Yugoslav Journal of Operations Research
5 (1985), Number 1, 65-77

AN OVERVIEW OF SOME TRUTH MAINTENANCE SYSTEMS

Mladen STANOJEVIC, Sanja VRANES

Mihajlo Pupin Institute
P.0.Box 15, 11000 Belgrade, Yugoslavia

Dusan VELASEVIC

Faculty of Electrical Engineering
Bulevar revolucije 73, 11000 Belgrade, Yugoslavia

Abstract: Many treatments of formal and informal reasoning in mathematical logic
and artificial intelligence have been shaped in large part by a seldom acknowledged
view: the view that the process of reasoning is the process of deriving new knowledge
from old, the process of discovering new truths contained in known truths. The basic
problem with the conventional view of reasoning stems from the monotonicity of the
reasoning process. The truth maintenance systems solve this problem. Dovle's Truth
Maintenance System — TMS, de Kleer's Assumption-based Truth Maintenance System
~ ATMS, ART's viewpoint mechanism, and BEST' s context mechanism - MEKON will
be described in this paper. TMS and ATMS represent two different approaches in the
truth maintenance, and some variations of these basic ideas are implemented in many
other truth maintenance systems, ART's viewpoint mechanism and MEKON are
similar to the ATMS, but they can solve some problems that neither TMS nor ATMS

can solve,

Keywords: Expert systems, hypothetical reasoning, non-monotonic reasoning,
time-state reasoning, truth maintenance.

1. INTRODUCTION

One of the most important aspects of intelligent behavior is the ability to reason
about, and adapt to a changing environment, permanently reflecting perceived
changes. Truth maintenance (sometimes also called belief revision) is an area of
artificial intelligence concerned with the issues of revising sets of beliefs and
"maintaining the truth in the system" when new information is found to contradict old

66 M Stanojevié et al. / An overview of some truth maintenance systems

information. Typically, truth maintenance systems explore alternatives, make choices,
explore the consequences of the choices and, if during this process a contradiction is
detected, the truth maintenance system revises the knowledge base and gets rid of
contradictions. There are many applications that can use and benefit from truth

maintenance technique some of which are:

—~ Planning systems, that use truth maintenance to detect the source of
problems and to prevent the generation of ill-formed plans;

— Allocation tasks, where the admissible or optimal allocations are
determined;

— Classification tasks, where a member of a class is recognized upon a
complete or incomplete, more or less accurate description;

— Diagnostic systems, that explore in parallel different potential diagnoses;

— Decision making, where different scenarios are made and examined to
assess the consequences of the possible decisions and to choose the best one.

It is interesting to notice the ease with which we solve the apparent
contradictions involving our commonsense beliefs about the world. We routinely make
assumptions about the causes of events, reactions, attitude, or about properties and
permanence of the objects, yet we easily make the necessary corrections in favor of
new evidences. Thus, the set of our commonsense beliefs changes non-monotonically.

Our beliefs of what is current also change non—-monotonically. In one moment of
time we can believe that one assumption is true, while in the other, we can reject it
based on some new evidences. We usually make our decisions based on what we
currently believe, so we must continually update our current set of beliefs. The
problem of describing and performing this updating efficiently is sometimes called the
frame problem.

The third problem with the conventional view actually subsumes the problem of
commonsense reasoning and the frame problem. The problem of control is the problem

of deciding what to do next. To make this choice blindly isn't obviously the best
possible strategy.

Four different ways of belief revision, Doyle's Truth Maintenance System — TMS
[4], de Kleer's Assumption—-based Truth Maintenance System — ATMS [1], [2], [3],
ART's viewpoint mechanism [5], and BEST's context mechanism — MEKON will be
described and compared in this paper.

2. TRUTH MAINTENANCE SYSTEM - TMS

The field of truth maintenance is usually recognized to have been initiated by
Doyle, McAllester, McDermott, de Kleer, and Martins. Doyle's Truth Maintenance
System — TMS [4] relies on justifications of beliefs in its work. It manipulates two data
structures: nodes, which represent beliefs, and justifications — the reasons for the TMS
to believe or disbelieve a certain proposition, As its fundamental actions, the TMS can:

M.Stanojevié et al. / An overview of some truth maintenance systems 67

— create a new node, to which the problem solver using the TMS can attach the
statement of a belief. The manipulation of these statements is left to the
problem solver using the TMS. Nodes are referenced using indexes (N-1,
N-2, ete.);

— add (or retract) a new justification for a node, as a result of application of a
rule or procedure (thus providing non-monotonic reasoning). Rules and
procedures also have the TMS nodes, which they include in justifications they
create;

— mark a node as a contradiction, to represent the inconsistency of any set of
beliefs.

A node contains a proposition and several justifications representing different
reasons for believing the node (e.g., "N-1 propositionl justificationl”). The node is
believed if and only if at least one of its justifications is valid. The TMS uses two types
of justifications: support-list (SL) justifications, and conditional-proof (CP)
Justifications. A justification is a well-founded supporting justification if all of its
arguments (nodes) are non—circular.

The SL justifications contain two lists of nodes: inlisis and outlists. They have the
following form: (SL <inlist> <outlist>). The inlist and outlist are created by the
problem solver as the result of rule firing or procedure execution. Nodes used by that
rule or procedure comprise the content of the inlist and outlist. The proposition
supported by an SL justification is believed if and only if every proposition in its inlist
is believed, and every proposition in its owtlist is disbelieved. Based on SL
justifications, there are two types of specific propositions in TMS. Premises are
propositions whose current SL justifications have empty inlists and outlists (ie., they
are always believed), while assumptions are propositions whose current SL
justifications have nonempty outlists. The meaning is the following: untii there is no
evidence to the contrary (all nodes from the outlist are out), and all the nodes
representing the reasons for believing it are in (all nodes from the in inlist are in), the
assumption is in. The assumptions have non-monotonic justifications.

The CP justifications have different structure from SL justifications. They contain
a consequent, a list of inhypotheses, and a list of outhypotheses: (CP <consequent>
<inhypotheses> <outhypotheses>). A CP justification is valid if the corresponding
consequent node is in whenever each node of the inhypotheses is in, and each node of
the outhypotheses is out. Each time the TMS finds a CP-justification valid it computes
an equivalent SL justification.

The algorithm for the addition of justification is presented in Figure 1. The
algorithm for the retraction of justification is similar.

The TMS solves the problems that stem from monotonicity. The set of beliefs can

change non-monotonically, thus solving the commonsense reasoning problem and the
frame problem, while the control problem must be resolved by the problem solver.

68

M Stanojevié et al. / An overview of some truth maintenance systems

add_justification(in:node, in:justification

add a new justification;

update the beliefs of the affected nodes;

if there are CP justifications then
process CP justifications and
evaluate equivalent SL
justifications;

if there are contradictions then
call dependency-directed
backtracking;

signal changes to the problem solver;

Figure 1. Algorithm for the addition of justification in TMS

3. ASSUMPTION-BASED TRUTH MAINTENANCE SYSTEM

Following Doyle, de Kleer developed an Assumption-based Truth Maintenance
System — ATMS [1], [2], [3], which is, for many tasks, more efficient than the TMS.
De Kleer mentioned some of the TMS limitations that are eliminated in the ATMS:

even when a problem has more than one solution, the TMS algorithms only
allow one solution to be considered at a time. This makes it extremely
difficult to compare two equally plausible solutions, and to find the best
solution;

the TMS forces overzealous contradiction avoidance. If A and B are
contradictory, the TMS guarantees that either A or B will be worked on, but
not both. However, only inferences dependent on both A and B should be
avoided, while the inferences dependent on only A or B should be drawn;

switching states in the TMS is difficult. An assumption can be changed only
by introducing a contradiction, but once added it cannot be removed so the
knowledge state of the problem solver is irreconcilably altered;

an assumption in the TMS is any node whose current supporting justification
depends on some node being out. The set of assumptions changes during the
problem solving and this causes problems to the problem solver which
frequently consults the assumptions and justifications for data;

the TMS algorithms spend a surprising amount of resources finding a
solution that satisfies all the justifications;

the process of determining which retracted, previously derived, data can be
reasserted is called unouting. Unfortunately, unless great care is taken at the
problem-solver-TMS interface, some previously discovered data will be
rederived.

In the ATMS, a node corresponds to a problem-solver datum, while a justification
describes how a node is derivable from other nodes. A justification has three parts: the

M.Stanojevi€ et al. / An overview of some truth maintenance systems 69

node being justified, called the consequent; a list of nodes, called the antecedents, and
the problem solver's description of the justification, called the informant. An ATMS
environment is a set of assumptions. Logically, an environment is a conjunction of
assumptions. A node holds in an environment if it can be derived from the set of
assumptions and the set of justifications. An environment is inconsistent if false is
derivable propositionally. The set formed by assumptions and nodes derivable from
them comprises an ATMS context.

Every node is associated with a set of environments: this set is the node's label.
The label describes the assumptions the datum ultimately depends on and unlike
justifications, is constructed by the ATMS itself. While a justification describes how the
datum is derived from immediately preceding antecedents, a label environment
describes how the datum ultimately depends on assumptions. The basic task of the
ATMS is to guarantee that each label of each node is consistent, sound, complete and
minimal. A label for a node is: consistent if all its environments are consistent, sound if
the node is derivable from each environment of the label, complete if every consistent
environment E in which the node is derivable, is a superset of some environment E' of
nodes label, and minimal if there are not two environments in the node's label such

that one is the superset of the other.

There are four types of nodes in the ATMS: premises, assumptions, assumed
nodes, and derived nodes. A premise has a justification with no antecedents, ie., it
holds universally. The node,

<p, {{}}, {0} >

represents the premise p. An assumption is a node whose label contains a singleton
environment mentioning itself. The node,

<A, {{A}}, {(A)} >,
represents the assumption A. An assumed node is neither a premise nor an
assumption, and has a justification mentioning an assumption. The assumed datum a
which holds under assumption A is represented by

<a, {{A}}, {(A)} >.
All other nodes are derived. The derived node,
<w=1, {{A, B}, {C}, {E}}, {(b), (c,d)} >
represents the fact that w = 1 is derived from either the node b or nodes ¢ and d. In
addition, the node holds in environments {A, B}, {C} and {E}.

The three basic ATMS actions are creating an ATMS node for a problem solver's
datum, creating an assumption, and adding a justification to a node. The algorithms
ensure that, after every primitive operation, every label of every node is consistent,
sound, complete and minimal.

The basic algorithm in ATMS is described in Figure 2.

In the ATMS, a consumer is a rule which does some processing on the datum.
Consumers are attached to nodes, run when appropriate and only once for a given
node. The order of consumer execution has no effect on the final problem-solver state,
but, it has a significant effect on efficiency. In the ATMS an environment is scheduled

70 M.Stanojevié et al. / An overview of some truth maintenance systems

first, and then the consumers dependent on the scheduled environment are executed.
The problem of control is left to the scheduler and has little to do with the internals of

the ATMS.

add_justification(in:node, in:justification)
compute a new label from the
justification;
remove inconsistent and subsumed
environments;
if the new label is not the same as the
old label then
if the node represents contradiction
then
add each environment of the
label to a nogood database;
remove all inconsistent
environments from every
node label;
else
update the labels of all the
consequent nodes
end if;
end if;

Figure 2. The basic algorithm in ATMS

4. ART'S VIEWPOINT MECHANISM

Automated Reasoning Tool — ART is a powerful tool for expert system
development [5). The truth maintenance system similar to the ATMS (but not the
same), is implemented in ART through the use of the viewpoint mechanism. The
viewpoint mechanism in ART is strongly influenced by the fact that ART is a tool for
expert system development.

Expert systems find their use in solving the problems for which the applicable
algorithms don't exist, or if those algorithms exist, their use is too expensive. Typical
problems suitable for the expert systems are the problems that can be solved by
searching the solution space. The problems that neither TMS nor ATMS can cope
with, are the problems where every point in the solution space is defined by a fixed
number of relevant variables. Every of these variables can take many values, but for
one point every variable has exactly one value.

The difficulties in solving this kind of problem in TMS arise from the fact that
only one datum representing the variable's value can be in at a time. All the data
representing other variable values must be out. If there are only two variable values A

M. Stanojevié et al. / An overview of some truth maintenance systems 71

and B, then the SL justification for the datum A would be (SL () (B)), while the SL
Justification for the datum B would be (SL () (A)). Those SL justifications are not well
founded and thus not permitted in the TMS.

The ATMS cannot be used to solve this kind of problem, because it is not able to
generate a new assumption using derived nodes, The ATMS can solve these problems
only if all the possible assumptions (dependent on the problem state) are known in
advance. The number of the possible assumptions is very large even for a small
solution space. In order to find all the possible assumptions it is necessary to examine
each point of the solution space, and thus to solve the problem (in which case we don't
need the ATMS at all).

In the ATMS a datum once asserted cannot be retracted later. This is not the case
in ART. This has the advantage in that it allows negated assumptions, but doesn't
allow disjunctions of extents. Thus, multiple justifications can cause problems for ART.
If a second justification is found for a datum, and this second justification holds in an
environment which is not the same as, a subset of, or a superset of the environment
supplied by the first justification, then a new node with the same datum must be
created to accommodate the new environment and justification.

A node in ART contains a datum, and an extent which corresponds to a label in
ATMS terminology. Unlike the TMS and ATMS, ART's viewpoint mechanism doesn't
use justifications in the creation of labels. The viewpoint mechanism creates explicit
contexts called viewpoints, and a datum is always asserted in a current viewpoint.

An extent describes in which viewpoints a datum holds. In ART there exists one
meta viewpoint level (containing a meta viewpoint), and an arbitrary number of user's
viewpoint levels, Figure 3). Facts asserted into the meta viewpoint are premises (in
TMS terminology), because they are visible from all other viewpoints, Their extents
are mefa. When a fact is retracted from the meta viewpoint, then the whole node
representing it is retracted. The meta viewpoint level is always present, while the
user's viewpoint levels must be created explicitly.

User's viewpoint levels are hierarchically ordered. The name of a viewpoint from
the first user's viewpoint level consists of the viewpoint level name and the number of
viewpoint. The name of a viewpoint from the second viewpoint level is composite and
consists of the name of the current viewpoint from the first level and a name that
contains the name of the second level and the number of the viewpoint. The names
from other viewpoint levels are defined in a similar manner. The inheritance is defined
between viewpoints from the same viewpoint level. The descendant viewpoints inherit
the data from the ancestor viewpoints. The data on the meta viewpoint level are visible
from every user's viewpoint level, while the data from a viewpoint in an outer user's
level are visible in all viewpoints defined in inner levels. When a datum is asserted into
a viewpoint at the user's viewpoint level, the corresponding extent will contain the
name of that viewpoint. If a datum is retracted from a viewpoint on the user's level,
then it is shadowed in that viewpoint, thus becoming invisible in that viewpoint. The
extent of this datum will contain the name of the viewpoint where the datum was
asserted, and the names of the viewpoints where it was retracted. If the same datum is

72 M.Stanojevié et al. / An overview of some truth maintenance systems

asserted in an offspring of the viewpoint where it was retracted, then a new node must
be created for that datum.

inheritance links ' Q meta level
- visibility links A
= ;L a5 h““u“aB
al .-~ a2 C I
level - M : _—
d Q T 7 . N ¢

O O user's

: | a3

. | = a4 levels
? | . i a5, b3 | . a6, b4
lovel : 'i A O
b O O</ :
at, b 2 b2) O
a3, b3 ad, b4

Figure 3. Viewpoint levels in ART

In ART the declarative knowledge is represented using hypotheses, facts, and
schemata (frame-like objects implemented using facts). Hypotheses correspond to
assumptions in ATMS terminology, while facts correspond to premises, assumed and
derived nodes. Hypotheses are used in hypothetical reasoning, cannot be retracted and
must be unique. Hypothetical reasoning subsumes the problems that can be solved
using ATMS, and the problems that change the state using some assumptions. Facts
are used in the time-state and hypothetical reasoning. Time-state reasoning is used to
reason about the set of facts that change in time. Facts are used to represent the state
variables.

The basic algorithms of the ART's viewpoint mechanism are simple. When a new
datum is asserted, a new node is created, if this datum is not inherited from the
ancestor viewpoint. When a datum is retracted from the current viewpoint, then the
extent of the corresponding node is shadowed.

ART's rule language provides a rich set of commands for the use of viewpoint
mechanism, It is possible to create new viewpoints, to change their contents, to poison
them (to delete a viewpoint if it contains a contradiction), or to merge them. The set of
commands for the change of the current viewpoint level or the change of the current
viewpoint is also available,

The problem of control in ART is solved using the agenda mechanism in rule
scheduling. The depth—first search strategy with the use of priorities is implemented

M .Stanojevié et al. / An overview of some truth maintenance systems 73

as the control strategy in ART. MEKON has been developed in an attempt to
overcome this rigidity in control and other drawbacks of ART, TMS and ATMS.

5. BEST'S CONTEXT MECHANISM - MEKON

Blackboard-based Expert System Toolkit — BEST is a complex multiparadigm
tool for the expert systems development [8] that uses the blackboard architecture,
BEST's context mechanism — MEKON is in its basic ideas similar to the ATMS, while
the rule language which enables the use of MEKON is similar to ART" s rule language.
The implementation of MEKON was influenced by its application in expert systems.

MEKON provides belief revision, contradiction handling and non-monotonicity
handling. Belief revision must be performed whenever a state transition is performed
to reflect the new values of state variables. Contradiction handling is used when an
inconsistent problem state is discovered. This problem state will be removed from the
decision tree and the examination of the unproductive branch will be stopped.
Contradiction handling improves the efficiency of the overall system by constraining
the search space that must be examined to find problem solutions. Non—-monotonicity
handling allows solution of search problems with incomplete information. Without
MEKON, a user would have to implement these features from scratch each time he
programs an application to solve a search problem. Hence, the time needed to
implement such applications can be significantly reduced if MEKON is used.

Using MEKON all kinds of problems that can be solved by ART, can be solved by
BEST too. The differences between viewpoint mechanism in ART and MEKON are in
the implementation of the truth maintenance system, control, and the rule language.
The rule language in BEST that facilitates the work with MEKON is more

comprehensive and easier to use than ART"s rule language.

MEKON is an Al technique for the simultaneous exploration of alternative
hypotheses leading to possible problem solutions. It might be of enormous help when
there is uncertainty in determining a solution to a problem. The essence of the
technique is that a separate context is created for each point in the solution space
examined during the problem solving. A context is a label for a set of hypotheses, facts
and concepts (frame-like objects) [6] that comprise the content of this context.
Hypotheses correspond to assumptions in the AMTS terminology, while the slot values
of concepts and facts correspond to the values of state variables. MEKON is also used
to enhance the efficiency of problem solving by sharing information across a solution
search space.

The use of MEKON allows for the maintenance of models of multiple hypothetical
situations. States of the problem represented by contexts can be analyzed in detail and
compared using rules. When an undesirable context is generated, it is detected by a
special kind of rules (constraint rules) and a bad search path is poisoned. The
exploration of the search space is then continued using rules that generate other

states.

74 M.Stanajevié et al, / An overview of some truth maintenance systems

A node in MEKON contains a datum and a context to which this datum belongs.
This solution requires the existence of one node for each instance of a datum in a
context. There can be many nodes in the system containing the same datum defined in
different contexts at the same time. This redundancy is utilized for efficiency reasons
(the classical time-space tradeofT).

A problem to be solved by BEST can be decomposed into many subproblems
which will be solved using Domain Knowledge Sources — DKSs. The DKSs are the basic
computation agents that can be programmed using the most appropriate programming
paradigm for the given subproblem. The DKSs communicate with each other using
Global Domain Blackboard — GDBB. In order to provide locality of data, every DKS can
have its local blackboard - Local Domain Blackboard (LDBB).

Each blackboard (global or local) contains two context levels — meta and user's
level (Figure 4). The meta context level consists of a single meta context, while the
arbitrary number of contexts comprises the user's context level. A user level context
represents a set of facts and concepts said to be true in that context. There is also a set
of facts and concepts defined at meta level that are visible in every context at the
user's level, thus behaving as premises (in TMS terminology). Contexts represent a
collection of changes over time or hypothetical situations. Contexts on the user's level
inherit all data from their ancestor contexts. If desired, the inherited data can be
deleted selectively, and new data can be asserted. Contexts comprise the structure of
each blackboard.

- meta level o meta
“'f}_ e ,.*';___,__.._—1.-‘ nj' , . I: | .
! ,.."\"‘ z3 :
Global Domain Blackboard | user's 22)4——{) =
(GDBB) level z 3
a b z
o O o]
o——c::_f;;j} (}—(}_‘:_’;:) nae D_U_._-_:—t:ﬂ
(])
inheritance
Local Domain Blackboards links
(LDBBs) m:l:hty

Figure 4. Blackboard layout in BEST

M. Stanojevié et al. / An overview of some truth maintenance systems 76

Every blackboard corresponds to one domain and has a unique name. The name
of a domain that corresponds to the GDBB is global, while the names of domains
corresponding to the LDBBs are defined by a user. Those names are used for making
the names of contexts on the user's levels. The domain name combined with the
number of created contexts increased by one makes the name of a new context. The
existence of only two context levels on each blackboard simplifies a lot the use of
MEKON. There is only one visibility rule for the data: all data defined in the meta
context on one blackboard are visible in all contexts at the user's level on the same

blackboard.

The data within each context are internally consistent, but data across the
contexts may be contradictory. That is precisely the point of creating many contexts -
to explore the implications of contradictory data. However, contexts that violate
constraints established by the problem solver through the constraint rules are deleted
(poisoned), reducing the number of contexts to be searched and limiting the solution
space.

A datum is always asserted into the current context on the GDBB or the current
LDBB. The same holds for the retraction of a datum. When a datum is asserted in the
current context, it is checked first if the corresponding node exists. If such a node
exists, there is nothing to do, otherwise a new node is created. When a fact is retracted
from the current context, the existence of the corresponding node is checked first. If
that node is defined, it is retracted, but if it isn't, there is nothing to do.

The basic algorithms in MEKON are simple and efficdent. When a datum is
asserted, only a new node should be created. If a datum is retracted, then the
corresponding node will be deleted. During the creation of a new context, all the nodes
that belong to the ancestor context are copied, thus becoming available in the created
context. MEKON maintains the structure of contexts by updating the lists of ancestor,
and descendant contexts for each context, as well as the context depth in this
structure.

BEST"'s rule language allows a user to exploit the full power of MEKON. It is
possible to create, poison, change (by asserting, retracting, or modifying data), or
merge contexts. The change of the current context, current context level (meta or
user), as well as switching between GDBB and current LDBB are also permitted.

BEST user interface facilitates a graphical representation of the context content
at any time. Each context (network node) can be moused to show the hypotheses,
facts, and concepts associated with the context. It is also possible to add or delete
interactively a fact or concept, what is of enormous help in "what if" analyses and
problem reformulating. The context can be analyzed and problem solver rerun with
different data from that point further, rather than reinitializing and rerunning the

entire problem.

The control in BEST is hierarchically organized. The higher level of control is
responsible for the DKS scheduling and activation, while the lower level determines
the rule firing within the DKS execution. The higher level of control is implemented
using Domain Knowledge Source Activation Rules (DKSARs), depth-first strategy
with priorities, Knowledge Source Agenda (KSA), criterion (if one is defined) and

76 M.Stanojevié et al. / An overview of some truth maintenance systems

meta-rules. To each DKS corresponds one DKSAR whose if-part contains all the
preconditions necessary for the DKS activation, while then-part initiates the DKS
execution. If many DKSs are solving the same subproblem, it is possible to define a
criterion to determine which of them will actually be executed. The criterion can be
the DKS' efficiency, value, reliability or a heuristic function that combines those
criteria. The meta-rules can change the sequence of DKSs execution using the data on
the GDBB and the KSA. The lower level control is very flexible. Using set—control rules
[7] different search strategies with or without priorities (depth-first, breadth-first, A*,
hill-climbing, branch-and-bound, beam-search, best-first, etc.) can be applied. Meta—
rules can change the order of rule firing using the data on the LDBB, GDBB, and the
rule agenda.

Problem solving is typically an exploratory, incremental process. That is, one
starts with a set of beliefs about the world and then considers alternative choices that
modify these beliefs. BEST allows us to reflect the structure of the solution space in
the structure of the context network. One can model alternatives or changes to a
particular context by creating a descendant context. Different search strategies and
meta-rules are implemented in BEST to explore efficiently the alternative pathways to
solutions.

6. CONCLUSIONS

In this paper an overview of some truth maintenance systems is presented.
Doyle's TMS and de Kleer's ATMS are the representatives of two different approaches
in resolving the truth maintenance problems. The TMS is based on the use of
justifications, while the ATMS relies on the use of assumptions. The viewpoint
mechanism in ART, and MEKON are variations of the ATMS, but contain some
differences which stem from the tuning of their truth maintenance systems to enable
the solving of some problems that can arise in expert systems' application. MEKON is
an ATMS-like truth maintenance system applied to the blackboard architecture. The
most important details of these four truth maintenance systems are presented in this
paper with the emphasis on how the problems of commonsense reasoning, frame
problem, and the problem of control are resolved in these systems. To some extent
these four systems are compared with each other by analyzing their advantages and
disadvantages.

REFERENCES

[1] de Kleer,J., "An Assumption-based Truth Maintenance System", Artificial
Intelligence 28 (1986) 127-162.

[2] de Kleer,J., "Extending the ATMS", Artificial Intelligence 28 (1986) 163-196.

[3] de Kleer,J., "Problem Solving with the ATMS", Artificial Intelligence 28 (1986)
197-224.

(4]
5]

(6]

(7]

(8]

M _Stanojevié et al. / An overview of some truth maintenance systems 77

Doyle,., "A Truth Maintenance System”, Artifictal Intelligence 12 (1979)
231-272.

ART - Automated Reasoning Tool User's Manual, version 3.0, Inference
Corporation, Los Angeles, CA, 1987.

Vrane§,S., and Stanojevié, M., "Prolog/Rex — A Way to Extend Prolog for Better
Knowledge Representation”, IEEE Transactions on Knowledge and Dala
Engineering 6/1 (1991) 22-37.

Subagié,P., Stanojevié,M., Stevanovié,V.,, and Vraned,S., "Adaptive Control in Rule
Based Systems", in: A.Moudni, P.Borne, S.'Tzafestas (eds.) IMACS Symposium
Modeling and Control of Technological Systems, Lille, France, Gerfidn, May
1991, 764-769.

Vrane$,S., Stanojevié,M., Luéin,M., Stevanovié,V., and Subadié,P., "A Blackboard
Framework on Top of Prolog”, Expert Systems with Applications T7/1 (1991)
109-130.

