called sometimes
t-maximal and s-optimal. The motivation for this formulation is, for example, the
currency problem: each node presents one currency, E;j is the rate from V; to V : which
is the minimum amount of the start currency, V, and how to exchange lt in urder to
maximize the amount v,(x) of the desired target currency V,?

The mathematical formulation of the problem is:
lexmax { (v,(x), -v,(x)) | (1) and (2) for all A from A }, (P1)

where lexmax means that a lexicographical maximum (v,(x) is more important than
—u,(x)).
Let C be a cycle in G with a fixed direction. We denote by C* and C- the sets of

arcs from C with positive and negative direction respectively. Let x be a feasible flow
for a fixed A. C is called x, {-generating (x, s—-generating) cycle, if (i), (ii) and (iii) hold:
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() gex= [lei/ [leg>1,
G NeC* (i jeC
(11) ((1,)) € C'“::xu-t:cﬁ+ldljjntti,j}EC*=xﬁ:-0},
(iii) there exists a flow augmenting path from some node of C to V, (to V).

THEOREM 1. x is an optimum solution of (P1) for some fixed 1 if and only if there exists
a V, and V, separating cut (X, Y) such that 1) and 2) hold:

1) (GeX, Y=x,=c,+ Ad)n(,)) eY, D) =x,;=0),

2) there is no x, {-generating cycles in Y and no x, s-generating cycles in X,

This theorem summarizes Theorems 1 and 2 from [5].

Let x be an optimum solution of (P1) for any fixed Aq and let M be a sufficiently
large number. We define for each are (1, 7)

0 ifx"=0
A= v
) 1-M if:ﬂ:-ﬂ (3)
[ = 0
O i ks o A @
¥ LM if x; <c;+A9d;

We define the analogous of restriction (2)

Aljsx;sAc)  foreacharc (i,j) (2)
To find an optimum solution of (P1) for 2 > 4, we investigate the derived problem
min {v,(Ax) | (1), (2), Axis t-maximal }, (dP)

which is for a well known type (no parameter 1) and can be solved for instance using
the results from [5].

Assuming a feasible flow Ax° of (dP) for a fixed 4; we partition the set of arcs A
into four disjunct subsets E; - E4 as follows:

El:={G NIAx)20,8x) >d;}, E2:={G,)Ax)<0,Ax)<d;)
E3:=((i, )|Ax)<0,Ax)>d;}, Ed:={(G)|Ax20,Ax5<dy)

THEOREM 2. [7] Let x, be an optimal solution of (P1) for any fixed 4; and Ax° an
optimal solution of {dP] Then x°+ ALAx° is an upnmal solution of (P1) for all AZ

from the interval [0, A A], where

R '&n}?s (%,{Q*{l"m

QY G, ):=cy + Aody ~x3)/ Ax —dyy) (6)
(M

(5)

@G, ):=—x) | Ax]
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Q0 /):=min( Q) ), @G, 1)) (8)
This theorem proves the following algorithm for solving (P1).

ALGORITHM (A1)
Put 49:=0; k:=1; Nofeasible := false;
repeat
x? — solution of (P1) for fixed A = A3
if (there is not feasible solution of (dP) for 4,) then
begin Nofeasible := true; 4,:= 4. end

else

begin
denote by Ax? a feasible solution of (dP);
compute A A according to (5) - (8);
o :=xP+AAAXY; k:=k+1;
Ag:i=min( 1, 1,+AA)

end

until 1, = 1.

This algorithm partitions [0, 4 ] into subintervals and finds for the k-th of them
an optimum solution x* of (P1). The optimum target flow value function v,(x),
k=1,2,.. is obviously convex and piece-wise linear in dependence on A. If at any
iteration the logical variable Nofeasible becomes true it means that the restrictions (1)
and (2') are in contradiction on the rest of the interval.

In [11] we have applied this approach in the case if some target nodes with
stochastic demands are given. Assuming that the i-th demand node V; has a known
probability p/ to demand j units we add a new artificial demand node V, and the arc
(,t). Then the following condition (9) will be a measure of the satisfaction of all
stochastic demands:

Y. X (xi—)°p > min (9)
(i,)eA j

and the problem is
min { vg(x) | (1), (2), (9) }.
The algorithm for solving it is based on the results from [1] and [11].

2. SHORTEST PATH PROBLEM (P2)

Sometimes it is necessary to use the shortest path problem as a subroutine in
order to solve another one. If it is a parametric network problem then thé question
arises how to find the shortest path between a special node called start point (V, or V,)
and all other nodes reachable from it.
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Now we assume that for each arc A, = (i, j) the arc length [, (1) = [, (2) is known
for all A from A, where the functions /(1) are continuous and non negative.

It is easy to adapt the Dijkstra's algorithm for finding the shortest routine
between two vertices for this case. We also assign two labels (L (1), S;) to each vertex
V.: L,(4) is the temporal length of the "best" path from V, to V; for the current iteration
and S, is the number of the last arc of this path. When this label becomes final we
denote it by (L;"(4), §,).

ALGORITHM (A2)
Put Ll'[z‘l] := 0 forall 4; Sl' :=m+l; k:=0;
repeat (*untilA = @ *)
k:=hk+1;
pick any 4, such that for small £> 0 either 4;+ & or A;-¢ belongs to A;
(* if both put first A;:=4,+¢); i:=1;
put L,(2) := 0 and 6} i=m+1 forallj =2, 3,...,n and break := false;
repeat (* until break *)
A=A
for each arc A, = (z,7) with temporal label S; investigate :
if L, (4g) + ¢,(2g) < L;(4;) then

begin
denote by A, the solution set of the inequality
*) L (2) + ¢, (D) < L(2);
put L,(2) := L(A) + ¢, (A); §;:=k; Ap:= A0y
end;
if all nodes are finally labelled then break := true else
begin

find a node V, with the smallest temporal label L (1)
and denote by A, the solution set of

(**) L,(3) < L3
hi .= hi ™ ﬁu'

if S, =m+1 then break := true
(‘sume nodes are not reachable from the start point *)

elsebegmlabelv ﬁnalhyL *(4) and S ;1.-—p end
end
until break;
A:=A\A,
until A =9,
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REMARK. If in (**) the equality holds for some indices take that p for which the
solution set is "largest” in order to make the iterative procedure faster.

THEOREM 3. The algorithm (A2) solves the problem (P2) for all parameter values in a
finite number of steps.

PROOF. At each iteration of the first repeat loop the algorithm finds a tree with a root
in the start point containing one path to each reachable node which is the shortest one
for all 2 from A, (Dijkstra's algorithm for a fixed ). Since A, is the solution set of the
system (*) and (**) this tree will not appear any more at any further iteration. The
finiteness of (A2) follows from the finiteness of the number of trees in the graph with

this property.

3. OPTIMUM SPANNING TREE RELATED PROBLEMS (P3)

We begin this section with an example. Given are four points in the plane with
their coordinates as follows: P,(0, -1), P,;(2, -1), P4(1, 1) and P,(2, 2). Find a point Py
on the straight line connecting the points (0, 0) and (2, 0) and link it with all other
points so that the total Euclidean length of the line be minimal. The line can fork only
in the points P, — P .

If we link each two points we can find the lengths of the edges in the complete
graph, i.e. the distance between P, and P, is 2, between P, and P is 52 but since the
coordinates of P are (4, 0) for A from [0, 2] the distance between P, and P, will be
(22+1)2, In this way we obtain the problem for finding a minimum spanning tree
(MST) in a graph with edge lengths depending on a parameter.

We consider an undirected connected graph G = [V, A] with edge weights ¢, (1) as
continuous functions of A from A for all £ =1,... ,m. Let A = (-0, ®) without loss of
generality. The problem is to find for each A a minimum spanning tree G* = [V*, A"] of
G. We call it (P3). This problem is related to some other connectivity problems. Let V'
be a given node subset. If the desired minimum subgraph of G has to contain V' and if
each path in G can fork only in nodes from V', we have the so called modified minimum
spanning tree problem. We get (P3) from this problem formulation if we put V' = V. If
each path in G* can fork everywhere we obtain the Steiner tree problem in a graph
with basic nodes V' and Steiner points set the rest of the nodes. If | V'| = 2 we have the
shortest path problem discussed in the previous section as (P2).

Let us consider first the linear case for ¢, (1), ie. let
() = a ) + b, for each edge A,, k=1,...m. (10)

We order the edges like A, A, ,.,A, so that for each j=1,2,..,m-1 the
following relation will be fulfilled ' <

(ﬂkJ }akj¢|) v (ﬂ*j =akj+l N bkj S bkl+1). (11)
It follows from (10) and (11) that
cil(J.) < cki(.l) <..s¢, () (12)

for all A from (—oo, A4 for any A, holds.
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LEMMA 1. Let £ be an integer with 1 <k <m and A, ufrom A, such that
() scy(A)s...sed) ¢, (D) =... <

<C; s S€ (D S s R) (13)

and
) secs..sclp<c;,(W<..x
1

< cj*(‘u} SCpi S5, ()

where j,,j,, ... j}, is a permutation of i+1,i+2, ... i+k. Let us denote by G," and G,"
the minimum spanning trees of G founded by the greedy algorithm of Kruskal for the
edge weights (13) and (14) respectively. Then for all p with 0 <p<i+l or
i+k <p <m+1 the edge A, belongs (or does not belong) to both spanning trees O
and G,".

PROOF. Let us note how the algorithm of Kruskal runs: it orders first the edges
according to their weights like (12) or (13) and starting from the edge with the
smallest weight (in this case A,) it adds it to G if and only if G* will be an acyclic
subgraph of G. In this way G" is a forest growing iteratively and the algorithm stops if
G" becomes a tree. If we stop the algorithm earlier i.e. after checking the first i+k
edges in (13) or (14) we shall obtain two spanning forests G," and G, with p
components of connectivity (trees) and n - p edges. Let us assume that A_is the first
edge in (13) or (14) with r > i+k such that A_belongs to G, but not to G,". If we now
drop all edges in (13) and (14) after A_then G," will obtain n —p + 1 edges but G," one
less — n—p, which is a contradiction since G," and G," are spanning forests of the
graph [V, {A,, ..., A, } ] and they should have the same number of links.

(14)

Using Lemma 1 we can make the procedure given below much faster.

ALGORITHM (A3)
Order ¢,(2) according to (11) and (12);
i:=1; 4= —om; A':= —o; denote by G," the MST for fixed 4 near 4,;
repeat (* until " = = *)
solve the system (12) for . > 4' and denote the solution by [1', 2"];
if (1" < o) and c*j[.il."] = ciﬂl{}l"} = ck_;,,('{"} = .= ckﬁ’(i") < ckﬁ'“(l"]
then
begin .
invert the places nfckm, Ch,p0 = k., in (12) like
W b T Sl " b
A, :=A"; drop A*,u'A*m' ,A,,m fromA,, , ;
for l:=j+ p downto j+1do
(VA W {A*l} )is eycleless then A, , " := A, ,"U {A,,I};
ifA;,,"#A, then
begin denote [V,A,,,"1by G, i:=i+1; 4;:= A" end;
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.J-l := ,J._"
end
else put 4, , := @

until A" = o,

THEOREM 4. Let G, ,G,,...,G.~ be the set of subgraphs constructed by (A3) and
[y, A5), .- \[4,, A, ] the founded intervals. Then for each A from (4,, 4, ,,] G,;"is a MST
of G,where 2, =-wandi_, , = .

ProOF. Obviously G," is a MST for all 2 from [4,, 4,], since the order of the edge
weights in (12) is the same at least for the left part of the interval. For the rest of it
the edge order in (12) can be changed but no other MST has been found. According to
the Lemma 1 G;” and G, ," do not differ for the first i edges and for the last m—i-p
edges so that the next MST G;,," is correctly found using G;” and the edges which
differ in the order for G," and G ,".

The finiteness of the interval number r follows from the finiteness of the cross
points of the graphs of the functions ¢,(1), k =1,... ,m. The procedure starts with
putting 4, := - and stops when A__ , = =, it means the intervals cover (-, x).

In the case if ¢, (1) are continuous but not linear functions some changes in (A3)
have to be made. We have to start with some 4, and G," but the solution set A, of (12)
cannot be an interval. Then we put A := A\A,, pick any 4, from A and find the next
MST G," and continue the procedure until A = @.

For the example we started this section with we can do the following: let us
denote the edges like A, =[P, P,), A,=[P,,P,), A;=[P;,P,], A =[P, Py,
Ag =[P, F5l, Ag=[Py, Pgl, A; =[P, P;] and Ag= [Py, Pc]. The edges lengths are
=2, =3, cy = 212, Cy = 512 Cs = 24112 Cg = ((1-2)% + 1)12,
¢; = ((A-2)* + 4)"2 and ¢g = ((A-1)? + 1)}2 which is the nonlinear case for A = [0, 2].

At the first iteration we find G," = [V,A,"] with A" = {A;, A5, A4, A, } for all 2
from [0, 2-312),

The second iteration gives an optimum solution with A, = { A, Ay, A, A, ) for all
A from [2-3Y2, 312] and the third iteration — a solution with As* = {Ag, A, Ay A, | for
the rest part of the interval,

If we compare the total weights of G,", G, and G,;" we will find the minimum of
the objective function for A = 1, which means that the optimum for P is in the middle
of the interval and to link P, with P,, P, and P; and P, with P,.

4. MOST VITAL ARCS AND NODES (P4)

In this section we shall consider the possible changes not only in the input data
but in the graph topology as well. For example which will be the consequences in
connection with the maximum flow in a capacity constrained network if k of its arcs
have to be removed? Or, which are those k& arcs in the network whose removal
minimizes the value of the maximum flow? These arcs are called k& most vital (or
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foremost) arcs of the network. Such a problem is solved in [9]. In [2] we have solved
the problem for a directed graph if the arc capacities depend linearly on a parameter.
In [8] we have solved a similar problem if the graph is planar and not directed and if we
are interested in two network properties: flow value and reliability of the network. In
[3] and [4] we solve a similar problem when & nodes and their adjacent arcs have to be
dropped.

In this section we consider again the case of a planar graph but a directed one
with two arc weights — capacity and reliability (both depending on a parameter). The
question is to find £ arcs in dependence on the parameter the removal of which leads
to minimization of the maximum flow value and to minimization of the probability of
existence of at least one path between start and target node. The optimization is in a
lexicographical sense and the first criterion has more importance. If we change the
sign of the second criterion, the interpretation will be the following: we want to reduce
the capacity of the network and for this purpose to determine the minimum number k
of the arcs to be switched off in order to reduce the maximum flow value to the desired
level so that the reduced network is maximally reliable.

Let G = (V, A) be a directed connected planar graph with nonnegative arc weights
¢,(2) and r(4), A from A, k = 1, ... ,n. We denote the start node and target node by V,
and V,, respectively. The flow in G is defined, as in the first section, as a vector
x = (x4, ... x,.) which satisfies the flow preservation conditions

0 fori=s,t
D xi= ) xpp={ vlx) for i=s (15)
(i, j)eA (kjilcA wix) fori=j

and the flow arc restrictions
0<x;, <c,(A), g1 m (16)
We denote by CS(A) the set of all cuts in G = (V, A) of type (X, Y) which separate
start and target node, i.e.
X, Y):= { i, )| (V; from X and V; from Y) or (V; from Yand V, from X) },

so that the start node belongs to X and target node to Y. If B = (X, Y) we denote by B*
the set of arcs from B starting from X and by B~ the arc subset of B starting from Y.
We define the capacity of B as

c(B) := £ {e, (1) |Ay from B" }
and the reliability of B as
r(B) := max { r (1) | A}, from B* }.
The maximum flow problem is defined as max { v(x) | (15), (16) } and it is well-
known as a max-flow min-cut theorem, that is

max { v(x) | (15), (16) } = min { ¢(B) | B from CS(A) }.

If B and B' are two cuts in G we call B lexicographically smaller than B if
¢(B) <¢(B') or ¢(B) =c¢(B') but r(B)<r(B) holds.
Let now k be an integer with 0 < k < m. We denote by & an arbitrary arc subset
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of (7 containing exactly & arcs, The problem estimated in this section is
lexmin { (c¢(B), r(B)) | B from CS(A\g), for all & }, (P4)

ie. to find the arc set g of those k arcs in G, the elimination of which reduces the
network to minimum capacity network and after that to minimum reliability of the
minimum cut. The arcs from g, are called & bicriterial most vital in the parametrnic
network. Of course the solution set g, will depend on the parameter 4.

Without loss of generality we assume that (7 does not contain nodes with valency
2. Since the graph is planar, let us draw it in the plane and let us also assume that
start and target nodes belong to the border of the not bounded facet of G. Now we can
add one artificial arc (V,, V) to G and construct the dual graph GD = (VD, AD) with
start point s and target point ¢ belonging to the neighbour facets with a common
border arc which is the artificial one. We do not link s with £. Since there is (1, 1)-
correspondence between both arc sets A and AD and between the cut set CS(A) of G
and the set of all chains from s to t in GD now we shall be interested in its elements
We denote it by PS(AD) (Path Set).

Let B be from PS(AD) (ie. a chain linking s with ¢) and let B correspond to
B = (X, Y) from CS(A). We define the direction of each edge from B as a forward edge
and on this way the subset B* of forward edges of B as follows: [i, j] from B (and hence
from GD) belongs to B* exactly if its corresponding arc from G belongs to B*. The rest
of the edges from B have the opposite direction by definition. They define the subset
B~ of backward edges of B. Since GD is a connected graph each edge [i, /] belongs to at
least one chain from PS(AD). In this way it becomes directed and will be called arc
(£,J). Hence GD becomes a directed graph.

LEMMA 2. The direction of each arc in the dual graph GD does not depend on the chain
that has been used.

PROOF. Let [i, /] be an arbitrary edge from the dual graph. The question is how to
direct it. We assume that [i, j] corresponds to the arc A, from G. For an arbitrary cut
(X, Y) in G for which A, starts from X [i, j] will be directed as (i, ), it means it will be a
furwardnrcmthechmn of GD (starting from s to ¢ we shall pass first V, and then V).
If we pick any cut (X, Y) for which A, is a backward arc, (i,/) will be a backward arc n
the corresponding chain in GD, i.e. ata.rtmg from s to t we shall pass first V, and after
that V. It means that the direction is also from i to .

It follows that the dual graph GD is a correctly defined planar directed one.
Instead of investigating (P4) in G we can reformulate it in GD.

If B is from PS(AD) and B is the corresponding cut from CS(A) we define the
length of the chain and its reliability as
¢(B) := ¢(B) and r(B) := r(B), respectively,
it means we take only the forward arcs in B.
The reformulation of (P4) is
lexmin { (c(B), r(B)) | B from PS(AD\¢,) forall 1 }. (P4")
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Let us partition AD as AD = E, +E, + ... + E, and let A" be a subset of A with the

property
(e,e'fromE; = r(e) =r(e')) and (efromE, e'fromE, _, = rie) <rie’))

for all A from A°. Let denote by E* =E +..+E; for i1=1,2,., p-1. Let £7 with
| £7| = k be an arc subset of AD, such that if we reduce the arc lengths of £ to zero
the network (VD, E9u £9) will have minimum length of the shortest chain from s to ¢.
We denote also the set of all shortest chains by SPS(g.9) and for B9 from SPS(£9) let

B := B9\ g9
LEMMA 3. Let B,9 be from SPS(g,9) and B*‘i'" be from SPS[E**"'} with
c(BP) =c(BP) = ... = c(B9) < c(B37).
Then &9 is a solution of (P4') for all A from A",
PROOF. For each fixed A from A" it follows from Lemma 1 in [8].

Now we can formulate the algorithm for solving (P4') (and hence (P4)). The arcs
of GD will be denoted as in G like A,, ... A . To each node we assign a label L(;, K, 1)
which we call temporal. At some iteration it will be labelled finally with L°(1, k, 1),
which is the length of the shortest chain from V, to V; for a fixed 4 if the lengths of no

more than k ares can be reduced to zero.

ALGORITHM (A4)
repeat (*untilA =3 *)
denote by A" a subset of A and the partition E,,.. ,EP as in Lemma 3;
A:= A\AS;
repeat (*untilA"= 2 *)
pick any 4, from A"; put A':= A":= A"
L'(s,K,2):=0 and L@, K, ) := o forall V, 25, K = 1, ... k and all 4;
2(2) := oo for all 1; break = false; q = p;
repeat (* until break *)
for K:=0tokdo
begin
| 1= §;
for each arc A, = (i, ) or (j, i) with temporal label L{, K, 2) do
begin
if Ay, = (i,7) then
if L(,K, 2 > L, K, 2,) +c, (1)
and A, belongs to EY then
begin
LG,K,A) :=L"(i,K,2) + ci(4) for all A from the

solution set of the inequality
LG,K,2) > LG, K, 2) + ¢, (2);
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Sy, K) :=1
end
else
ifK>1andL{, K, 4;) > L°(i, K-1, Ay) and
A, belongs to EP then
begin
L(, K, %) := L (i, K-1, 2) for all A from the
solution set A" of the inequality
L(G,K,2) > L"(i, K-1, 2);
S(,K):=-i
end
else (*A, = (,)*)
if L(j, K, A5) > L'(i, K, A) then
begin
L{, K, 2) := L'(i, K, A) for all 2 from the
solution subset A" of the inequality
LG, K,2) > LG, K, A);
S(,K):=1
end;
Al:=A'NnA";
find a temporal labelled node V; with minimum L(j, K, 2)

and if any then denote by A" the parameter set for which
this minimum holds; put A':= A'n A" and i:=)

end
end;
if L°(¢, k, 4g) < z(4,) then put z(4) := L'(¢, k, 2) for all A from A'
else
if L'(t, k, A) > 2(4,) then
begin
denote by A" the solution set of L'(¢, k, 1) > z(4);
A':= A'n A"; break := true
end;
q :=qg-1; if ¢ =0 then break := true
until break;

q := q + 1; take all labels S(j, k) from the last iteration if g = 1
and from the previousoneincaseg > 1; £%9:= @ ; j:=

repeat (*until j = 5*)
let 1 = S(, k);
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if i < 0 and A (-, )) then begin §9: =9+ {A)); J:=~i end
else if 1t > 0 then j:=1i
until j = s;
(* the solution set of (P'4) is £ for all A from A™*)
A= AC\N
until A* = @
A:=A\A®
until A = @.

REMARK. It is possible that | £9| < k. It means that there exists a chain from s to ¢
containing less than & forward arcs. If we eliminate them the length of the chain will
be reduced to zero.

THEOREM b. (A4) solves (P4) on the whole parameter set A in a finite number of
iterations.

PROOF. For any fixed A this is a modification of the algorithm from [8] if G (and hence
GD) is a directed graph, i.e. (P4) is correctly solved for any fixed A.

The loop from type repeat(until A = @) partitions A into finite subsets (each
denoted by A*) since A" is a solution of a system from type r; {A} ST, {ﬁ.} <..<r; (4) and
there are no more than /m! such systems. ¥

At each iteration of the loop from type repeat(until A" = @) (A4) finds a subset A’
for which all inequalities are fulfilled. It follows from here and from Lemma 3 that &9
is the desired solution of (P4') and also of (P4) not only for the fixed 4, but for all A
from A'. But £9 belongs to a chain from s to ¢ and there is a finite number of such
chains. It follows that A* will be partitioned into a finite number of subsets from type
A -

At the end of this section let us consider briefly the case when & nodes have to be
removed. This case can be transformed into the previous one if we use the well-known
transformation: to each node V, we assign a new one V. and the arc (i, i'); each arc (1, /)
will be substituted by the arc (i, /) in the new graph. Now the capacity and reliability
of (i, t') can be defined as

min { ¥ {¢;(1)|A; enters V, }, X {¢/(2) | A, leaves V } | and
min { max { r,(4) | A, enters V, }, max { (1) | A, leaves V, | },

respectively.' The new graph is also a planar one and the problem is to solve (P4) in the
new network. The solution will contain arcs of type (i, ¢') only, which define the £ most

vital nodes.

5. COMPLEXITY

Each of the problems investigated here is a generalization of the non-parametric
case. It follows that each of them is not less difficult than the problem from the special
case. All of the problems are polynomial. The only exception is maybe (P4) if (7 is not a
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planar graph. We do not know any polynomial algorithm for solving it - the algorithm
in [9] is a branch and bound one end hence with exponential complexity. We do not
know any proof that the problem is exponential or polynomial.

Each of the parametric problems is exponential. In [12] the author refers that the
objective function v,(2) of (P1) has an exponential number of break points even when
the arc capacities are linear functions of A. Each break point corresponds to one
iteration, i.e. their number grows exponentially.

We deal in (P2) with the shortest paths. For a fixed start and target point there
are (n-2)! paths between them in the complete graph. Let us denote all paths by W,
W, etc. and let us partition A into subintervals (subsets) like A,, A, ete. For each arc
from W; we define its length as 1 on A,. For all arcs which do not belong to W, we
define the arc length as M — a large number. Obviously, W, is the only shortest path in
the network between start end target points for all 2 from A,. We do the same for W, |
and A, ;. Finally we change c,(1) in the neighbourhood of the border point between
neighbour subsets like A, and A, , in order to make c,(1) continuous and piece—wise
linear. In this way each path will be the shortest on some parameter subset of the A.
Hence (P2) has an exponential complexity.

In an analogous way we show that (P3) is an exponential problem since each of
n"2 spanning trees in the complete graph can be a minimal one.

In (P4) we deal with the shortest chains in the equivalent problem in the dual
graph and hence it is also exponential.
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