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Abstract: Disregarding combina torial optimization as an attractive platform for
academic careers , the three main justifications for the current and steadily increasing
interest in the field are:

the variety of realistic decision problems amenable for modelling and analysis
via combinatorial optimization

the lack of 8 universal, operational algorithm

other theoretical challenges

First. the nature of a combinatorial optimization problem is accounted for. To
substantiate the significance of such problem s to decision-makers in practice, an
overvie w of the most profitable application areas as well as the most applicable
problem types is then provided. Past history is briefly reviewed within the framework
of an annotated bibliography . We close with subjective views as to today' s challenges
and to what is believed to be tomorrow' s main issues of concern.
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1. COMBINATORICS AND COMBINATORIAL OPTIMIZATION

One of the main conce rns of mathematicians engaged in combinasorice is that. of
counting. For a given set of objects, how many of these objects possess certain
properties? For example, among all graphs with p points, how many of these are
nonisomorphic trees? Such enumeration problems, however, do not only arise in pure
mat hematics but are also encountered in other branches of sciences as well as in
everyday life. A bridge player conte mplating possible strategies must es timate certain
probabilities, that is, certain ratios between all ou tcomes in favour of some event and
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all poss ible outcomes. Un less the estimate is based solely on experience and intuition R

thorough analysis must inevitably i.mply enumeration.

Another key issue in eom btnetoncs that ofexistence. Does a given graph con tain a
cycle passing through each vertex exactly once? For general graphs, what Me
necessary and sufficient oonditions for the existence of such 8 cycle? An other famous
example is the followin g question: does there exist two trees with exactly the same
number of leaves? The affirmative answer , at times attributed to the Danish 19th
century philosopher, Seren Kirkegeerd, is: "Since the total nu mber of trees exceeds
the largest number of leaves on any tree, the n there must be at least one pair of t rees
having exactly the same number of leaves", N ote, however, that th is indisputable proof
of existence gives no clues whatsoever as to how such a pair of t rees actually should be

found.

T he aim of combinatorial optimizat ion is different. A combinatorial op timization
problem (COP) can be stated as follows. Given a finite or countably infinite, discrete
set 8 of possible actions. With each action x E 8 is associated a real-valued function
(f.x) . Find a possible action minimizing (or maximizing) ((x ), that is, min l {(x):x E 8 [.
As an example, conside r the follo....-ing routing prob lem, known as the symmetric
traveling salesman. problem (STSP): Let n cities and the distance between each pair of
these be given. Find a tour of minimum length, starting and ending at some city, and
visiting all other cities exactly once . Here, x is a specific such tour of length !lx), and 8
is the set of all IJj (n-l)! distinct tours. STSP itself is an example of a p roblem or a
problem type, that is, an example of a general quest ion UJ be answered, usually in
tenns of assigning specific values to a set of variables such t hat the resulting so lution
satisfies certain properties. Of course, algo rithms for solving a well-defined problem
can be proposed regardless of specific values of the problem's parameters; for STSP

these consist of the number n of cities, and each of the (; ) in tercity distances.

Whenever all such parameter values are specified, we talk of 8 da ta instance or just an
instance of the corresponding problem. In turn, a problem is occasionally defined as
the class of all instances of a specified fonn.

The two constituents of a COP, the criterion function {lx) to be extremized (max
or min) and the set 8 of possib le actions or feasible solutions call for seve ral comments.
!lx) . which is supposed adequately to reflect the dec ision-maker' s preferences, will
typically represent profit (to be maximized) or total costs (to be minimized) . Depending
on the natu re of the set 8 , two distinct groups of COPs can be distinguished. Most
often S is determined by a 8Ct of linear equations and equalities to be satisfied
simultaneously with the additional requirement that some or all variables must be
integer. Occasionally, S is a subset of a large fmite set of potential feasible solu t ions of
which the feasible ones const itu ting 8 satisfy addit ional constraints. As will be
elaborated upon later on, the computational techniques available for so lving 8 give n
COP are heavily dependent upon the structure of 8 . Both representations of 8,
however, can appropriately reflect the inherent indivisibilities characterizing
phenomena in the real world (canned sardines to be shipped, aircrafts to be scheduled,
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bridges to be built , factories to he located, personnel to be assigned to jobs, etc.) and
are in themse lves plausible explanations for the strong interest in combinatorial
optim ization. Rather obvious cases of the "ahipping canned sardines" - type do occur
in practice, but th ey are not common in comparison with decision problems boiled
down to a series of go/no go, locate/not locate, either/or questions. Actually, the real
power of the field as a modelling too l is its ability to handle decision problems where all
variables are restricted to the two values , 0 or 1.

0- 1 variables do not exclusively represent either-or decisions ; they are also
widely used as means of modelling, for example, logical conditions, and non-convex
feasible regions. Almost all of the models listed in the sequel and ranked as the "most
applicable" models of combinato rial optimization involve 0-1 variables only.

As to the solution of COPs from the first group, one straightforward approach is
to relax the integer requirement (that is, for example, to replace ·%17 E ( 0, 1,2,3,4 r
by ftO sx17 S4- and likewise for all other integer-valued variables), and then to solve
the resulting LP-rclaxaJion of the original COP. Rounding off the optimal LP- solution
values to nearest Integers may lead to an acceptable solution to the underlying COP if
these integers are relatively large. On the other hand, it is easy to construct examples
involving only two 0-1 variables where the result of such an approach is "arbitrarily
badft

•

Assu ming that t he cardinality 181 of 8 is finite (which by definition is true for
COPs in the second group), another solution procedure guaranteeing optimality in a
finite number of steps is that of complete enumeration : evaluate ftx) for each of the 181
feasible solutions and pick the best. As the time needed for this task roughly is
proport ional to 18 I, we are in such cases indeed interested in knowing the total
number of feasible solutions.

Even for modest- sized data instances of COPs encountered in practice, however,
181 is nonnally an astronomical number, orders of magnitudes larger than the total
number of elementary particles in the universe. Yet, for example, most papers dealing
with STSP commence with the canonical sentence, "For STSP with n cities, the
number of distinct tours is Jh (n-IW. Moreover, some authors like to state , say, the
19-digit long exact value of 201 / 2 and to mention that a solution approach based on
complete explicit evaluation of the length of each tour would require an exorbitant
amount of CPU-time, here, on the order of thousands of years, even on the fastest
computer available. A more sophist icated, but, from a computational viewpoint,
equally u seless statement is that the number of feasible allocations of clients to
facilities in certain locational decision problems is expressible in terms of the so-called
Stirling numbers of the second kind.

The conclusion drawn at this stage are: (1 ) Issues of enumeration and existence
provide insight but are of limited value to the development of algorithms. (2) Cases do
occur (for example, when t he problem essent ially is to analyse consequences based on
a handful of scenarios) where 18 1is so modest that the use of complete enumeration
can be advocated . (3) Even exorbitant numbers of feasible solutions, however, should
not leave us with an impression of COPs as being computationally intractable. On the
con trary, in assessing the computational complexity of some COP, the cardinality 18 1
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may in general be quite m isleading. There is 8 wealth of COPs and corresponding
large-scale data instances for which cleverly designed algorithms can identify an
optimal solut ion in matters of seconds. On the other hand, there are also opt imization
problems for which the largest instance that can be solved to optimality by the "best"
algorithm available is surprisingly small.

The distinction between a combinatoriB.list engaged with cou nt ing and existence
and an opt imizer searching for a "best- solution need not be sharp. In order to
estimate the expected time to be spent with the job, 8 bu rglar in front of 8 safe must
have some idea as to the nu mber of combinations to be examined. His preference
fu nction {(x) , on the other hand, is rather special in that on ly a single a ction is
preferred to the remaining IS 1-1 actions among wh ich he is totally indifferent. Those
who dislike the flavour of this example may instead think of unlocking a bike
(normally also under time pressure) when the right combination has escaped the mind.

The burglars-in-front-of-a-safe example can be pushed a step further and yet
remain highly realistic. We are here referring to cases where the set S of feasible
solutions in a sense is unknown (and possibly even empty) and where the value {t.:c) is
the same for ell a E S . Such a situation has , for example, been encountered in a recent
case study dealing with the schedule of variou s activities at the Royal Theatre,
Copenhagen. All feasible solutions were ranked equally as the overall objective simply
was to iden tify a single solution satisfying a very complex set of constraints.

In some respects, life was relatively easy for consultants and decision-makers in
the "happy sixties" where the choice among alternative actions was based solely on a
single criterion like "maximize profit" or "minimize total costs". Such simplistic
measures of performance are employed in almost all of the "most applicable models"
listed in the fonowing section and reflect the concurrent development of OR and
computer science of that time. The various crises expe rie nced later ....n and the
changing values, however, have led to an increasing interest in t he ability to
operationalize the handling of more complex criteria. Such models for multiple criteria
decision fJ'l.Oking (MCDM) contribute to the analysis of decision-maker' s preferences
in a multidimensional criteria space where these cr iteria may either be quantifiable
(for example, costs and physical distances) or non-quantifiable (for example, the
aesthetical value of a layout).

Moreover, the criteria involved tend to be antagonistic: the improvement of one
criterion can be accomplished only at the expense of another . As an illustration,
suppose that two population centers at a certain distance from each other are to be
served by a single hospital. Where should it be located? Formulated in terms of
minimizing the sum of the distances travelled by t he users, an optimal solution is to

locate the hospital at the largest of the two centers . From an emerge ncy point of view,
however, the optimal solution is to take the midpoint between the two centers. Neither
of these two solutions are optimal with respect to both criteria 60 which one, if any of
the two, should actually be chosen by the decision- maker?

This or similar questions are inheren t in MCDM and have no generally valid
answers. The crux of the difficul ty encountered is that the concept of optimality loses
its significance for models involving two or more criter ia. Suppose that a realistic
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decision problem is modelled in terms of minimizing k rent-valued crite rion functions
f/:r). i = 1, _.. ,k subject to certain constraints. Ideally we seek a feasible solution x
minimizing the vector-valued [unction rr1(x )•. ...I,(x) I. Now, whereas an optimal
solut ion to a single criterion optimization problem is unambiguously defined, there is
no general definition of the minimum of a vector-valued function. Rather than
optimality, a far more operational concept in this context is that of efficiency. For a
pair (:r,y) of feasible solutions we say thaty damiruues x if r;f,y) S r;(:r ). all i, and if strict
inequality holds for at least one i , A feasible solution which is not dominated by any
other feasible solution is called effu:ient.

The distinction between optimality and efficiency gives r ise to a tenninological
schism: is "combinatorial MCDM~ 8 subject within the field of combinatorial
optimization? Since a COP. max {{(x ) :x E S) can be viewed as a special case (k = 1) of
the more general max I I fJ (x), •.. 1,(%) 1:% E S}, then indeed the converse question
calls for an affirmative answer. Only tradition compels us to defend the opposite, and
conceptually somewhat awkward position, namely that combinatorial progrwnming
with multiple criteria certainly is within the scope of combinatorial optimization .

2. THE SIGNIFICANCE OF COMBINATORIAL OPTIMIZATION

Disregarding combinatorial opt.iJn.iLation as an attractive platform for academic
careers, the three main justifications for the current and steadily increasing interest in
the field are:

1. The variety of realistic decision problems amenable for modelling and
analysts via combinatorial optimization.

2. The lack of a universal, operational algorithm.

3. Other theoretical challenges.

Like any other branch of applied OR, the ultimate goal of combinatorial
optimization is (or should be) to offer decision support. that is, to provide decision­
makers with a quantitative basis for fInding good solutions to realistic decision
problems.

To account for the postulated versatility of combinatorial optimization as 8

modelling tool, we shall here list selected application areas complemen~by various
model families. Based on our past as fuU-time consultants and supported by the
experience gained by others. it is our contention that the most profitable application
areas of combinatorial optimization include

transportation, distribution

sequencing. scheduling

production planning

locational analyses

manpower planning

investment
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network synthesis

These areas should certainly not be viewed as being disjoint; on the contrary,
st rong interrelations among two or more areas must often be taken into account when
realistic problems are modelled. The word "profitable" does not (only) refer to the
consultant' s ability to make 8 decent living from his profession but relates in this
context also to the decision-maker' 6 expected gain. For example, locationel analysis
focus upon strategic rather than tactical matters, say, where to place factories or
schools rather than how to steer the day-to-day deliveries from factories to retail
outlets or how to route school buses. Such long-range decisions will normally involve
more than just peanuts and substantial savings have often resulted from thorough
investigations via appropriately designed. optimization models.

Likewise, without dwelling on details, we hold the opinion that the most
applicable and versatile model types or model families of combinatorial optimization
include:

travelling salesman

set partitioning, set covering

set packing

knapsack

network flows

plant location, p-median, p-center

quadratic assignment

matching

colouring

spanning trees, Steiner trees

Most of the words listed above refer to specific, well-defined combinatorial
optimization problems. At the same time, however, they can almost all be viewed as
generic tenns for extensive families of problems sharing certain common features .
Consider, say. the so-called simple plant location problem (SPLP). While SPLP
basically is a discrete, static, deterministic, one-product, rued-plus-linear costs
minimization problem, it can be modified to accommodate capacitated, dynamic,
stochastic, multi-product, non-linear cost minimization fonnulatioos. It can moreover
include prices as well as costs in its criteria and can also be used within the context of
multicriteria decision-making. SPLP is thus not only a specific problem but should be
regarded as the foremost member of a large family of locational decision problems.

Although e.g. traveling salesman is indispensable as the basic model for many
realistic distribution and sequencing problems, there is not in general an obvious
correspondence between the two lists. As an E!%8IJ1ple, consider quadratic assignment,
QAP. In addition to finding optimal layouts and/or analyzing alternative building
designs, other fields of application of the QAP-model- far from the traditional domain
of architects, building planners, and indu strial engineers - have else been encountered.
Backboard wiring problems, arrangement of electrical components in printed circuits,
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and arrangement of prin ted circuits themselves 0 11 a compute r ba ckplane are among
the better known examples within electr ical engineer ing. Other applications include
planning of a presidential election cam paign, arranging wedding guests arou nd /:I table,
scheduling parallel machines with change-over costs, and the design of typewriter
keyboards. Personally, we have also melt the problem in relation to fmdin g th e
chro nological order of 38 Babylonian texts and in setting up a model analyzing the
movement of governmental institutions from Stockholm to a number of other Swedish
cities.

'1fuw(ofQ unrr'trsat; oprrotwnafafSOrit6m.

From a practitioner' s point of view, all of the nonnat ive models studied within
combina tor ial optimization are of interest only if operational algorithms exist for
providing quantitative solutions to (non-contrived) data instances confonning to the
model' s structure. There is no rigorous definition of the te rm "operational"; for our
pu rposes, however, "operen cnal" implies empirically tested, known to possess
pro vably t rue properties, and works well in practice.

For a linear programming (LP) problem with a bounded, feasible region defined
by m linearly independent constraints expressed by m linear equat ions, and with n

variables, the essence of the matter is, among the (:) basic solutions, to find one

which maximizes or minimizes a linear fun ction. So deemed, an LP-problem is clearly
a COP. Irrespective of the specific pivot rules and updating schemes used, the Simplex­
type (extreme point search) algorithms for general LP are all operational.

Actually, the same applies for an even larger class of COPs involving 0- 1
variables, namely t hose sharing the property that an exact a1goritpm (or the
corresponding LP-relaxation is an exact algorithm for the or iginal problem as well.
This extended class of problems which accordingly is optimally solvable by any
standard LP-code includes genuine combinatorial optimization problems like shortest
paths, more sophisticated network flow problems, and matching.

The advent of the so--ealJed ellipsoidal algorithms, and also the more recent
Karmarkar algorithm and its descendants, which all , in contrast to the afore­
mentioned Simplex- type algorithms, can be characterized as interior point search
algorithms, and which all run in so -celled polynomial time, once again st ressed the
computational tractability of general LP-problems. The same applies for t he matching
and the network flow problems referred to .

The claimed lack of a "u niversal operational algorithm" conce rns virtually a ll
other COPs of practical relevance. Cutting planes were introduced in the early 50' s.
For general integer linear programming (lLP), in principle encompassing all COPs, the
cu tting plane algorithms devised by Gomory by the end of the same decade do possess
"provably true pro perties" but they are at the same time known net to perform well in
practice . The concept of strong valid inequalities for COPs, however, have lead to new
interest in cutting plane methods, since these in combination with search- based
methods provide a very powerful tool for solving COPs.
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Dynamic programm ing (DP), which also has influenced many other areas of
optimization, experienced 8 great boo m culminating in the late 50' s. This techn ique,
however, was later recognized as ' fr sgile" in that the dim ensions of the tables stored
tended to be exceedin gly large. DP was largely outperformed. by an eve n more powerful
principle for algorithmic design, known as bronch-and-bound. Concepted in 1960 for
general lLP by Land and Doig, and propelled into prominence in 1963 by Little ct el. ,
BE has still today maintained its status as the most versatile approach to solving
combinatorial optimization problems. Literally all commercial codes for general lLP
are nowadays based on BS with bounds generated via some LP-techniques.

Combining BB with cutting planes and stro ng valid inequalities lea d in the la te
19805 to the development of bran.ch-and--cut, which is now the prime tool for solving
COPs. If an acceptable ILP description of a COP can be given. the branch- end-cut
method is superior to other methods not based on an LP- formuIation of the problem .
However. for some of the important COPs there is not much choice - either no ILP­
formulation is known or the known ILP- formulations are not acceptable, for example
due to an excessive number of variables. These problems are accordingly not solvable
by branch-and-cut techniques. Instead, other efficient algorithms. often based on
branch-and- bound and exploiting the special st ructu re of the COP at hand, have beeu
devised. This supports our claim that no "universal" algorithm exists.

Otlierdia[[enoes

Amidst the wealth of open questions of which some have been pending for years.
we shall here mention a few challenges of interest to both theorists and practitioners
concerned with combinatorial optimization.

For a given COP, min {[(x ) :x e S }, an exact algorithm will produce a feasible
solution rE for which optimality is guaranteed, i.e. [(rE) = min {/tr):x e S} . A
heuristic terminates with a feas ible solution xli which mayor may not be optimal, that
is. xH is an upper bound on jT.:J!f). If a bound on the deviation from the optimal solution
value can be given, the heuristic is called an approximation algorithm. If some of th e
original constraints defining S are relaxed and if the relaxed problem is then solved to
optimality, we obtain a solution y}l which nonnally is infeasible. and a value (f..xR) of
the objective function which constitutes a lower bound on rr.xE).

For realistic decision problems amenable for modelling in terms of a COP. there is
at times in practice a subs tantial gap between the dimensions of the problem at hand
and the capabilities of algorithms available for its solution. Thus, proven optimality
cannot always be hoped for in cases where no known exact algorithm is capable of
handling a given data instance; we are then compelled to resort to an approximate
algorithm or a heuristic. Approximation algoritJuns with tight bounds are known only
for 8 limited number of COPs; hence, heuristics are by far the most common tool in
fmding feasible solutions to large data instances. Traditional heuristics are often based
on pure common sense combined with practical experience. For example, if we were to
find a minimum length tour visiting all the European capitals. why not just start
somewhere and in each ste p continue to the nearest capital not yet visited before
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returning home? Realizing that the tour so found might intersect itself he re and there,
further improvement might be achieved by interchanging some of the cities.

For COPs in gene ral, more refined heuristics may include algorithmic principles
like iterated descent and ooriable-depth local search . Tabu Search is the generic name
for heuristics based on local search equipped writh memory. Furthermore, to avoid
getting stuck in local minima and inspired by processe s in physics and biology, a
number of paradigms for heuristics using randomization have evolved during the lust
10 years: Simulated Annealing , Neural Networks , and Genetic Algorithms .

The main idee of conside ring relaxa tions is to get rid of some "complicating
constraints- and thereby to reduce a given COP to a simpler problem which then can
be solved to optimality. As mentioned above, the result is in general an infeasible
solution r'l and a lower bound ft;cl') on ~). However, ifwe in addi tion have a feasible
solution xli ge ne rated by some heuristic and if the relative difference between the
upper bound j7.xH) and tt.r'l ) is small, 8 good approach in practice is then to accept xii as
the ultima te solution to the given COP.

The significance of relaxat ions and heuristics can be summarized as Icllo....
(1) no other options are at times available, (2) they are normally faster than exact
algorithms by orde rs of magnitude, (3) via their capabilities of generating bounds , t hey
are indispensable as compone nts of exact algorithm, and (4) the performance of an
exact algorithm can be considerably improved via a good starting solution generated by
a heuristic.

The distinction between exact and approximate algorithms raises the
fundamental question: how should approximate algorithms for solving a grven COP be
assessed?

Apart from empirical investigations, possibly guided by 8 decision-maker' s
opinion about the solut ions proposed, there are basically t wo distinct approaches :
worst-case analyses and probabilistic analyses. Upon defining an appropriate measure
for a solution's deviation from optimality, one aim of worst-case analyses of
approximate algorithms for a given problem type is to devise bounds for the maximum
devia tion and. if possible, to provide data instances to demonstrate tha t no bette r
bounds exist. Probabilistic analyses, on the other hand, mu st be based on certain
assum pt ions as to how the problem data are distributed. A measure of the "deviation"
from optimality is then a random variable. Results provided via probabilistic analyst's
might be the probability that 8 data instance drawn at random satisfies some proper ty,
for example, that an approximate algorithm terminates ....rith a solution within a
prespecified percentage of optimality.

Worst-case analyses can also be conducted with an aim different from the one
mentioned a bove, which concentrates sole ly on the val ue achieved of the objective
function . We are here referring to worst-case analyses dealing with the so-called time
complexity of a given algorithm designed for a specific problem and the family of all

instances of 8 given size.

P robabilistic analyses, however, dealing as they do with algorithms' overage-case
behaviour, are at the same time more difficult lind - at least from a practitioner' s point
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of view - more pe r t inent than wors t-case analyses irrespective of the goal they are
pu rsuing. The most striking example is the Simplex-type algorithms for which highly
contrived data instances have been const ructed to demonstrate their exponential
behavior in the wors t case irrespective of the pivot rule employed. Nevertheless. such
algorithms are recognized as working exceedingly well in practice. The opposite
appears (so far) to apply for the family of ellipsoid algorithms which n evertheless have
been proven to be polynomial time bounded. The status of t he interior point
algorithms in this respect is that it is known to outperform Simplex-type algorithms
for 8 nu mber of benchmark instances, but at the same time instances, for which the
Simplex-type algorithms are su perior , do exist.

Another direction for further research, though intimately related to the analyses
of approximate algorithms, is that of computational complexity in general.

Via the definition of classes P and NP, followed by concepts like NP-completeness
and NP-hardness, the theory of computational complexity has been instrumental in
separating the relatively few COPs solvable by standard LP-rodes from the plethora of
problems which consti tutes th e reel substance of combinato rial optimization .
However, the fact that some NP-har d optimization problems in practi ce are
computationally more demanding than others is still a con.stant source of
dissatisfaction. While knapsack problems with tens of thousands of variables are easily
solvable within reasonable time bounds, no exact algorithm is available for instances of
quadratic assignment involving a few dozens of units to be placed. Practitioners have
long ago developed. their own lists of "easy" and 'bard" NP-complete problems, and
recent theoretical results seem to support this classification. The notion of strong NP­
completeness classifying NP-complete problems according to their complexity if upper
bounds are given on parameters representing values (as opposed to those serving as
identifiers) is one of the advances. Knapsack is not strongly NP-complete as opposed
to e.g. QAP and STSP. Also the extent to which a problem may be solved by a
polynomial time approximation algori thm has given new insight into the classification
of the NP-complete problems. Nevertheless, much further research in this direction is
still called for.

Among "other challenges" we shall finally include the wealth of open questions
penetrating the interfaces among combinatorial optimization and its neighbouring
areas, notably graph theory and discrete mathematics in general. As evidenced by a
steadily increasing number of publications, and the abundance of scientific meetings
organized annually, it is not a too bold sta tement to say that a wonderful playground
for academics has here emerged. More than twenty years' after man first ret foot on
the moon, it is astonishing to see how certain, seemingly simple questions still today
remain unanswered.

3. THE PAST AND THE PRESENT: A LITERARY DISCOURSE

The litera tu re on combinatorial optimization has literally experienced an
explosive gro wth over the past decades. To choose a few specimens for a short "literary
discou rse- from a market with high competition and with a wealth of high-quality
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products is difficult. To owe justice to all authors of recommendable books within ou r
scope of interest is impossible.

The annotated bibliography provided below falls in two parts. First, 8 ser ies of s ix
classical "key" references from the 70' s is presented. The second part comprises
selected textbooks from the 80' s and the 90' s.

stc "(ry"nfennasfrom If" 70's

"Integer progranuning", "Combtnatortel programmin g", "Discrete optcnieation",
or "Combinatorial optimization"? These four variations of a theme are all represented
in the titles of six books which all bear strong evidence as to the mom en tum gai ned by
the field in the 70' s.

One of the first. or possibly, the first meeting entit led "Ccmblnetortal
programming" was organised in Versailles in 1974. With the aim of becoming a hand­
book on the entire subject, the Proceedings were published a year later as:

• B. Roy (ed.I, Combinororiol Programming: Methods and Applications ,
D. Reidel Publ. Co., Durdrecht, Boston. 1975.

It can safely be said that the opening sentence of the preface enucipated the
future: ~ "Combinosorial Progro.mming~ are two words whose juxtaposition still strike
us as unusual, nevertheless their ossociouon in recent years adequately reflects the
preoccupations underlying differing work fields, and their importance will increase
both from methodology and applicoJ.ion view points.-

Another major event of that time was the workshop on Integer Programming
held in Bonn in 1975 as documented in:

• P.L. Hammer, E.L. Johnson, B.H. Korte, and G.L. Nem heuser (eds.),

"Studies in Integer Programming", Annals of Discrete Mathematics I (1977) .

Here, the stale of affairs is summarized in the preface as: "There are a great
many real-world problems of Lorge dimension that urgently need to be solved but there
is a Lorge gap between the proctieal requirements and the theoretical development.
Since combinatorial problems in general are among the most di(fu:ult in mathematics,
a great deal of theoretical research is necessary before substantial advances in the
practical solution of problems can be expected. Nevertheless the rapid progress of
research in this field has produced mathematical results significant in their own rigllt
and has also borne substantial fruit for practical appticoiions",

In retrospect, however, and without detracting from the value of cur lier
endeavours, we find that the catalytic effect of two consecut ive meetings he ld in
Canada in 1977 can hardly be overrated, The organizers realized. the appro priateness
of assessing the current state of the entire subject and to examine its main trends of
development. To this end, about 30 leading experts were commissioned one year in
advance to prepare surveys on preassigned eubfields within their main area of
expertise. Most of the material was later made available in the two volumes:

• P .L. Hammer, E.L. Johnson, and RH. Korte (eds.}, ' Discrete Optimization I
and 11 -, Annals of Discrete MathemtJtics 4 and 5 (1979).
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For the study of combinatorial optimization with particular em phasis on the
complexity aspects, two books have occasionally been characterized as "indispe nsable".

The first one is

• E.L. La wler , Combinatorial Optimization: Networks and Matroids , Holt ,
Rinehart and Winston, 1976

which focuses u pon problems in P which can be Cannulated in terms of networks and
algebraic st ructu res known as matroids . The second work is the Lanchcster P r ize
wmmng

• M.R. Garey, and D.S. J ohnson, Computers and Intractability. A Guide to the
Theory of NP-Compleleness , Freeman. 1979

which, in addition to the basic theory and directions for further study, provides an
exte nsive list of NP-complete and NP-hard problems.

Sefectea teXJ600t.!f rom tM 80's and'tfu 90's

T he following moderate- sized list of five books comprises three general
plus two works devoted to specific application areas. The first textbook, which :.()
extent can be viewed as a syn thesis of the above-mentioned works oC Lawler, Garey
and Johnson , is

• C.H. Papadimitriou, and K. Steiglitz, Combinaiorial Optimizosion:
Algorithms and Complexity, Prentice-Hall, 1982.

The main objective is to integrate the computer scientists' ideas of computational
complexity and the foundations of ma thematical programming developed by the OR­
community. This very readable volume does also contain a single chapter on the
ellipsoid algori thm.

Another introduction to the entire field is

• G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization ,
Wiley, 1988

which deservedly is ranked as one of the best and most comple te texts on the subject
now uveileble.

Educations towards the degree of Master of Business Administration are offered
at several universities and business schools in Europe and have managed to attract
post-graduate students from literally every comer of the world. Quantitative methods
form a major ingredient in the curriculae. Among the subjects taught under this
heading is model building in linear and combinatorial optimization with the main aiIJ'I
of advocating principles and recommending tools for investigating managerial and
other decision problems via prescriptive models. Without familiarity with specific
algorithms, the students are taught how to model relevant parts of the real world in
such a way that the model is am enable for solution via some commercial software
package. Thus, the students should become acquainted with the forma ts -equu s<
furthermore, they should appreciate the models' ability to answer ' what if" ueencus
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which in practice is far more important than just providing the decision-maker with
some "optimal" so lut ion. MBA students as well as others interested in problem
formulat ion and the art of model building will find an excellent guide in :

• H.P. Williams, Model Building in Mathematical Programming , J ohn Wiley,
1993.

As was pointed out in the previou s section, we lis ted routing and locational
decisions among the most profitable upplicatiou a reas of combinatorial decisions. This
viewpoint is supported by the titles of the following' two, partially "a pplica t ions­
oriented" volumes.

As the foremost exponen t of rou ting, the celebrated trave ling salesman is the
subject of:

• E.L. Lawler, J.K. Lenstra, A.H.G. Rin nooy Kan, and D.H. Shmoys (eds.}, The
Traueling Salesman Problem , Wiley, 1985.

This impressive work which apparently deals with n single model family only is
not primarily addressing pract it ione rs engaged in rou ting salesmen and the like. TSP
owes rather its celebrity to its involvement in a lmost all of the major advances in
combina to rial optimization as such . To mention 8 few highlights of the TSP--er8 in this
respect: Cutting planes were or iginally proposed by Uant2:ig et el . ( 954 ) as a
technique for handling large-scale instances ofTSP; the real potential of branch-and ­
bound as a general approach to combinatorial optimization problems became first
apparent when Little et &1. ( 963 ) devised an exact algorithm for the symmet ric 1'S1' ;
....-ithin the same context, Lagrangean relaxation was put into use by Held and Karp
(1970,1971); two different versions of TSP were among the 21 decision problems
whose NP-eompleten-ess is asser ted in Karp' s Main Theorem (1972); a cornerstone in
the literature on probabil istic analyses of approximate algorithm was the
investigations conducted by Karp (1977) with particular refere nce to TSP in the plane ;
finally Crowder and Pedberg ( 980) showed the potential of combining branch-and­
bound and facet genera t ion techniques in the solu t ion of a 3 18--<:ity TSP. Thus. the
subtit le of this book, "A Guided Tour of Combinatorial Optimization", is well justified.

Since the con t ributors to the literature on locationul analysis represent many
diverse disciplines, such us general on, graph theory lind com binatorics, geography,
regi onal science , and sociology, a nd since the relevant papers a ccordingly are scattered
over many journals, there has for long been a st rong need for up-to-date, all -round
textbooks on the subject . The following book, however, fills part of the gap:

• RL. Francis, and P.B. Mirchandani (eds.I, Discrete Location Theory, Wiley,

1990.

Authored by 24 dedica ted "locerionists", this volume is mainly focussing u pon the
four most prominent families of models for analyzing locat ional decisions in discrete
space: the uncapecitated plant location problem, the p-median and the p-center
problem, and quadratic assignment, all quoted in the previous section. Both stat ic and
dynamic models are cove red as are rela tively new lines of research including congested
networks, competitive location and spa tial eco nomics .
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4. T HE PROSPECTED FUTURE

"P redicting is difficu lt - especially predicting the future". This famous statement
by the Danish humorist Sto rm Pete rsen is indeed t rue even if we restrict ourselves to
the field of techniques and applications of combinatorial optimization . Nevertheless,
we will in the following try to give 8 qualified guess, based partly on the actual
development of combinatorial optimization , partly on similarities in the concurrent
development of combinatorial optimizat ion and computer science. The guess will
mainly address combinato rial optimization methods as 8 modelling tool for decision
makers whereas th e prospected meth odological/technical futu re is only ment ioned
briefly.

Combinatorial optimization (as we know it today) and computer science were both
born around the late 40' 5 and early 50' s. A common characterist ic for the two fields
was that their establishment mainly was undertaken by those who really needed such
tools for tackling realistic problems.

The following decade witnessed a rapid development. High-level programming
languages as COBOL, FORTRAN, and ALGOL emerged, and compute rs grew mor e
powerful by an order of magnitude. Standard techniques of optimization such as linear
programming, network methods, cutting planes, and branch-and-bound were
developed. For both subjects the applications became so diverse that the typical u ser of
EDP/optimization techniques in the mid 60' s no longer was an expert in either of the
fields . T he situ ation created a need for consulting companies with experts acting as
interfaces between the decislon-makers/Elff--users and syste ms.

From the mid 60' s to the mid 70' s the theoretical aspects of computer science and
optimization still exhibited a lot of similarities. The tools were refined, and theories
giving new insight as to what can and what cannot be accomplished were developed. In
this context , computational complexity and computability deserve special mention.
Also, the impact of heuristics as opposed to exact algorithms was recognised.

T he consolidation of combinatorial optimiza tion as a powerful tool for analyzing
complex decision problems, however, did not change the by that time traditional
relationship between an analyst and a decision- maker; upon having digested the
problem posed by the decision-maker , the analyst created and solved the model ·off­
line". The re sults were then presented to the decision-maker for her approval.

New ideas as to th e design of both hardware and software led to endless series of
new applications of computer science. The adven t of the PC was the (mal step 60 far in
the process of making compute rs accessible to literally everyone. Obviously, it was no
longer possible to maintain th e traditional user/consultant scenario. A vast pressure
on computer manufacturers and software houses to market systems usable even with
limited knowledge of compute r science followed in th e wake and today' s systems are
visible results of these efforts.

In the last decade, optimization and compute r science again show similarit ies with
respect to speed of theoretical development. Of particular landmarks in optimization of
special interest to combinatorial optimization, we note the polynomial algorithm for
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general LP devised by Khecluan and morc recently by Kfirmarka.., and t he ingenious
combination of branch-and-bound and facet generation techniques du e to John son ,
Crowder and Padberg. Also the development w-ithin the field of average-case analysis
of algorithms initiated by Karp should not be neglected . In computer science, th e
results on program generators and semantics of programming languages Ide noteucnal
semantics) represent remarkable achievements as does th e development of th eory in
the fields of distributed processes and parallel computation. Also the U !'oC of
randomization as 8 tool in algorithmic design must be ment ioned.

The boom in compute r application seems to have created R need for, and inspired
to research in new areas in a scale unperellelled in optim ization. A few pertinent
keywords include: user in terfaces, 4th generation tools, expert systems, parallel
architectures, and robotics.

Unfortunately, the catalyst effect of the PC on computer science has 110 obvious
counterpart in optimization. No single factor has in a similar way accelera ted the need
for better means of handling questions of user communication, uncertainty,
formulating and solving wrong problems, et cetera. By and large, the applied side of
opt imization is still facing t hese questions. In addition, th e now customary usc of PCS
in other areas indicates that, unless such problems arc seriously taken into accoun t ,
optimization techniques may hardly survive as managerial tools. The positive side of
the situa tion, however, is that we now, in contrast to the state-or-effeirs in compute r
science 10 years ago, may draw upon the experie nces gained in another field
encompassed by the term: expert sys tems.

Expert systems are computer programs providing expert -level solutions to
complex problems, usually by far too complex to model str ictly mathematically. They
are heuristic in that reasoning with judgmental knowledge as well 85 formal
knowledge takes place ; the are transparent in that explanations of the line of reasoning
is provided, and they are flexible in that new knowledge is incrementally added to th e
existing body of knowledge of the system. To these very genera l statements may be
added that expert systems often deal with uncertainty and that the knowledge of the
systems is "general" 88 opposed to knowledge expressed by formulas, equations and
inequalities.

Some of the points realized by expert system builders are in our opinion cssentlel
for the future success of optimization as a management tool : (1 ) Real -life problems are
too complex to model using formal knowledge only, (2) solution processes are usually
interactive, (3) to be trustworthy, problem solving systems must enable users to follow
most of the solution process, and (4) even the best system will eventually fail (by not
being used) if the user interface is poor.

To take advantage of the by now widespread familiarity with PCs among
decision-makers, it is our belief that tomorrow' s optimization syste ms should be
designed with du e regard to the following features :

the systems must be interactive, thus enabling a solu tion process based on
dialogues among the decision-maker, the analyst, and the computer.
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software for handling the mathematical optimization aspects of the problem
at hand should const itute only a part (though probably an important one) of
the entire syste m.

devices for integrat ion should be incorporated, i.e. in addition to specific
solut ion techniques, the syste ms should provide an environment in which
non-experts are assisted in formulating their problems. Also, the
presentation of the resul ts of the solut ion process is crucial to the applicability
of the system. Note that visual interactive modelling managed to become an
established term on the threshold to the 90' s.

optimization systems are just another type of ordinary computer systems;
hence all "rules of thumb" and all techniques developed in the fields of
software engineering and systems analysis should be utilized wherever
possible along with the construction of the system.

With respect to technical matters, optimization techniques have much to offer in
the context of expert systems and logic programming syste ms based on search in a
search space where complete enumerat ion is not possible. Combinatorial optimiza tion
has for decades been tackling this type of problems and the experience thereby gained
should at least be made available to expert system builders. We also expect that
considerable research efforts will be devoted to the by now somewhat controversial
issue as to the potential impact ofartificial neural networks in this respect.

As regards applications, it cannot be stressed too often that combinatorial
optimization and computer science merely are tools to guide the decision process
rather than providing decisive answers. It is all too easy to delegate responsibility for
decision-making to a computerized system and hence to blame the model whenever
undesirable effects result. For example, who was responsible for the "Bleck Monday",
the stock jobbers or the computers?

We believe that the 90' s will be flooded with computerized decision support
systems and that multicriteria models, in particular when (visual) interactive modes of
operations are employed, are likely to playa far more dominant role for the design of
such sys tems. Accordingly, the potential of these tools can only be fully recognized if
they are used by interdisciplinary project groups capable of removing the traditional
barriers among disciplines like social sciences, economics, engineering, et cetera. It is
furthermore vital that decision-makers - be they private or public - take a holistic
approach and concentrate on the signi(lCant problems of our societies.

There is little doubt that combinatorial optimization and computer science both
can benefit from further cross fertilization. Rather than proceeding with new series of
specialized meetings, journals, and curriculee, the communication lines among these
and neighbouring fields should be further strengthened such that the different
commu nities are kept aware of their neighbours' successes and failures.

We have not explicitly dealt with the postulated beauty of combinatorial
opt imization. It is not on, but only between the lines of this paper and the works
referenced to therein. Likewise, we will leave i.t as postulate (which the reader may
wish to verify for himself) that the beauty alone and the challenges that go with it are
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su fficie nt for combinatorial optimization to maintain its 5 La t US liS (111 academic
disc ipline. It is nevertheless our hope that we in addition will witness the nbovu­
mentioned cross Iertiliznt ion such that cmnllinllto r ial oprimisurion !l15O remains
recogn ized as an everyday tool for docisjun suppor t in prnctice.


