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Abstract: We consider the problem of finding paths in a network between two certain
nodes, when some criteria like cheap, fast, wide, reliable etc. have been posed. The
problems stated below, are multicriteria and are solved by means of lexicographical
ordering of the criteria. The proposed algorithms are polynomial ones.
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1. INTRODUCTION AND MOTIVATION

In the world of transportation, maybe the most commonly met question (from the
traveller's point of view) is something like:

" Which is the best way (route) to travel from one place (the origin) to another
(the destination)? ".

This question implies that of course there exists a set of possible (or feasible)
routes such that connect the origin to the destination, from which to choose. It also
implies that the traveller's final choice depends on certain features that characterize
each one of the routes, like the money spent on fairs or gasoline, the time consumed,
the possible pleasure that is gained traversing one route and so on,

Clearly, it is easy to assign a positive real number to features like "money spent”
or "time consumed”. However, this is not possible for features like "pleasure” where we
can assign values like "good” or "bad" or "beautiful” and so on, Furthermore, since each
person defines, say, "good" in his/her personal attitudes, it seems true that "if you ask



80 D.Ivanchey, D Kydros / Multicriteria optimum path problems

100 different persons why they chose one specific route, you might probably get 100

different answers".

In the case of air transportation, things are not much different. Here there are
airports in cities and certain airline companies that offer connections between some of
those cities. Each one of these connections can be assigned to one flight descriptor like
LH1234 (for a Lufthansa flight) or OA4321 (for an Olympic Airways flight). Each one
of these flichts operate in a frequency, say Monday, Tuesday, Friday and departs at a
specific departure time from the origin to arrive on a precalculated arrival time to the
destination. There are also fares, classes, aircraft types and other features known in
advance for each flight.

Of course, for every pair of cities, there exists one route that connects them,
either direct (i.e. non-stop) or via one or more intermediate cities. In the last case, the
total money spent is at least the sum of fares, the total time is at least the sum of the
distinct travel times and so on. Additionally, other variables are created, such as the
time spent on airports waiting for the next flight to depart and the total time
consumed (actual travel time plus waiting time).

It is apparent that the traveller will try to minimize the total money spent, or will
place an upper bound (a budget) on it. However, one cannot easily say the same for the
other variables. In the case of total travel time, it is known that a longer route might
be cheaper or a non-stop flight might be more expensive than one with intermediate
stops. As another "real world" example, consider the case in which a client is interested
in transferring goods from an origin to a destination. If these goods are, say, clothes,
then there is no problem but if these are computer motherboards or medicine, he
might be interested in keeping them "on ground®, because of the potential danger that
the shakings of a flight might harm them.

Generally, the traveller needs to choose from a set of routes where:

o The total cost is low or does not exceed his budget.;

® The total travel time (from the moment he leaves the origin until he is at the
destination) is low or should not exceed an upper bound (although this is not
always the case; if one is, for example, a tourist);

® There is a departure date (and time) after which the traveller wants to fly
and an arrival date (and time) before which he must arrive;

® The total number of intermediate stops (if any) must be low or at least under
an upper bound;

® There can be intermediate stops that a traveller wants to avoid ( for example
nobody wants to fly to his destination with an intermediate stop in a country
which is at war);

® There can be airline companies that should be avoided due to previous bad
experience or higher levels of danger and others that are preferred because

of, for example, frequent flier programs;
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® The total waiting time on airports might have an upper bound too:

® Intermediate stops in expensive cities easily increase the total cost (for
example it is cheaper to spend one night in Moscow than in Tokyo)

It is quite difficult for the traveller to form the above mentioned set of routes by
himself because of the large number of airline companies and the much larger number
of different flights. The airline companies do offer printed schedules, but, of course,
they print only their flight — or combinations with flight offered by other companies
with which they cooperate. In the modern Computerised Reservation Systems (CRSs)
there exists a possibility of creating such choice sets, although one cannot place bounds
and other preferences — this is done manually. Another problem with CRSs is that they
are owned by one or more airline companies, so the same problem as that with the
printed flight schedules arises. Finally, one should not forget, that access to such
systems is permitted only through a travel agent, who certainly has to protect his own
interests. This means that the propositions made by agents are not always the best for
their clients (!).

After the above discussion, it seems that the Computer-Aided Formation of such
a choice set is quite interesting. The underlying problem is obviously a multicriterial
problem which involves creating paths in a network, as it will be formally defined in
the next section.

2. THE MODEL

If we stick to the example of air transportation, we can model the gituation as
follows: to each airport we assign a vertex V; if it is possible to fly directly from V, to Vv,
we denote it by an arc like (i,j); if we are interested in such phenomena like "cost”,
"comfort”, "airline company” etc., we can split each arc (7, ) into two or more parallel
arcs, which for example might mean "LH business class" or "LH tourist class" etc. We
also consider the time phenomenon so that we can substitute each node by two or
more nodes, with the following meaning: V; corresponds to the ith airport today, V;
and V." correspond to the ith airport tomorrow and the day after tomorrow and so on.
These three nodes can be linked by arcs, like (z, '), (i', i") and in this way we obtain one
time expanded network which seems to be very large due to the big number of
airports, airline companies and days when the traveller can book a flight. Further, we
will be interested in paths between two given points in the graph - start point and
target point, which are "best" in different meanings: cheapest, with least transit stops,
most reliable, most preferable ete.

The structure of the network, Figure 1, is changeable, which means that if all
tickets for a certain flight are sold, the corresponding arc is not available for the
commuter. Further we shall formulate and solve some optimization problems in such

networks.
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%\\ : Starting point : Target point

Figure 1.

3. MULTICRITERIA ANALYSIS OF PATHS IN A GRAPH

Let us consider a directed connected and finite graph G = (V, A) with a set of
vertices (nodes) V= {V,,V,,...,V, } and a set of arcs (links) A= {A,A,,..,A }. To
each arc A, = (i, ) we assign some weights (non-negative numbers like cost, time etc.)
as follows:

® ¢, —cost for traversing A, ;

e {, —time units for traversing A, ;

® p, —reliability of A, , i.e. the probability that A, is still working, still available,
not closed ete. ;

¢ w,— capacity of A,;, i.e. the largest flow that can traverse the arc per time
unit ;

* ete

Now we define the node V, as the start point and V_ as the target point and we

will consider all paths starting from V; and ending at V,,. We denote the set of all these

paths by PS(A). For each path W, we define as usual the cost and time for traversing it
as

cW)i=2{c,|A, e W} and t(W):=Z (f,|A, e W},

respectively. We define the reliability as
PW):=11{p, 1A, e W},

but if we take the logarithms of both sides and denote In (p;) by -r;, , we will obtain
F(W) = T{r,|A,e W} =-In[p(W)] = £ (-In (o) | A} € W)
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as a measure of the reliability of W. This means that the smaller r(W) is, the more
reliable the path W is,

We can define the width of the path W as:
w(W) := min {w, |A, e W},
but if we denote -w, by &, , the weight
. bW):=max (b, |A e W)
will be a measure for the width of W (the smaller (W) is, the wider W is).

In this way we have formed four reasonable criteria for each path in the graph in
the sense that the smaller each one of them is, the "better" the path is, Thus, we shall
try to minimize all of them.

There is no reason to search for the path which is "best” for all of these criteria,
since they are contradictable by nature, For example the shorter the path is, the more
expensive it might be. A reasonable way would be to order all criteria according to
their importance. For this purpose we consider the relation lexicographical order.

Given are two vectors x = (x,,x,,...x,) and y = (¥,,¥y ... ¥;). We call x
lexicographically smaflerthan y if for some i the following holds:
15X X =Voy o W EF=YVh Xig1 <Visi
and we denote it by x <y, y > x or x = lexmin(x, y). If x = y, we call x lexicographically
smaller than y and y lexicographically smaller than x. It is easy to show that this is a

relation of order (transitive, antisymmertic, reflexive). It follows that we can use here
all properties of the relation < or 2 for the real numbers.

This relation generalizes the relation < (or "less", or "min"), since the last one can
be obtained if the vectors x and y are one-dimensional.

Before formulating any optimization problem, let us now notice that the criteria
mentioned above are of two different types: ¢(W), t(W) and r(W) are sums of the arc
weights from W (we shall call them of type one, or additrve criteria), b(W) is a maximum
(or minimum) of the arc weight of W (we shall call it of type two, or mimimaxcriterion).

Further, we shall consider more than one criterion. Instead of enumerating them
like f;(W), fo(W) etc., we shall preserve the notation mentioned above in order to

identify them easier and to make the explanation much clearer,
The problem statements we are interested in are:

lexmin { (c(W), t(W)) | W e PS(A) }, (P1)

which means that we are looking for the cheapest path (criterion ¢(W)) and among all
cheapest paths we are searching for the shortest one (criterion {(W)).

Both criteria here are from type one. In this way we can formulate (P1) in the case
of more than two criteria from type one.
The following problemns are:
lexmin { (e(W), t(W), b(W)) | W € PS(A) }, (P2)

and
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lexmin { (b(W),c(W), t(W),) | W e PS(A) }, (P3)
where we have criteria of mixed type, so that in (P2) the first two are of type one and in
(P3) the first one is from type two;
lexmin { (¢(W), b(W), t(W)) | W e PS(A) }, (P4)
where the criterion in the middle is of type two, while the others are of type one.
‘These three problems seem to be equivalent, but the difference is in the way of
solving them,
Sometimes, the more realistic problem statement is like the following one:
lexmin { (c(W), tLAW)) | r(W) <r,b(W) b, We PS(A) }, (P5)

which means that among all paths which are "not too bad" according to r(W) and 5(W),
we are looking for the "best" one according to the lexicographical sense with respect to

c(W) and t(W).

Of course there are other problem formulations which are also logically possible
but we believe that they can be formulated and solved in a similar way.

P1 can be solved by means of a small modification of Dijkstra's algorithm:
wherever there are inequality signs like "<" or ">" they should be replaced by "<" and
"»" respectively. Apart from this, now we need to label each node of the graph with

labels corresponding to each criterion of type one. To each node V; we assign temporary
labels (C;, T}, S,). When they become final, we shall denote them by C,” and T';", which
means (C;", T;") is the lexicographically shortest "length" of the path from the start
point V; to V; and S; is the number of the last arc of this path.

For the procedure given below, the parameters have the following meanings:

® A - arcset of the graph ;
e ¢ and!{ - given arc weight vectors (there can be more than two, the order is of
importance) ;
e (C,T,S-node labels ;
e STOP is a logical variable; STOP is true if V, is not reachable from V, .
procedure PRPI(A,c,t,C, T, S, STOP);
set Cl' :=0; Tl' 1= Sl' =m+ 1;
Ci:=m; T;:=; S;:=0 forall i =2,..,n;
i:=1; BREAK := false; STOP := false;
repeat (* until BREAK or STOP *)
investigate all arcs A, = (i, j) with temporarily labelled V;
if (C;, T)) » (C;" + ¢}, T;" + ;) then
begin C;:= C;" +¢;; T;:=T; +1; S;:=k end;
find (C,, T,)) = lexmin({ (Cy Tq) |V, temporarily labelled};
if Cp = o then
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begin V,, is not reachable from V;; STOP := true end
else begin label Vp by (CP', TF']; i:=p end;
if i = n then BREAK := true
until BREAK or STOP.
The justification of the algorithm is obvious. For one criterion, for example ¢, this
1s exactly Dijkstra' s algorithm,
Notice that this procedure can run also in the case when there are no criteria like
c or t (and of course C and T). In this case, the procedure simply finds a feasible path
connecting V, and V,_ .
EXAMPLE 1. (for the problem P1)

Consider the network shown in Figure 2. The weights on the ares follow the
scheme ¢, /¢, thatis, the first number is the cost for traversing the arc and the second
number is the time consumed in traversing this arc.

i:=1

Ay =(1,2): (Cp Ty = (m,2) > (C,", T, + (e, 4,) =(0,0) +(2,3) = (2,3)
= (Cy, Ty) :=(2,3), S5:= L.

A, =(1,3): (Cy Ty) = (w0, @) » (C,", T,") + ey, t5) = (07, 0)+(1,1=(1,1)
= (Cy, Ty) :=(1,1), S3:=2;

all arcs (1, ) are investigated and

(Cq, Ty) = (1, 1) = lexmin { (Cp TP | Vq — temporarily labelle_di +

= V, is permanently labelled by (C;", T3") := (1, 1) (end of the first iteration).

(:=3
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A, =(3,2): CpTy)=2,3)>(Cy,Ty) + (et = 17, 1) +(1,1) = (2,2)
= (Cy, Ty) :=(2,2), Sp:=5.
Ag =(3,4): C,T) = (=, > (Cy L Ty) + (e tg) = (15,17 +(3,1) = (4, 2)
= (C,, T,) := (4,2), Sy := 65
all arcs (3, /) are investigated and
(C;, Ty) = (2, 2) = lexmin { {C T )IV — temporarily labelled}
= V, permanently labelled by (C,", T._, ):= (2, %) (end of the second iteration).
1:=2
A, =(2,4): (C,,TY) = (4,2) > (C,, Ty) + (e, t) = 2°,2) +(1,2) = (3,4)
= (C, Ty :=(3,4) and S, := 4 (end of the third iteration).
Since all arcs (2, j) are investigated, the only not permanently labelled vertex is V,
and we put (C", T,") := (3, 4).
The (C, T') - lexicographically best path is (A, A., A,), since S, =4, (A, = (2, 4)),
S, =5(A,=(3, 2), §=2(4,=(1,3), §;,=T(=m+1).
All steps are shown in Table 1.

Table 1
initialization Li iteration 21teral:lon | 3iteration |
._ i C; Ti S; “ ii ; _ T; S;
I F o S0 T Dl (0 1T Ui 1 0 0" 7
2 | o @ 0 2 3 1 g 2. 6 2 A% . b
3| = @ 0 1 1§ 2 T 1 2 1= AF ug
ERE 0 0 L @ W0 4 2 6 IS R

For the following problems when we have one criterion of type two, we need some
preparation. Let us partition the arcset Alike A = E, + E, + ...+ E_ as follows:

{‘Ak’AI ckl, =bk =b ] N (AkEE AIEE i+1 ﬂbk 'ﬁbl)
We denote also E* := E + ..+ E, for k=1,2,..r, sothat E" = A.
For P2 we propose the following procedure:
procedure PRP2(A, ¢ - of type one, { - of type one, b — of type two,C, T, S, STOP);

construct the sets E, E,, ... ,[E_and E', E?, | E";
BREAK := false;

k=r+1;

(c(W), t(W)) := (o0, a0);

repeat (* until BREAK or STOP *)
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k=k-1;
find W, using procedure PRP1(E* ¢, t,C, T, S, STOP),
if no STOP and (c(W), 1{W,)) < (e(W), ¢(W)) then
begin
(elW), (W) := (elW), W), W:= W,
end
else BREAK := true;
if k=1 then BREAK := true

until BREAK or STOP.

Notice that we define the relation < also in case of identity of both vectors so that
at each iteration when E* decreases, W will be updated even in case
(e(W), t(W)) = (e(W)), t{W,)). On the other hand if there are no criteria like ¢ and ¢ In
the problem formulation, the procedure will find a path between V, and V_ which is
most wide in sense of b.

At each repeat - iteration the procedure PRP1 solves one problem of type P1 with
one, two or more criteria of type one. At the same time the width of the found path W,
monotonously increases. If at one iteration W, ,, appears to be lexicographically larger
than W, then the procedure stops because BREAK = true with W= W, as an
optimum solution. It can be identified by S. If the procedure ends after STOP in the
first iteration, there is no path between V| and V_ and obviously the problem is not
solvable. After STOP but not in the first iteration, the solution is defined also by W,
and S.

ExaMpPLE 2. (for the problem P2)
The network is given in Figure 3.
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For the arc subsets we have the following:

E := (A5}, El:=E; ={A;},
E,:={A;, 4,4}, E?:=E,+E, = {A;,A;,A, Ag ),
E,:={A,}, E3:=E,+E,+E;={A}, A5, A3, Ay, Ag},
E,:={Az}, Et:=A={A,,.. Ag)-

Further:

First iteration (P1onE* = A):
Two solutions : W' = (A, A4, Ag) and W" = (4,, A,) with (C(W'), T(W") = (3, 3).
Second iteration (P1on E3):
The same two solutions W' and W".
Third iteration (P1 on E?):
The only solution 1s W'
Fourth iteration (P1on E):

There is no solution in this arc subset since there is no path connecting V; and V.

Since the procedure stops after STOP, the desired optimum solution is
W'= (A, A, Ap), obtained from the previous iteration. It costs 3 units, can be
traversed in 3 time units and is 4 units wide.

Problem P3 can be solved as follows:
procedure PRP3(A, b — type two, ¢, t — of type one, C, T, STOP);

construct the sets E,, E,, ... ,E. and E', E?, ... E7;

k= 0;

repeat
k:=k+1;
find W, using procedure PRP1 (E* ¢,t,C, T,S,STOP);
if £k =r and STOP then

begin
there is no path between V, and V_;
STOP := false
end
until no STOP,

EXAMPLE 3. (for the problem P3)
The graph and the arc weights are the same with the previous example (see
Figure 3).

The procedure PRPI for E! ends with STOP = true, i.e. there is no path between

V; and V,. It ends with STOP = false on E? and the path found is ‘A;, A,) which is the
desired solution: it is 4 units wide, costs 3 units and can be traversed in 4 time units.
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Problem P4 can be solved with the following procedure:
Procedure PRP4(A,c - type I, b - type I, t - type I,C, T, S, STOP);

STOP := false;

solve P2 with two criteria ¢ and b using

procedure PRP2(A, ¢ - type I, b - type 11, C, S, STOP);
if there is no solution then STOP := true

else
begin
let the solution be obtained on E*;
solve P1 with two criteria ¢ and b using
procedure PRPI(E* ¢, t - of type I, C, T, S, STOP)
and let the solution be W
end.

The path W is an optimum solution of P4. If we solve P2 with two criteria ¢ and b
from mixed type and if the solution is obtained on E*, then we are sure that the
shortest path according to the first criterion on E*1 E¥2  E! islonger than W. On
the other hand, if we solve P1 with two criteria ¢ and ¢ on E*, then we are sure that the
optimum path will contain at least one arc from E*, which defines the width of W.

EXAMPLE 4. (for the problem P4)

We use the same network as in example 2, (Figure 3), but the weights are ordered
as ¢, [w,lt, .

By solving P2 we obtain the arc sequence (A,, A,) as a lexmin-path according to ¢
and w and as an arc set we come to E2.

After solving P1 on E2, with two criteria ¢ and ¢, we obtain the same path as a
solution of P4 - it costs 3 units, is 4 units wide and can be traversed in 4 time units.

Problem P5 seems to be the most realistic optimum path problem since most of
the times we do not want to minimize some criteria but only to obtain a feasible
solution which is "not too bad" according to those criteria as shown in the formulation
of problem P5. For example we are searching for the shortest path which is reliable
enough and not narrower than 5. Then P5 is formulated for one criterion and two
restrictions. Of course it can be formulated for an arbitrary number of objective
functions (no matter what the type and the order is), and also an arbitrary number of
restrictions. The following problem formulation generalizes all the previous ones:

Let f1, /2, ... /P be criteria of both types in mixed order;
for 1<k, <ky<..<k,<p (0<qg< p),let f4 arecriteria of type twolike
ff (W) :=max {fH|A e W), 1=1,2,..q
and the others of type one like
fiW):=Z{fY|A eW).
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In the special case nll criteria can be of type one (g = 0) or of type two (g = p).

Let g' and g7 be functions of type one, and fype two, respectively. We assume that
all criteria of type one are dealing with non-negative arc weights.

The most general problem formulation in our approach, is the following:

lexmin { FHW), .. LSWD g W s G, g (W) s G2, We PS(A) ). (PG)
If we put G' = G? = w, we will obtain a problem without any rastrictinns of
inequality type like the problems (P1) - (P4), If in addition we take p, k& - Mg in AN

appropriate way, we will obtain all the previous formulated problems,

In the procedure given below for solving PG we iteratively solve P2 (and hence
also P1). In order for the procedure to be simpler, we prefer the first criterion to be of
type one and the last one of type two. If the first one is of type two, we put an artificial
criterion [ of type one with [, :=0 for k = 1,.. m, If the last criterion is of type one,
we put an artificial criterion P*! of type two with f,P*!:=1 for k= 1,...,m, so that

pr = fi,+l,
procedure PRPG(A, [, ... JF - of given type, F!, .., FP, S, g" of type |,
g% of type 11, G*, G3, STOP);
STOP := false;
for each vertex V; calculate the shortest g' ~ distance p; from V, to V, using
Dijkstra’'s algorithm;
if p, cannot be defined then there is no path between V, and V, and PG has no
solution and STOP := true

else
begin
define f,° := 0 and f;""" =1 forall k=1,..m;
forl:=1tog+ 1do
begin
find Wll as a solution of P2 using

procedure PRP2(A, f°,f}, ..., F°, F!, ... Fk1 8 STOP)
(* When using procedure P1, the only change will be:

investigate all amA* = (i,7) with temporarily labelled V.,
giESGzﬂIldgl d.lst.anceﬁ'uml’l to Vi +g* ‘l‘P Sdl )

define f* as of type oneby f*, := 0 forallj = 1,... F*' = 0;
drop all arcs A, from A for which f 5 > MW.'}
end

end. (* The optimum solution is W"’w =)

EXAMPLE 5. (for the problem PG)
The graph and all arc weights are given in Figure 4. The problem is
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lexmin { (f1{(W), £2(W), A (W), F4(W)) | g{W) <10, g4(W) <2, We PS(A) ),
where %, f* and g2 are of type two; the others are of type otie.,

fr/e/e/fng /g
Ay: 1/-5/1/-4//1/-3 Ag:  1/-2/2/-2//8/-2
Ay:  2/-4/3/-2//4/-2 A;:  1/-3/1/-4//8/-3
Ag:  Y=1[1/-2 J/8/= Ag:  2/-2/2/-2 l/4/-8
A 1/-4/2/-5//2/-2 Ag:  1/-2/1/-4//3/-1
A:  3/-8/1/-5//1/-4 Ay: 1/-3/8/-1//6/-2

Figure 4.

In this example we have G' = 10,G* =-2,p =4, q=2,k, =2and k, =4,

Since the first criterion is of type one and the last criterion is of type two, we do not
need to define any artificial criteria, ,

For the first restriction of type oneg' (W) < G we have :

Ps=0,p,=5,p3=38,p=1,p =6<G"'=10.

The action of procedure PRP2(A, [ of type I, 2 of type II, F1, S, STOP) gives as
an optimal path W' = (4,,A,, 4,) and W" = (4,, A;), with f{(W") = 3 and f4(W") = -3.
We drop the arcs A, A;, A; and A, from A since their arc weights f? are larger than
AW = -3.

Now after executing procedure PRP2(A, 1,0, f% of type I, f* of type II, F', 0, F3,
8,STOP) we obtain the only solution W= (4,, A, A;) with f{W) =3, fAW) =4,
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Y (W) = -4, which is the solution of the problem with optimal values f}(W) = 3,
f2(W) = =3, f3(W) = 4, f4(W) = -4 and feasible restriction values g} (W) = 6 < 10 and
g2W) = -2<-2.

THEOREM. The procedure given above solves PG in a finite number of steps with
complexity O(n m2).

PROOF. The preliminary step for finding the shortest distances n; from each vertex V;
to the target vertex V. can be executed with complexity O(n m) - Dijkstra’'s algorithm.

The initialization of f and fP*1 needs O(m) operations.

The main loop will be executed g + 1 times. At each iteration one problem of type
P2 has to be solved. It needs m O(n m) operations since all arc weights are nonnegative
- the Dijkstra-like algorithm needs O(n m) operations and in the worst case A can be
partitioned into m subsets of type E; (each subset E; contains exactly one arc). Hence
the complexity of the main loop is (¢ + 1) m O(n m) = O(n m?), which is the complexity
of the whole procedure.

Is W, really a solution of PG? At each iteration of the for-loop the procedure
finds an optimum solution of P2 — let it be W, . At the next iteration Wk will be
neither "better” nor "worse" for the previous cnterm 0,11, ... f* since they are in the
same order in the problem formulation of P2 for the next iteration and-all "worse" arcs
like A, with f%i>f%(W,) have been dropped from the arc set A. Hence W,
minimizes lex:tcngraphmall'y all criteria. The procedure ends after STOP = true unl_wf if

there is no path from V, to V, . This will be the case only if n, cannot be defined.

4. FINAL COMMENTS

Numerical investigation will be done in the future. The procedure seems to be
running fast due to its simplicity and good complexity. It can run after appropriate
changes also if some of the arc weights for the criteria of type one are negative. In this
case PG will be NP-complete since this is also the case for one criterion only.
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