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Abstract: In this paper an algorithm is described for an exact construction of digital
convex (Zs +I)- gons of minimum diameter. A complete family of auxiliary so-called
perfect Basic b-tuples is obtained by applying this algorithm. The required optimal
(Zs+ I j-gons can be easily constructed from this family.
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1. INTRODUCTION

A digital convex pol)"gon. (shortly d.c.p.) is a polygon whose all vertices are points
of the integer grid and all the interior angles of which are strictly smaller than If

radians. The diameter of a d.c.p. is the minimal edge size of the enscribed digital
square with edges parallel to the coordinate axes.

The following optimization problem is conside red:

Given an odd natural number Zs + I, determine a d.c. (Zs + I)- gon of minimum
diameter mind(Zs + 1) .

The analogous problem for Zs-gons was completely solved in (4). A construction of
almost opt imal d.c. (Zs + I)- gons was given in (51; these (2s + I)- gons are almost
optimal in the sense that their diameters are not grea ter than
1 + mind(Zs + 1).

In this paper the last step is made for completion of these results: an algorithm is
given, the results of which are used for an exact construction of opt imal digital convex
(2s + I)-gons.
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2. PRELIMINARIES

Let Y . and x respectively denote the minimal y--coordinate and the maximal
mill m<U:

a-coordinate of the considered d.c.p. P. Generally, the SE-arc (south-east arc) of P is
the sequence of consecutive edges (V" Vi + I), 1 s i s k- l , where Vi denotes a vertex
(x i ' y;) of P;xI < ... < xi = xlO1Q,% ;y...... = YI < ... < Yi ' In particular, if the polygon P has a

lower horizontal edge (Vo,VI) (Vo =(.rO'YI )' VI = (XpYI)' Xo < XI) ' then this edge is
additionally considered to be the first edge of the SE-arc. The NE-arc, the NW-arc
and the SW-arc of a d.c.p. are defined in the analogous way.

Given an edge e = «x I ' Yl ) ' (x2'Y2» of a d.c.p., the edge slope of e denotes the
fraction:

Irt - x21 if e e NE - or SW - arc ; lYI -Y21 if e e SE- orNW -arc,
I>'I-Y21 Irl-x2 1

while bd- Iength (shortly: bdl ) of the edge e denotes the sum IxI -x21+ b'1 - Y21.

DS(p, q ) denotes a digital square with the property that each arc has exactly one
edge with the edge-slope q Ip , where p and q are relatively prime natural numbers.

If the cor responding arcs of some two d,c. polygons PI and P2 have no common
edge slopes, then there exists the Minkowski sum of PI and P2' which is a uniquely
determined third d.c.p . P3 (for more details see, e .g., 16]). Each arc of P3 includes all the
edges of the corresponding arcs of PI and P2' sorted 60 that the convexity oondition is
prese rved. The diameter of P3 is equal to the sum of the diameters of PI and P2'

MS<P) denotes the minimal (digital) square (with edges parallel to the coordinate
axes) in which 8 d.c.p . P can be inscribed.

A "projection of an edge" of a d.c.p. P is 8 projection of that edge to an edge of
MS(P) which is not "hidden" by P (thus each "oblique" edge of P has exactly two
projections). _.....

2.1. A BOUND, A CONSTRUCTION AND TOLERANCES

A theo retical lower bound for diameter of 8 d.c. n-gon can be derived from t he
following obse rvations :

Let M i n.sum(n ) denote the minimal possible sum of bd-Iengths of n digital edges
which might be included in to 8 d.c.p . P. We are going to make the notion of M in.sum (n )
more precise:

Since the number of summands is fixed, the minimization requires the summands
to be as small as possible. Such a choice of summands is naturally performed by the
following "greedy" algorithm: choose as many summands equal to 1 as possible, then
proceed with summands equal to 2 and 60 on. All these summands are of the form
(p + q), where q Ip (q = 0, I , ... ,p = 1,2, ... ) is an edge slope . The followin g two rules
must be obeyed by the edge slopes q I p : the numbers p and q are relatively prime; each
q I p can be used at most four times (at most once in each one of the four arcs of P) 
that is, it has at most four associated summands (p + q) in M i n.stun(n ).
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A family { P(t) I t = 1,2, ... } of optimal d.c. a s- gens was int roduced in {7] (sec also
(8J). Each arc of the polygon pet) contains all the possible edge slopes q I p satisfying
P + q S t . The number of vertices and the diameter of the polygon p et ) are denoted by
u( t) and d el) respectively.

QDe can derive ({ I I> that the functions v (t) and d (t) can be expressed in terms of
the Euler funct ion ¢ (;<i) denotes the number of integers between 1 and i which are
relatively prim e with i : e .g.,;(1) = I , ;<3) :::: ;(4) = 2, 4>(5) = 4) as follows:,

v(l) =4 · L;<')
i " 1

,
d (t) = L i .;<i)

i " 1

Let 11 e (v(t-1), v (t» .

The diameter of a d,c. n-gon P cannot be smalle r than one fourth of the perimeter
of M S (P). On the other hand, M i n.sum (n ) is 8 lower bound for this perimeter .
Conseque nt ly, 8 greedy lower bound gdlben) for diameter of n d.c. n-gon can be
expressed as:

cdlb(n ) '" fMins: m (nll '" d (1 - 1)+f(n - 1)(:-1)) ./1
A d,c. n-gon for n odd is called perfect if its diameter is equal to 1 + gdlb(n ) for

I mod. 4 = 0 and gdlb(n) otherwise . Namely, it was shown in (5) that there are no d.c.
n-gons with n odd, t mod 4 = 0, and diameter equal to gdlb(n).

Our construction of perfect d.c. n-gons is based on the key concept of perfect
Basic b-tuples.

A Basic b-tuple B is defined as a collection of b edges partitioned w.r.t . the arcs
which satisfies that each edge slope of B is used in at most three arcs. Note that B can
be used as a su mmand of a Minkowski sum and that MS(B) is well-defined. In itial
as-gens associated to B are the Minkowski sums of s arbitrary different 4-gons of the
form DS(p, q), which satisfy the following conditions; p + q S I ; the edge slope q Ip is
not used in B; all the edge slopes q' Ip ' which are not used in B and which satisfy
q' + p' < q + p - are used in the corresponding lnitial4s-gon.

A Basicb-tuple B is called perfect if it can be used for the construction of a perfect
d.c. n - gon. The construction of perfect Basic b- tuples is the goal of the algorithm
described in Section 3 .

Let hi' for i = 1,2,3,4 denote the difference between the diameter of a Basic
b-tuple B and the sum or projectio ns ofedges ofB onto the north, west , south and east
edge ofM S (B) respect!....ely.

A perfect d.c. n-gon P is constructed from a perfect Basic b-tuple B and a
corresponding Ini tial4s- gon I tb + 48 = n) by applying in turn the following two steps:

1. Construction of the Minkowski sum Tof Band 1.

2. Replacement of edges of T 'with edge slope 0 11 ("flat- edges) in the i-th arc
( i = 1, 2, 3, 4 for NW-, SW-, SE- and NE-arc respectively) by edges with edge
slopes 0 I (hi + 1).
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Let a per fect Basic b-tuple B be devoted to the const ruc tions of perfect a-guns
satisfying (n -b) mod 4 = 0 and n E (v( t- l) , v(t » . We say t hat B leaves a gap if B
can not be used for constructions of perfect d.c. n- gons with some of the considered
values of n .

Let a Basic b-tu ple B be used for th e construction of a d.c. n-gon P. The used
tolerance (shortly; UT) of B is equal to the difference of the sum of bel-lengths of edges
of P and 1tlinsum (n ).

Assu me now that both B and P are perfec t. Then the allowed tolerance (shortly;
AT) of B is equal to th e differe nce of t he perimeter of MS (P) and Minsum (n ). It is
obvious that AT :<!:: UT and that AT - UT = k 1 + k2 + k3 + k.. .

It turns out that AT depends merely on n' :: n mod 4 and t ' = t mod 4; its values
are given by Table 1:

Table 1•

(n', t ') (1 . 0 ) (I, I ) (1, 2 ) (1, 3) (3 ,0) (3 , I) (3 , 2 ) (3 ,3 ) I,
AT 4 3 2 I 4 I 2 3

3. ALGORITHM

There are four (hierarchically nested) levels of search for perfect Basic b-tu ples :
Cases determined by combinations of used bd-Iengths, bd-Iengths u sed within a Case,
edge slopes of a given bd-Iength and arcs in which a given edge slope is used. For
example, if Case and bel- length are fixed, then, when looking for an edge slope of that
bd- Iength, all the possibilities are tried, and for each one of them all t he possibilities
for the arcs are examined. The preparatory stages of the algorithm include Case level 
generation of all the Cases (Section 3.1), as well as the preparation of the edge slope
level - generation of all the edge slopes , which might be u sed in a Case (Section 3.2).

3.1. LIST OF CASES

When looking for perfect Basic b- tuples, we make the complete List_oCCases for
a choice of bd-Iengths of their edges. The diameter and the used tolerance of these
Basic b-tuples are determined by the Case and denoted as Dio metert.Case) and
UnCase) respectively.

List_oCCo.ses is determined by hand, depending on n mod 4 in {l,3} . The
partition into Cases is an application of the divide-end-conquer approach to the
search: a huge amount of unusable combinations is eliminated.

Each Case requires a fixed number of edges with a given bdl . Moreover , the
number of edge slopes with that bdl is sometimes (see mode 1 In Sect ion 3.4) also
Fixed, as well as the number of edges (arcs) wi th the correspo nding ed ge slope.
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As an example, we give List_of_Cases (Table 2) for choice of bd- Iengths of edges
of perfect Basic (4$ + I)-tuples. which can be used for n = u(1-0 + 1. Each Case is
written in the fonn of sum of the used bod- length s. A summand of the form q - pit - i)
means that the corresponding perfect Basic b-tuple should use q distinct edge slopes
with bdl = 1- i , so that each one of these edge slopes is used in exactly p arcs . If either
of the integers q and p is equal to 1, then it is omitted . A summand of the form qt or
q(t + i ) means that the perfect Basic b-tupte shou ld use q edge slopes with bdl = t,
respectively with bdl = t + i (these edge slopes, when used in distinct arcs, need not be
distinct). Each sum in the list is followed by UnCase) . The additional denotation ! (w )

means that a perfect Basic b-tuple ....-ith such a choice of bd- lengths has been
effectively constructed (would leave no gaps).

Table 2.
311-4 1+ 21 4 2 - 3[t- lJ + 2t + It+ 1) 3
311- 3) + 311-11 + 31 4 2 " 3[t- l J+ t + 2lt+ I) 4 w
31' -3) + 21 3 2 " 3I t-1) + 2t + {t +2 ) 4
3(t-3J+ t + (t +1) 4w 31'-1) + 2[1-11 + 41 3 !
2 - 3[t-2) + 3t 4 31'-1) + 211-1J + 31 + (1+ 1) 4

31'-21 + 2' 3(1- 1] + 41 4 3[1-1) + II-I) + 51 4

311- 21 + 2' 31'-1) 4 w 31'-1) + II-I) + I 4

311- 2) + 31'-1) + 31 3 2 - 2(t- l ) + 5t 4

311-21 + 311- 1J + 21 + (1+ 1) 4 2- 2(t -l) +1 4

31'-21 + 21'-1) + 41 4 31'-1) + 21 1

311-2) + 211-1 ) 4 w 311-1 ) + I + (1+1) 2! w

3(1- 2) + 2t 2 3[1- 1) + 2(/+ 1) 3w
31'-2) + I + (1+ 1) 3w 31' - 1) + I + (/ + 2) 3w
31'-21 + 2(1+1) 4 w 311-1) + (1+ 1) + (/+ 2) 4w
31'-21 + I + (1+ 2) 4 w 31' - 1) + I + (1+ 3) 4 w
211-2) + 31 4 2(1- 1) + 3t 2

4 " 3(t- ll + 5t 4 21'- 1) + 21 + (/+ I) 3 !

4- 3[t-lJ +t 4 21' - 11 + I + 2(1+ 1) 4 w
3 - 3It- 1) + 4t 3 21'-11 + 2t + (1+2) 4

3 ' 31'-11 3w 11-1) + 41 3

3 · 3It - l ) + 31 + (1+ 1) 4 II-I) + 31 + (1+ 1) 4

2 ' 311- 11 + 31 2 !

3.2. CANDIDATES FOR EDGE SLOPES

Given n e (v( t - 1), v(t», a family F(bd/ ) of candidates for edge slopes of a perfect
Basic b-tuple is generated for each bdi e l l - AT , 1 + A T I. Given a bdl of the form
4k + u (k =0, 1, ... , u =0, 1, 2, 3), the candidates in f'(bdO are chosen to be of the
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bilinear form (i -k + j ) / « 4 - i ) · k +(u - j n , so that the denominator and numerator are
relatively prime. In particular, in the case bdl = 4k + 2 we distingu ish the subceses
bdl =8k + 2 and bdl =8k + 6. The definition of perfect d.c. n-gons motiva tes the
partitioning w.r.t bdl mod 4.

Table 3 is obtained by quoting merely one of each two mutually reciprocal
fractions of the family Ftbdl )•

. Note that for each odd bdl there exists a subfam ily of F(bdl) of the form
2' / (bdl - I - (~ - 1» for s = 0,1 , ... .l log2(bd'l) J. while for each bdl satisfying
bdl mod 4 = 2 there exists a subfamily of the Conn «bdl /2) - 1 - (2' -1) /

«bdl/ 2) - 1 + (2' + I» , for s = I , 2, ... ,[Iog, (bdl /2) J.

Table 3•

bdl candidates
1 2k-1

4k
4k + I ' 2k + I

4k + 1
k 2k 2' , =0, I, ... ,l log, (4k +1)J

3k +1' 2k +1' . '4k -(2 -I)

4k + 2
1 2k-(2' -1) , =I, 2, ... , l log, (2k + I)J

4k +1' 2k + (2"+l) '

4k + 3
k+! 2.4: +1 2'

s · 0, I, _._. LIog2(4k + 3)J
3k+2 ' 2k +2 '

,
4k - {2" - 3)

8k + 2
1 2k +1 4k - (2' - 1) ,= I, 2, ... ,llog,(4k + I)J

Bk +1' 6k +1' 4.4: + (2' +1)'

8k + 6
1 2.4: ... 1 4k - (2'- 3)

s .. 1, 2, · ·· ,Llog2(4k + 3)J
8k+5 ' 6k+ 5 ' 4k +(2' +3)'

3.3. SKETCH OF THE ALGORITHM

The shell of the algorithm for the construction of a complete family of perfect
Basic b-tu ples, which can be used for construction of perfect digital convex n-gons for
each n odd - has the following outlook in PseudoPasca.l:

BEGIN (. main . )

Generate F(bdl), bdl e {4k - 4, ... ,4k + 4 ) v {Sk, ... ,8k + B );
(. these bd/-s are sufficient for all the Cases . )

FOR I. mod4Hn (1 ,31 DO BEGIN
Generate the LUt_of_Co.ses;

(. for bd-lengths of edges of perfect Basic b-tuple . )
FOR (I mod 4) in {O, I, 2, 3} DO BEGIN
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Calcu la t.e AT(" Table 1 . );

Determine interval ( t - AT, t +AT 1 for bdl;
Found: = 1"'ALSE;

REPEAT
Take next Case from the List_oCCases;
IF UT(Casc ) S AT T HEN BEGIN

Calculate Diameter(Case);
Ini tialize Basic o--tuple;
Augment{No_slope, No_arc(s ), 0) END

UNTIL Found or (Lis t_of_Cases is exhausted)
END (. for t . ) END (.. for n .. ) END. (- main ")

V..'e also sketch the re-cursive procedure Augment, which searches for perfect
Basic b-tuples by backtracking. This procedure inoorporates the last three levels of the
search; in particular, the bdl level is trea ted. by Jump, while the WHILE loop searches
t hrough the edge slope level and the arc level a t the same time.

Each call of Au gmen t in t he muin program corresponds to an attempt
(determined. by Case) for const ruction of a perfect Basic b-tuple, while each successful
recursive call inse rts one or more edges with the same edge slope into the current
Basic c- tuple Ic < b).

PROCEDURE Augment(Last_slope, Last_orc(s) , Last_diameter);

BEGIN
IF Completed TH EN BEGIN

Print perfect Basic b-tuple;
Pound :» TRUE END

ELSE BEGIN
IF the current Basic c- tuple has the sufficient number
of edges with bdl = bdl(Last_slope) THEN BEGIN (. -Jump ")

bd/ := the next bd- Iength required by the Case;
New_slope := the first candidate of Fi.bdl>;

New ore(s) := the first possible;
F(bd/)_exhousted := I"ALSE; END (. dump " )

ELSE BEGIN (. an attempt for regular advancing . )

bd/:= the bd- Iength of Last_slope;
U' Last_orc(s ) = last possible THEN

IF Last_slope is the last candidate in ]i'(bdl> THEN
F(bdl>_exhausted := TR UE

E[.';E BEGIN
N ew slope := the nert candidate in Fi.bd/);

New_orc(s ) := the first possible END
ELSE N ew_orc(s ) := the next possible END;
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WI{ ILB NOT F(lxJl )_ullOusted DO BBGIN
Inscrt (New_slope, Ncw_ord s), New_diameter );
IF FCR8ih lc(A/lgm.entcd_tuple) THEN

AugmcnUNew_slope, New_arc(s) , New_diameter );
Dclctc (Ncw slope, New arc(s), Last diameter );- - -n,-New_slope is the last candidate in F(bdl) AND
New_are(s) = last possible THEN

F(bdO_cxhausted := TRUE;
ELSE IF New_ard s) = last possible T HEN BEGIN

New_slope := the next can dida te in F(bdl);
New_are(s ) := the fir st possible END

ELSE Ne w_arc(s) := th e next possible
END(+ while +) EN D(+ if not Completed +) END(+Augment +);

3.4. SOME FURTHER EXPLANATIONS ON AUGMENT

We elaborate some details within the procedure Augmen t:

Completed is the Boolean var iable which becomes true when 8 perfect Basi c
b-tuple (where b is the number required by Case) is cons tructed. In that moment the
Boolean variable Found becomes true and breaks the REPEAT loop in the main
program .

FeasibIe(Augmented_tuple) is the Boolean function which IS true iff
Augmentedfuple satisfies the following conditions:

its diameter is not greater th an Diameler(Case);

no edge slope is used in more than three arcs;

if the numbers of edges in NW-, SW- , SE- and NE-arc are denoted by nw,
sw, se, ne respec tively, then nw ~ sw, nw z se, sw ~ ne (this condition
corresponds to avoidance of symmetry and shortens the search within
unsuccessful branches of the backtracking tree),

During the search for edges of a perfect Basic b-tuple, we distingu ish two modes:

mode 1 (bdl :::; t) : given an edge slope p lq withp + q < t, all the arcs of B in which
that edge slope will be used (at most three of them) are chosen at once
(the edge slope is treated as a whole);

mode 2 (bdl ~ t) : each edge (= the ordered pair of an edge slope and an arc) 15

chosen independently of the others.

Note that both modes may be used with bdl = t (this bdl is pre ferable, since
tolerance is not used), During the backtracking, the modes can be alternatively used
several times, Determination of New_slope, New_arc(s) , as well as the performance of
the procedu res Insert and Delete - are mode-dependen t.
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If Case requires the edges wi th edge slope = New_slope to be inserted into j arcs
(j e {I , 2, 3} in m ode 1 and i = 1 in mode 2), then New_arc(s ) is chosen as the
lexicographically next combination of four arcs, without re petitions, of order j. The
attributes "the flr 6t possible", "the next possible" and "the last possible" arc in
accordance with this lexicographical order.

The Boolean variable F(bdl)_exhausted becomes true if there are no new
possibilities for New_slope and New_arc (s ), within the given bdl . Note that each pass
through the WHILE loop corresponds to onc bdl.

The procedure Insert. effectively inserts the edge{s) with edge slope = New_slope
into the arc(s ) determined by the combination New_CU'C(s ). In th is way the
Augmented_tuple is produced and its diameter (called New_diameter) is determined. If
the insertion implies that the Augmented_tuple is not Feestble or the recursive call of
the procedure Augment terminates with failure, the reverse procedure Delete is
activa ted; it re turns the Augmented_tup le and its diameter into the previou s state
(before the insertion).

4. PERFECT BASIC b- TUPLES

In t his section we present the main result of the paper, which is obtained by the
algorit hm of Section 3: a complete collection of perfect Basic b-tuplcs, for
constructions of perfect d.c . a-goes for each odd n . T he Basic b-tuples in the collection
are partitioned w.r .t. ten cases, depending on n mod 4 and t mod 4; in particu lar, two
cases are used for t = 4k +2 :t =Bk +2 and t =Bk + G.

The data for each perfect Basic b-tu plc B are listed. The firs t part of a list consists

of the denotations of the form !!.. (List_or_arcs ), where!J... is an edge slope (written in
p P

th e bilinear fonn) used in those arcs of 8, which are mentioned in List_or_orcs

u, 2, 3, 4 denotes NW-. SW- , SE- and NE-arc respectively).

The second part of a list contains: the number b; the lower bounds for k and n, to
which B is applicable; the diameter d of B, which is equal to m ind (n ) - gdlb{n - b); t he
values g of gaps, which are left by B (+i stands for the gap u(t - 1) + i , while - i stands

for the gap u(1) - i ).

Case l. n mod 4= I, t = 4k

3k - I (13) 2k - I (14) 4k (2)
k 2k+ 1 I '

b =5, h i , . >17, d : 5k
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C88C 2. n mod 4 = I, I = 4k + I

3k + 1 (13) 2k + I (23) 1 (1),
k 2k 4k+ I

b =5, k '<! I,

2k + 1 (123)
2k- l

n ~29, d =5k+2, g = +1

-;;:,-1 -; (12) k (I) 4k (2)
4k 1 3k + 1 I

2
4k-1 (4),

b =9, k ~ I , n ~25, d = 9k + I, g =-3, - 7,- 11

Case 3. n mod 4 = I, I = 8k + 2

4k +l(l24) 6k+ I(2) 2k +I (4)
4k 2k+ 1 6k +2'

b= 5, k ~ O, n ~ 5, d =IOk +2

C88C 4. n mod4 = I, 1 = 8k + 6

4k + 5 (123) 4k +1 (4) 4k - I (123) 6k+5(3) 2k+2 (l)
4k+1 4k+5 4k+7 2k +2 6k+ 5 '

b = 9, k z I, n :2: 241, d =IBk+14, g= +1.+ 5

4k + 2 (134) Bk+4 (1 24 ) 6k+ 5 2k+ 1 (3)
Bk

l
+ 5 (4),2k+ I (1)4k + 3 I 6k+ 5

b =9, k ~ 0, n ~ 4 1, d =I8k +I2, g =-3,-7

Case 6. n mod 4 = I, t = 4k + 3

3k+2 (13) 2k +2 (23) I (I )
k +1 2k+ 1 4k +3 '

b=5, k '<!I, n :2:5 1, d =5k +4, g = +1

Case 6. nmod4=3, 1 =4k

k
3k +1 (3)

2k +I (4)
2k '

b =3, k ~I, n ~19, d =3k +l

Case 7. n mod 4 =3, 1 = 4k + I

3k+ 1 (I)
k

k
3k +1 (3)

2k +I (4)
2k '

b =3, k ~I, n ~27, d =3k+I, g = -I, -5

k 2k 2k+l I
3k + I (24) 2k + 1 (13) 2k (23) 4k + I (I),

b =7, k ~I, n ~ 35, d =7k +2, g =+3, - 1
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C ase 8. n mod 4 "" 3, t "" Bk + 2

8kt I (234) ~: + I (24) 2k + 1 (234) 4k +2 (4) 1
+ 1 Gk+ 1 4k+ 1 8k+2 (2),

b = l1, k ~ l, n ;::123, d = 22k+6, g =+3, +7

8k + l(2) 6k +l (4) 2k+I (2) 4k +l (l 24) I
1 2k +1 6k+ l 4k 8k+2 (4),

b= 7, k ;::I, n ;::1l5, d = 14k+ 3, g = -I, -5

Case 9. n mod 4 "" 3, t "" 8k + 6

Gk+ 5 (l) 2k +2 (3) 4k +4 (4)
2k+1 6k +5 4k +3'

b = 3, k ~O, n ~43, d =Gk+5

Cnse 10. n mod 4 "" 3, t "" 4k + 3

3k+ 2 (I) k+l (3) 2k+ 2 (4)
k +l 3k + 2 2k+l '

b= 3, k ~O, n ;::l1, d=3k +3, g =-I, -5

3k +2 (24) 2k + 2 (14) 1 (234)
k +l 2k +l 4k +3 '

b = 7, k~l, n ;::56, d =7k +6, g =-+3,

In some of the Cases (2.,4.,7.,8. and 10.) two different perfect Basic b-tuples are
used, in order to leave as few gaps as possible.

It can be shown that the gaps g = +1 in Case 5. and g = - 1 in Case 7. must be left:
the cor responding perfect d.c. n-gons do not exist; the diameter of en optimal d.c. n 
gon is for 1 greater than the diameter required. for a perfect d.c. n- gon. T he same
conclusion can be derived for the special value n = 45 in Case 4.

One can also check that the perfect d.c. n -gons for the special values n = 13
(CRSC 5), n = 7 (Case 8) and n = 15 (Case 10) cannot. be constructed by u sing the given
perfect Basic b-tuples. However, it is easy to construct these perfect d .c. n-gons
directly.

5. CONCLUSION

The results of the previous sect ion can be su mmarized m the fonn of the
foUowing theorem:

THEOREM 1. Let the number of edges of a d.c. n-gon P for some odd n belong to the
interval (u(t -1), u(t) for some natural number t > 1. Then the minimum diameter
minden ) of P is equal to gdlb(n) for each odd integer n > 4, except for the following
cases in which minden) = gdlb(n ) + 1 is satisfied:
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1. n is odd, t is divisible by 4;

2. n = u(t - 1) + I, where t is of the form 4k + 3, k > 0;

3. n = u(t ) - I, where t is of the form 4k + I , k > 0;

4. n = 45 .

REMARK. It follows from the results of 14) that an analogous statement is valid for n
eve n. The only exceptional values of n in which mind(n ) = gdlb(n ) + 1 is satisfied 
are of the fonn:

5. n =v(t-1 )+ 2, wheret isofthefonn 2k, k >l;

6. n = v(t ) - 2, wheret is oftheform 2k, k >l .

Note tha t all the non-exceptional optimal d .c. n - gon s, as well as the exceptional
ones corresponding to the case 1. - are perfect. The algorithms for constructions with
the cases 2.,3.,4. (respectively 5., 6.) are described in (2] and (3}. Using these
algorithms, it can be shown that the optimal (either perfect or not) d.c. n-gons can be
ef(u:iently const ructed from a family of (perfect) Basic b- tuptes.

The results of this paper (exact constructions for n odd) put an end to a series of
results motivated by the initial paper (7): approximation formulae for minimum
diameter of a d.c. n-gon « I}), exact constructions for n even (14» and suboptimal
constructions for n odd «(5)) .

We suggest two related topics for future investigations: the maximal number of
edges of a d.c.p. inscribed into a given rectangle and a generalization of the considered
problem to the Slj-case.
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