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Abstract: We consider the problem of fmdin g paths in a network between two certain
nodes, when some criteria like cheep, fast, wide, reliable etc. have been posed. The
problems stated below, are multicriteria and are solved by means of lexicographical
ordering of the criteria. The proposed algori thms are pclynonual ones,
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1. INT HODUCTION A.\;D MOTIVATION

In the world of transportation , maybe the most commonly met Question (from the
traveller's point of view) is something like:

• Which is the best way (route) to travel from one place (the or igin) to another
(the destination)?".

This quest ion implies that of course there exists a set of possible (or feasible )
rou tes such that connect the origin to the destination , from which to choose. It also
implies that the traveller' s final choice depends on certain features that characterize
each one of the rou tes. like the money spent on fairs or gasoline , the time consumed,
t he possible pleasure that is gained traversing one route and so on .

Clearly, it is easy to assign a positive real number to features like "money spent­
or "time consumed". However, this is not possible for features like ' pleasu re" where we
can assign values like "good" or "bad" or "beautifu l" and so on, Furthe rmore, since each
person defines, say, "good' in his/her personal attitudes, it seems true that "if you ask
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100 different persons why they chose one specific route, you might probably get 100

different answers".

In the case of air transportation, things are not much different. Here there are
airports in cities and certain airline companies that offer connections between some of
those cities. Each one of these connections can be assigned to one night descriptor like
LH1234 (for a Lufthansa night> or OA432 1 (for an Olympic Airways fligh t>. Each one
of these flights operate in a frequency, say Monday, Tuesday, Friday and departs at a
specific departu re time from the origin to arrive on a precalculated arrival time to the
destination . There are a lso fares, classes, aircraft type s and othe r features known in
advance for each flight .

Of course , for every pair of cities, there exists one route that connects them,
either direct (i.e. non - stop) or via one or more in termediate cit ies . In the last case, the
total money spent is at least the sum of fares, the total time is at least the sum of the
dis tinct t ravel times and so on . Additionally, othe r variables are created, such as the
time spent on airports waiting for the next flight to depart and the total time
consumed (actual travel time plus waiting time).

It is apparen t that the traveller ....rill t ry to minimize the total money spent, or will
place an upper bound (a budget) on it. However, one cannot easily say the same for the
othe r variables. In the case of total travel time, it is known thai a longer route might
be cheaper or a non-stop flight might be more expensive than one with in termediate
stops. As another "real world"example, consider the case in which a clien t is in terested
in transferring goods from an origin to a destination . If these goods are, say, clothes,
then there is no problem bu t if these are computer motherboards or medicine , he
might be interested in keeping them "ou ground", because of the potential danger t hat
the shakings of a flight might harm them.

Generally, the traveller needs to choose from a set of routes where:

• The total cost is low or does not exceed his budget.;

• The total t ravel time (from the moment he leaves the origin until he is a t t he
destination ) is low or should not exceed an upper bound (although this is not
always the case; ifone is, for example, a tourist);

• There is a departure date (and time) after wh ich the t raveller wants to fly
and an arrival date (and time) before which he must arrive;

• The total nu mber of intermediate stops (if any) mu st be low or at least under
an upper bound;

• There can be intermedia te stops that a traveller wants to avoid ( for example
nobody wants to fly to his destination with an intermediate stop in a count ry
which is at war);

• There can be airline companies that should be avoided due to previous bad
experience or higher levels of danger and others that are preferred because
of, for example, frequent flier programs;
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The total waiting t ime on airports might have an upper bound too;

Inte rmediate stops in expensive cities easily increase the total cost (for
example it is cheaper to spend one night in Moscow than in Tokyo)

It is qui te difficult for t he traveller to form the above mentioned set of rou tes by
himself because of t he large number of airline companies and the much larger number
of different flights . The airline companies do offer printed schedules, but, of course,
they print only their flight - or combinations with flight offered by other companies
with which they cooperate. In the modern Computerised Reservation Systems (CRSs)
there exists a possibility of creating such choice sets, al though one cannot place hounds
and other prefe rences - this is done manually. Another problem with CRSs is that they
are owned by one or more airline companies, so the same problem as that with the
printed flight schedules arises. Finally, one should not forget, that access to such
systems is permitted only through 8 travel agent, who certainly has to protect his own
interests. This means that the propositions made by agen ts are not always the best for
their clients (!).

Afte r the ebcve discussion, it seems that the Computer-Aided Formation of such
a choice set is quite interesting. The underlying prob lem is obvious ly a multicriterial
problem which involves creating paths in a network, as it will be formally defined in
the next section.

2. THE MODEL

If we stick to the examp le of air transportat ion, we can model the situation as
follows: to each airport we assign a vertex Vi ; if it is possible to fly directly from Vi to l'J
we denote it by an arc like (i,j); if we are interested in such phenomena. like "cost",
"comfort", "air-line company" etc., we can split each arc (i ,j) into two or more parallel
arcs, which for example might mean ~LH business class" or ~u-I tourist class" etc. We
also consider the time phenomenon so tha t we can substitute each node by two or
more nodes, with the following meaning: Vi corresponds to the ith airport today, V;,
and v;."correspond to the ith airport tomorrow and the day after tomorrow and so on.
These t hree nodes can be linked by arcs, like (i, i '), (i', in) and in this way we obtain one
time expanded network which seems to be very large due to the big number of
airports, airline companies and days when the traveller can book a flight . Further, we
will be interested in paths between two given points in the graph - start point and
target point, which are ·~st· in differe nt meanings: cheapest, with least transit stops,
most reliable, most preferable etc.

The structure of the network, Figure I , is changeable, which means that if all
tickets for a certain flight are sold, the correspo nding arc is not available for the
commuter. Furt her we shall formulate and solve some optimization problems in such

networks .
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Figure 1.

3. MULTICRITERIA ANALYSIS OF PATHS IN A GRAPH

Let u s consider a directed connected and finite graph G = (V, A ) with 8 set of
vertices (nodes) V = { VI' V2, ,, , ,V" } and a set of arcs (links) A = { A 1, A2, ... .Am }. To
each areA. = (i , j ) we assign some weights (non-negative numbers like cost, time etc.)
as follows:

• c. - cost for traversing A,I, ;

• tit - time units for t raversing A", ;

• Pit - reliability ofAk ' i.e. the probability thatAk is still working, still available.
not closed etc. ;

• wk - capacity of A i ' i.e. the largest flow that can traverse the arc per t ime
unit;

• etc.

Now we define the node VJ as th e start point and VII as the target point and we
will consider all paths starting from VI and ending at VII" We denote the set of all these
paths by PS(A). For each path W, we define as usual the cost and time for traversing it
as

c(W), = r{ c,IA, eWI and 1(W) ,=r{l,IA, eW I.

respectively. We define the reliabili ty as

p(W) ,= n {p,IA, eWI.

but if we take the logarithms ofboth sides and denote In (Pot) by -rot. we will obtai.n

r (W) ,= r { r, IA, e W I = - ln lp (W) 1 = r { -ln lpkll Ak e WI
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as a measu re of the reliability of lV. This means that the smaller r( W ) is , the more
reliable the path W is.

We can define the width of the pa th Was:

w(W):= min {w.IA/r E \V },

but if we denote - w... by b• • the weight

b(W) ;= max {blr lAir E ~..' I

will be a measure for the width of 1V (the smaller b(W) is, the wider W is ) ,

In this way we have formed four reasonable criteria for each path in the graph in
the sense that t he smaller each one of them is, the "better" the path is . Thus, we shall
try to minimize all of them.

There is no reason to sea rch for the path which is 'best" for all of these criteria.
sin ce they are contradictable by nature . Fo r example the shorter the path is, the more
expensive it might be. A reasonable way would be to order all criteria according W
their importance. For this purpose we consider the relat ion (e.xj<ograpliicll(order:

Given are !WO vectors x = (x l' x2• •. • ,xi) and y = 0'1')'2' ... Si )' We call x
fqjcogrllpfiiaJffy smafferthan y if for some i the following holds:

X I =Yl' x2 = Y2 ' ... ' Xj =Yj' Xi+ l <Yi+ 1

and we denote it by X ""y, y);. X or x =lennin(x,y). Ifx =y, we call x lexicographically
smaller than y and y lexicographically smaller than x . It is easy to show that this is a
relation of order (transitive, antisymmertic, re flexive) . It follows t hat we can use here
all properties of the relation s or ~ for the real numbers .

This relation generalizes the re lation s (or "less", or "min"), since the last one can
be obtained if the vectors x andy are one-dimensional.

Before formulating any optimization problem, let us now notice thst the criteria
mentioned above are of two different types: c(W). t ( lV) and r(W) ure sums of the nrc
weights from W (we shall call them of t)pe DrIL. or aJditit>e crite ria) , b(W) is a maximum
(or min imum) of the arc weight of W (we shall call it of type t1L'O. or mi" imd.\:criterion).

Further, we shall consider more than one criterion. Instead of enumerating them
like (1 (W)' f2( lV) etc., we shall preserve the notation mentioned above in order to
identify them easier and to make the explanation much clearer .

The problem statements we are interested in are:

lexmin I (e(II'),I(II') IIV e PS(A) I. (I'll

which means that we are looking for the cheapest path (crite r ion c(\V» and among all
cheapest paths we are searching (or the shortest one (criterion t (W».

Both criteria here are from type one. In this way we can formulate (P I) in the case

of more than two criteria (rom type one.

The following problems are:

lexmin I (e(lI'). 1(11'), b(lV) {IV e PS(A) I, (1'2 )

and
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loxmin I (b(W),c( W), tOv),) I W e PS(A) 1, 0 ' 3 )

where we have criter ia of mixed type, so that in (1'2) the first two are of typ(' one find in

(P3) the nest one is from type tw o ..

lexmin ( (c(W),b (W),l (lV» I W e PS(A) I, (P11

where the criter ion in the m iddle is of type two, while the others nr c of t)7Je onr.

.Theso th ree problems see m to he equ ivalent, but the difference is in the WilY of
solving them.

So me times, the mo re realist ic problem state ment is like the following 0 110 ;

lexm in ( (c(W) , t ( \V» Ir(W) S; r 0 ' b( W) .So bo' W E l'S (A ) I, (1'5)

which means that among a ll pa ths wh ich nrc ~not too bad" according to r (W) and b( it') ,

we nrc looking for the "best" one according to the lexicograph ical sense with respect to
cOY) and t (W) ,

Of course there are other problem formulations wh ich nrc also logically possible
but we believe that they can be Iorrnulnted and solved in a simila r way.

P I can be solved by means of a small modification of Dijkstra' s algorithm:
wherever there are inequality s igns like " < " or " >~ they shou ld be repla ced by ".... and
" }ow, respect ively. Apart from this, now we need to labe l each node of t he graph with
labels corresponding to each criterion of typeone. To each node Vj we assign temporary

labels (Ci , Tj,Sj)' When they become final, we shall de note them by Cj Oa nd T / , which
means (C/ , T;" ) is the lexicographically shortest "length" of the path from the star t
point VI to Vj and Sj is the number of the last arc of this path.

For the procedure given be low, the paramete rs have the following meanings:

•
•

•
• A - arc set of the gra ph :

c and t - give n arc weigh t vectors (there can he mor e than two, the order is of
importance) ;

C, T, S - node Iabe ls :

S TOP is A logical var iable; STOP is true if VII is not reachable from V I '

procedure PRP1(A, c, t, G, T, S, STOP);

setC,O:= O; T,o :=O: S lo := m + I;

Cj := <Xl: Ti := so: S j := 0 for all i = 2, -.. ,n;

i :'- I : BR E.'AK := fa lse; S TOP: = false:

repeat (. until BREAK or S TOP · )

investigate all arcsAk = (i ,j) with temporarily labelled \j;
if (Cj' Tj ) }- (Gj • + ck' r, ° + lk) then

begin Cj:=Cjo +Ck: Tj :=Tj· +lk; Sj :=k end;

find (Cp ' Tp ) :; lexmin ] (C
q

, T
q

) IV
q

temporarily labelled I;

if Cp = eo then
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begin \ '" is not reachable from \ '1; STOP := true end

else begin label Vp by (C
p

· ' T
p

· ) ; i := pend;

ifi = n thenBREAK: = true

until nRf:AK or STOP.

The justification of the algorithm is obvious. For one criterion, for example c, th is
lS exactly Dijkstra' 6 algorithm.

Notice that this p rocedure can run also in the case .....hen there are no criteria like
c or t (and of course C and n . In this case, the procedure simply finds 8; feasible path
con nect ing VI and V" .

t :XA.'IlJ'LE 1. (for th e problem PI)

Consider t he net.....ork shown in Figure 2. The .....e ights on the arcs follow the
scheme c..1t.. that is, th e first number is the cost for traversing the arc and the second,
number is the time consumed in traversing this arc.

2 cit

A3
2/1

5

F'igurt> 2.

l: = 1

At = (1,2) : (C
2

, T 2) = (00,00) ;' (Ct · , T t O) + (c t ' tt ) =(0,0) + (2, 3) =(2, 3)

=> (C2, T2) := (2, 3), S2 := 1.

A
2

= 0,3) : (C
J

• T
J

) = (00, <XI) ;' (CI ' , T t O) + (c2, t 2) = (0',0' ) + u. I) = 0 , 1)

=> (C,. T,> := u. u, S, := 2;

all arcs ( 1,j) are investigated and

(C
J

, T
J

) = 0, 1) = lexmin I (Cq , Tq ) IVq - temporarily labelled}
=> V

3
is permanently labelled by (CJ · , TJ 0) := 0, I) (end of the first iteration).

i := 3
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As = (3,2): C
2

, T
2

) =(2, 3) ;" (C3", T3 ") + (cs, 15) =u', 1") + 0, 1) = (2, 2)
~ (C2, T2) ;= (2,2) , S2 ;= 5.

As = (3, 4 ); C.' T
4

) = (00, 00) #- (C3", T3") + (cs' ts) = 0 ", 1") + (3, 1) = (4 ,2)

~ (Col ' T. ) := (4 , 2 ), S. := 6;

all arcs (3,) arc investigated and

(C
2

, T
2

) = (2,2) = lexmin {(C
i
, T ) I V - temporarily labelled}

~ V
2

permanently labelled by (C2", T 2 ) :~ (2, ~) (end of the second iteration).

i := 2

A. = (2 , 4) : (C.' T.) = (4, 2)" (C2", T'l" ) + (c.' I. ) = (2". 2") + (1. 2) = (3 ,4)
~ (C.' T. ) := (3.4) andS.:= 4 (end of the third iteratio n).

Since all arcs (2,) are investigated. the only not permanently labelled vertex is V4

C ' ,a nd we put ( • ,T. ):= (3, 4).

The (C, 1') - lexicographically best path is (A.,AS,A'l) ' since 8 4 = 4, (A4 = (2, 4»,
S2 = 5 (A s = (3, 2», 8 3 ", 2 (A2 = (1,3» . 8 J = 7 (= m + O.

All s te ps are showT1 in Table 1.

Table l.
initialization 1 iter-ation 2 iteration 3 iteration

• C, T, S, C, T, S, C, T, S, C· T, S,•
1 0' 0' 7 0' 0' 7 0' 0' 7 0' 0' 7

2 00 00 0 2 3 1 2' 2' 5 2' 2' 5

3 00 00 0 I' I ' 2 I' I' 2 I' I' 2

4 00 00 0 00 00 0 4 2 6 3' 4 ' 4

For the following problems when we have one criterion of type two. we need some
preparation. Let us partition the arc set A like A = E 1 + E2 + ... + Er as follows:

(Air ' A, E Ej ~ bJr = bl) 1\ (AJr E E j , A I e Ei+1~ bit <btl.

We denotealsoEJr:=E,+ ...+EIt for k= 1. 2•... r , 60 that E'" =A.

For P2 we propose the following procedure :

procedure PRP2<A, c - of type ont', t - of t)'f't' one, b - of type two. C, T , S, STOP);

construct the sets E l' E 2, ... .Er and E ' , E2•... .,E'";

BREAK ,= false;

k = r + 1;

(c(W), t (W) := (co, co);

repeat (0 until BREAK or STOP 0)
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fmd W. using procedure PRPI e ,c, t, C, T, S, STOP);

iInoSTOPand \\-'. t W.... (c l\\o'), tC W) then

begin

(c(W),t(\'') :"" kIn'", ,1\"".»;w :"" W.

end

else BRJ-:AK; "" true ;

if k "" I then BREAK = true

until BREAK or STOP,

Notice that we dt'fme the relauou .... also in case of Identity of both vectors so that
at each uereuon when t:l decreases. W will be updated even in cas»
(cOn , t{ n') '" (c(W.), l(W.».On the ether hand if there are no criteria like c and t in
the problem formulation, the procedure will find a path between VI and \',. which is
m .....-id in en e ofb

At each repeut - otc re non the procedure PRPI solves one problem of type PI ..vith
one, two or more criteria of t>r~ cn~_ At the same time the width of the found path W",
monotonously increases. If at one Iteration W. + I appears to be lexicographically larger
than W. then the procedure stops because BREAK = true with W = W. as an
optimum solution. It can be identified by S. If the procedure ends after STOP in the
first iteration, there is no path between VI end V,. and obviously the problem is not
solvable After STOP but not in the first iteration. the solution is defined also by w,
end S .

EXA.\wu: 2. (for the problem P2)

The network is gwen in Figure 3.

4

cI t I w -b

A3
1/1 /5

5

13/1

A2
2/2/2

F'lpIre 3.
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For the arc subsets we have the following:

EI :=E1 = I AJ },

E2 := E 1 + E2 = {A t. A s. A ..,As I.
E3 := E 1 + E2 + E3 = {Al ,A2,AJ,A4.As },

g4 := A = {AI' ... .A6 }.

E 1 := {A3 } ,

E,: = {A"A. ,A,; I ,

E, := ( A, I,
E4 := { A 6},

Further:

f irst iteration (P I on £4 = A ):

Two solu t ions: W ' = (AI>A 3• A 6) and W" = (A2' A 4) with (C(W'), T(W'» = (3,3).

Second iteration (PIon E3):

The same two solutions W' and Woo .

~ (Plan E"):

The only solut ion is W'.

Fourth iteration (P I on E1 ):

There is no solution in this arc subset since there is no path connecting VI and V4,

Since the procedure sto ps after STOP, the desired optimum solut ion is

W' = (Al,A3.As), obtained from the previous iteration. It costs 3 units, can be
traversed in 3 time units and is 4 units wide.

Problem P3 can be solved as follows:

procedure PRP3CA. b - type two, C, t - of type one, C, T, STOP);

construct the sets EI, E2, ... ,Er and EI, El, ... ,N;

k := 0;

repeat

k ;=k +l:

find W. using procedure PRP1(EJc, C, t, C, T, S, STOP);

if k = r and STOP then

begin

there is no path between VI and V1J;

STOP := false

end
until no STOP.

EXAMPLE 3. (for the problem P3 )

The graph and the arc weights are the same with the previous example (see
Figure 3).

The procedure PRPI for El ends with STOP = true, i.e. there is no path between
VI and V4• It ends with STOP = false on E2 and the path found it. ~"\ l ' A 4 ) which is t he
desired solution: it is 4 units wide, costs 3 units and can be traversed in 4 time units.
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Problem 1'4 can be solved with the following procedu re:

Procedure PRP4<A, c - t)pe I, b - t) pe II, I - type I, C, T . S, S TOP);

S TO P := false;

solve P2 ....-ith two criteria c and busing

procedure PRP2(A , c - type I, b - type II, C, S , STOP);

if there is no solut ion th en STOP := t rue

else

begin

let the solution be obtained on E." ;

solve P I with two criter ia c and b using

procedure PRPl (E It •c, t - of type I, C, T . S , STOP)

and let the solution be W

end.

The path W is an optimum solution of P4. If we solve 1'2 with two cr iteria c and b
from mixed type and if the solution is obtained on Eit. then we are sure that the
shortest path according to the first criter ion on EIt-l, EIt-2, ... ,EI, is longer than W. On
the other hand, if we solve PI with two criteria c and t on £'c, then we are sure that the
optimum path will contain at leas t one arc from £'c. which defines the width of W.

EXA.-.wLE 4. (for t he problem 1'4)

We use the same network as in example 2, (Figure 3). bu t t he weights are ordered
as cit /wit/ tit.

By solving P2 we obtain the arc sequence (A I,A4) as a (e:{JTI;n-ptJtn according to c

and w and as an arc set we come to E'l.
After solving PI on E2, writh two crite ria c and t , we obtain the Slime path as a

solution of P4 - it costs 3 units , is 4 units wide and can be traversed in 4 time u nits.

Problem P5 seems to be the most realistic optimum path problem since most of
t he times we do not want to minimize some criteria but only to obtain 8 feasible
solut ion which is "net too bad" according to those cr iteria as shown in the formulat ion
of problem P5. For example we are searching for the shortest path which is reliable
enough and not narrower than boo"Then P5 is formulated for one criterion and two
restrictions. Of course it can be form ulated for an arbit rary nu mber of objecti ve
functions (no matter what the type and the order is ), and also an arbitrary number of
restrictions. The following problem formulation generalizes all the previou s ones:

Let r. r, P be criteria of both types in mixed order;

for I $ k l < k2 < < kq $p (O $q ::: p ), let f'1are criteria of rjpe mo like

1*' (IV) := max I1*' IA
J

E IV }, I =1, 2, ... ,q

and the ot hers of type one like

f,(lV):= L I1*' IAj E IV }.
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g2 of typr II. GI. G2. STOP);

STOP :"" false;

for each vertex V, calcu late t he shortcstg l -di.&tanoe 1". from V. to V" u rng
Dijkstra'lI algorithm;

If PI cannot be defined then there is no path between VI and V,. and pr, hal> no
solution and STOP := true

else

begin

de fme(,o :=O a nd f / +I := 1 for a ll k:a J•...•mj

forl := ltoq+ l do

begin

fmd W, as a solu t ion of P2 using,
procedu re PRP2CA., r.(I, ...• {*l, F'\ p i , ...• F ' r' , S, STOP,
(. When using procedure PJ, the only change will be:

investiga te all arcs A, = (i ,i>with te mporanly labelled V and
g.2 s G2 andg l - distance from VI to V, + g. l + P

J
S 61 .);

define {*I as of type onr by {*~ := 0 for aU; = I . ... ,m ; r«.= 0;

drop all arcs A, from A for which ( ' . > {*I("". ). ,
end

end ( + The optimu m solutio n is W. . )..,
EXA.m'LE 5 , (for the proble m PG)

The graph and all arc weights are given In Figure 4. The problem is
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lexmin I ifl l \V),(l l H'),{ o\'), r( W» jell \\1 s 10, g2( W) · 2, wE PStA l l.

when' fl, r andg2 are of t)1'1' two; the others on' llf t),l'e Nil'

2

1

AI :

""AJ :

A.. :

As:

4

[' /(lIf" 1f' II g'/ 1f'

1/ -5 /1 / -4 //1 / -3 Afi ,

2 /-4 /3 / -2 4 - 2 A7;

1/ -1 /1 /-2 113 / - Ag .

1/ -4/ 2/-511 2/-2 Ag

3 1-3 1 / -5 11 - 4 A IO'

1 /2 /2 / -2 113 / -2

1 / -3 /1 /-4 113 / -3

2 / -2 /2 / -2 114 / -3

1/-2 /1/-411 3/ 1

1 3/ 3 1 5 -2

In this example we have G' = 10,G2 = - 2, p = 4, q = 2.kJ -2and k2 = 4.

Since the first cr ite r ion is of 1)1't one and the last criterion is of Iypt two, we do not
need to define any artificial criteria.

For the first restriction of type o1leg l (W) < GI we how

/'5 '"' 0 , f'4 - 5, P = 3, P2 - t , P I - 6 < 0 1 10.

The action of procedure PRP2(A ,r' of type I, (l of t}1'e II, FI, S, STOP ) "'>lVC! es
an optimal pat h W' - (A1 ,A... A7) and W ' - (A2,A7), withrl (W') = 3 and (l( \\-,') - - 3.
\....e drop the arcs AJ , A6 , As and Ay from A s ince their arc weights (l art' larger than
('lWI = - 3.

Now after executing procedure PlU'2(A,fI , 0 , (oJ of t)1'1' I ,r of r)'Pt II, F 1,0, ]-<1 .

S,STOP) we obtain the only so lution ", - (AI'A" ,A7) wit h (Im-') = 3, (J( Wl 4,
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[4(\V> = - 4, which is the solut ion of the problem with opt imal values flOV) = 3,
fl o¥> = - 3 , f3( \V) = 4, ("<W ) = -4 and feasible restriction valu es glO¥) = 6 < 10 and
g2( \V} = - 2 S - 2.

TUEORF_'1. T he procedu re given above solves PG in a finite number of steps with
com plexity O (n "1 2) ,

P ROOf . The preliminary ste p for finding the shortest distances n. from each vertex Vi

to the target vertex VII can be executed with complexity D (n m) - Dijkstrs's algorithm.

The initialization of ro and f1H I needs O (m ) operat ions.

The main loop will be executed q + 1 times. At each iteration one problem of type
P2 has to be so lved. It needs m D(n m ) operations since all arc weights are nonnegative
- the Dijkst ra- tike algorith m needs O (n m ) operat ions and in the worst case A can be
partitioned into In subsets of type Ei (each subset E; contains exactly cue arc). Hence
the complexity of the main loop is (q + 1) m O (n m) = O(n m 2}, which is the complexity
of the whole procedu re.

Is \VA: rea lly R solution of PG? At each itera tion of the for -loop the procedure
finds an oplimum solution of P2 - let it be Wi ' At th e next iteration Wi will be
neither "better" nor "worse" for the previous erik-ria ro, r. _., J*. since they :lie in the
same order in the problem formulation of P2 for the next iteration and all 'worse" arcs
like A, with f,"l > (*1( \V... ) have been dropped from the arc set A . Hence W.
minimizes lexicogr aphicaiiy all criteria. The procedure ends after STOP = t rue onlit!
there is no path from VI to V". This will be the case only if nlcannot be defined.

4. FINAL COMMENTS

Numerical investigation will be done in the future. The procedure seems to be
•

running fast due to its simplicity and good complexity. It can ru n after appropriate
changes also if some of the arc weights for the criteria of type oneare negative. In this
case PG will be NP- complete since this is also the case for one cr iterion only.
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