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Abstract:* In this paper the continuous projection—gradient method of the fourth
order for solving the convex minimization problem in Euclidean space is considered.

The sufficient conditions for convergence are established.
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1. INTRODUCTION

Consider the following minimization problem
J(u) - inf, ueU, (1)
where U is a closed, convex subset of a real Euclidean space E”, function J(u) is

continuously differentiable and convex on E”. The scalar product of two elements
u,v € E™ will be denoted by: <u, v>; ||u|| = <u, u>1? is the norm of the element .

Suppose that
J-=i12fUJ(u)>-—oo, Us={uel:Ju=J.} 0. (2)

The continuous minimization methods of the projection—gradient type
u(t) + u(t) = Py u() - alt)J ()], t20,

u(0) = u,, u, € E”,

have been proposed and investigated in [5,6] for U= E” and in [1] for Uc E",
a(t) =a >0, t>20. The further investigation in this area, considering the continuous
projection—gradient methods of the second and third order has been presented in [1, 2].

This paper presents the continuous projection—gradient method of the fourth order.
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2. THE CONDITIONS FOR CONVERGENCE

For solving the problem (1) we will use the continuous projection gradient method
of the fourth order

B u + B u" + ) +u +u=

P,lu-a(t)d(w)], £20, (3)

u(0) = u,, u(0) = u,, u'(0) = u,, u'(0) = u,
where P;/(z) — denotes the projection of the point z on the set U; u;,i=0,1,2,3 are
given initial points from the Euclidean space E”; al(f), B.(f), i =2,3,4 are the
parameters of the method (3), w=u®), «wP@)=d'u@®)/dt*, i=1,2, 3,4,
J (1) — gradient of the function J(u).

THEOREM 1. Suppose that

1) U is a convex closed set in Euclidean space E”; function J(z) is convex and
differentiable on E?; the gradient J/ (u) satisfies the Lipschitz condition

|J@)-J@W)||[<L|u-v], u,ve En L = const < +o;
the conditions (2) are satisfied;
2) the parameters a(?), (), i = 2, 3, 4 of the method (3) are such that

a(t) eC[0, +x), 0<gy<alt) < q,, t20;

Bo(t) e C2[0, +), Pa(t) € C3[0, +), B,@) € C40, +),
B#)<0, BE@®20, i=2,3,4, t20;

B;(#)<0, i=3,4; A @) 20, £>0;
‘]jmﬁi(t)=ﬁ,-m>0, i=2 3 4;

1-ayL-f,>0, Bowl-ayL)+By—2faes >0,

gm(l_alL)"'zﬁZm}%m)Or ﬂZm_%%m_ﬁ:ﬁoﬁ4w>0:

ﬁZwﬁ:iw_aﬁim"ﬁzmﬂgm>0.
Then for any initial values u; e E”,i = 0, 1,2, 3 there is a point u_ € U, such that

b .
lim {3 u® (@) ||+ | u(t) -ty || } =0,
=% 4

+ 00 4
-[ {2 eGP +£6) || uls) -ty | } ds <+
0 =1

where £(s) = f5(s) - f5(s)+ A (s), for all s > 0.

PROOF. Note that there exist functions, for example
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2+t 1
L) = —— f {)= ¥ Gy y } O )
al(t) Ay B:(t) = p, +1+t ag >0 Biw>0
fori = 2,3,4; and ¢ 20, which satisfy the conditions of the theorem.
From the inequalities for the derivatives of £.(f) and 8. > 0, i = 2, 3, 4; it can be

proved that

lim £;(t)=0, i=23,4 lim B:(£)=0, i=2,3;
{3 {—> (4)
}imﬁi(t)= 0.

Besides that, from the conditions on the limits . and @, we can find

3 9
1>ﬂ2m>§ﬂ3m>§ﬁ4m’ ﬂ3m_3ﬁzu::>03
1_ﬂ2mﬁ4m_ﬂ2m>0! ﬂ3w-2ﬂ4m"2ﬁm>o: ()
P =2 P30 Pao >0, Bsw—BiwPaw—Paw >0.

As we know [3], there is the unique solution u = u(t), 120 to the differentisal

equation (3) for any given initial values u; € E”, 1=0,1,2,3. For every u.,e U,, it
holds: (see [4], pp.165, Theorem 3)

< J(us), w—-us> 20, weU. (6)
From (3) and the property of the projection operator (see [4]) it can be derived
<BDOu+ B u" + L) u +u + alt)J (),
B u + Bu” + ) +u +u-v><0, (7)
velU, t20.

Multiplying the inequality (6) by [-a(f)] for w = B,(?) ulv + Bs(2) u +
Bo(t) " + v + u and summing it with (7) for v = u., we have

< B,(t) uv + Bs(t) u + By (t) u+u+alt)[Jw-Ju)],
B ulY+ B u” + B u’ +u +u-u.><0,
t20, Uue € U,.

The last inequality can be written in the following way
BOu™ [P +28,) B <™, 1" >+2 B, (&) Bo®) <V, u" >+
2,64(t)<ui",u'>+ﬁ4(t)<ui'“',u—u. >+ﬁ(t‘)||um||2 +
2 Ba(t) B <t yu >+2P3(t)<u ,u >+
BB <t ,u-—ue>+BO|u |P+2/E)<u u >+
ﬂz(t)<u",u-u. :>+||u"||2 F<U,U~-Us> S
a(t) <dJ (W) -J (us), e —[u+u + B +ﬂ3(t)umr +ﬂ4(t)ui" ]>
t20, Ue. € U.

Since the function J(u) is convex, differentiable and its gradient J(u) satisfies the
Lipschitz's condition we have (see [4], pp.175).

(8)
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<J'(u)—J'(v),v—w> sé’—llu—wllz, u,v,we E" (9)

In order to write (8) in a more compact way we will use the denotations
r(t) = ||u (@)%
q(t) = ||u @) |
p(t) = |[u@®) |l

(10)
1
x(t,u®) = -é-llu(t) —u* .

Using (10), (9) and inequality (a + b + ¢ + d)* < 4 (a® + b? + ¢* + d?), which is true
forall a,b,¢c,d e R, from (8) we will get

LO[1-alt) L]||u™ |2 +B,@) fst) r (t) +

[2t)(1-a(t) L)-2 B, () fo () | () + B4 (t) Bo(t) g () +

[ () fo(t)-3B,() 1q () +[ F5() A — a(t) L) + B4 (£) -2 B3 (t) ] q(t) +
B0 PO+ 02 017" +[ 5,0~ 5 O] P B +

[1-a(t) L-B,(t) ] p(t) +
B () 2 (t,us) + B3 x (¢, ue) + fo(t) x (t,us) +x (t,us) < 0,

t20, u.c U,.

After the integration on the segment [§, £], ¢ > £, where £20 is arbitrary, taking
into account the conditions 2) of the Theorem, we have

‘ .
[ (BE@[1-ay L1I[u" )| + [ A(s) 1-ay L) -2 4(s) Ba(6) I r(s) +
! )

[é(s) (1-01 L)+ﬁ4(s)— 253(3) +3ﬁ:;(3)]Q(3)+
[1- L‘ﬁz(s)‘*‘*g-ﬂ;;(s)—zﬁl(s)]p(s)+
[ B (s) - fa(s)+ B (8) ] x(s, us) } ds +

Pa(t) B3(t) r(&) + B4 () Bo(t) g () +
[Bs(t) Bo() -3 B4 (1) 19(t) + 4 (t) p"(8) + (11)

[ B0 =2 B,(O)— B, ()] p (&) +[ o (D) ‘% B3 () +2B4(8) ] p(t) +

Ba@®x (t,us)+[S3(®)—Py(D)]x (¢, us) +[ Bo(8)— fa(t) + By (t) | x (¢, us) +
x(t, Us) < Co(g, Us) ’

t>&20, u.e€ U,,

where
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Co(& us) = B4 (&) B3 (&) r(O) + By (D Bo(H g () +
[ B3(D) Bo (O -3 By (&)~ (Ba(O Bs(D) 1q(E) + B4 () p () +
[ B3O -2 B4(5)- B3O ] p () +
52O~ (O +2 (O~ A+ (O] &) + 12

Pa(O) x (& ua) +[ f3(9) = fy() ] x (§ ue) +
[ B2(O - B5(O+ 54 (H]x' (& ua) +
[1-52(O)+5(0) - (O] x(§ ua).

From the condition 2) of the Theorem and (4), (5), it follows

ﬂf(s)[l—alL]:aO, s20,
H[ﬁ(S)(l—al L)-2ﬂ4(3)ﬂz(3)]=

Bio(l-a1 L)-2f40 fru > O,
lim [ B2(s)(1— @y L)+ f4(s) -2 f3(s) +3 fy(s) ] =

§—»0

gm (l“al L)+ﬁ4nu _2ﬂ3uo > 0;

lim [1-ay LBy (8)+2 fy(s)- 2 fy(s) ] =
88— 2
l—al L-ﬂ2m > 0.
Therefore there are g, 0 <¢ < 1/2 and {,20, such that:
fi(s)[1-a; L]2 5
B(s)(1—ay L)-2 ,(s) fa(s) 2 &,

() (1—ay L)+ B4(8) -2 f4(s)+3 fy(s) 2 ¢,
1-a L—ﬂz(s)+-g—ﬂz;(s)- 2 f,(8) 2 ¢,

§2 t0 .
Then from (11) we have

t 4

e[ {3 116D P +F(9) | uls)-ug |* } ds+
3 =1

Be () B3 (8) 1) + By (t) () q (1) +

[ B(t) Bo(8)— 3 By (8) 1q(t) + B4 (t) p (£) + (13)

[ﬁa(f)-2ﬂ4(t)-ﬂ'4(t)]p'(t)+[ﬂ2(t)—%ﬁ3(t)+2ﬁ4(t) | p(t) +

Ba(t) 2 (b, ws) +[ B (O) = By ()] (8, we) +[ Bo(t)— P (8) + Sy () ] x'(2, ue) +
I(t, u-) < Co(f, u-) :
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for all £>E20, uec Us. Let h(t)=exp { [ fs(s)ds}>0, £20. In (13) the integral is

positive and g,(¢) ;&) r(t) 20, £ >0, so they can be omitted. After that we will multiply
(13) by k() and integrate it on the segment [¢, £], for t > E2t,.In this way we will get

Ba(t) Po(t) h(2) g(2) +

t ]

[183(5) B2(3) — 8 B4 ()~ (B2(5) By () = B () B2 (s) 1 h(s) q(s) ds +
'3

P4 (t) h(2) p (&) +[ Ps(t) -2 B4 () -2 ﬁ'4(t) - ﬂ?,(t) 1 h(t) p(t) +

‘ " '
[ {184 RS T —[(B5(s)-2 P4 ()~ a(sD h(s)] +
3

[ fo(s) - %ﬁ;;(s) - 2/3'4(3) | h(s)} p(s)ds +

B h(t) % (8, us) +[ Pa(t) -2 By (8) - f3(8) 1R () x (£, us) +
([ So(®) = B5(8)+ By (6) 1h(t) - [ (B3(t) = Bs ) h() | +[ Bs (&) h(®)] } x(t, us) +

4
[ {h(8) = [ Ba(9)- f3(9) + fy(s) h(9) ] +
s

[(B3(8)=Ba(s) h(8)] —[ B4 R(8)] } x(s,us)ds <

4
Co(& us) [h(s)ds +C1 (£ us),
£

t>E21,, Ue € Us.

where

C1(& us) = B4 (O fo(O h(8) q() + By (O h(H p (&) +
VAGEPIAGESYAGENAGIIGYIGE
Pa(O (O " (£,ue) +[ B3(E) -2 4 (&) - FL(D N h(&) x' (£ ue) +
([ B2(O) - P3(O)+ B3 (O TR(O [ (B5(O) - B4 () R(O] +
[B(O) R(E)] } x(& us).

From the conditions 2) of the Theorem, (4) and (5) it can be shown that all
integrals on the left hand side of the above inequality are non-negative for some £, > ¢,

and every £ >E2>t,. Besides that we have: ﬁ;(t)SO, ﬂ;;(t)SO, ﬂ:(t)ZO, so the last
inequality becomes
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Pa(©) Po(t) h(2) q(2) + B4 (t) h(2) p'(£) +
[ B3(8) =2 By (8) - f5 () 1 h(2) p(t) +

B (&) h(£) x (t,ue) +[ fg(t) - 2 By () — o) | h(E) x (¢, us) + (14)
[ B2 ()= P3(0) By (6) +4 By(t) By () | h(t) x(t,us) <

¢
- Co(& ue) [R(s)ds +Cy (& us),
¢

for everyt > £2t, ,u. € U, . Integrating (14) on [¢, t], we have

4 4
[ Bu(8) By(s) h(s) q(s) ds + [(B3(8)-2 By (s) -2 5 (5) - By (s) | h(s) pls) ds +
£ ¢

Ba(®) h(®) p(t) + B4 (8) h(t) x (t, ue) +[ B3 (8) - B By (£) - 2 3 () | h(E) x(t, ue) +
4

[ {1 82(8) - Bs(5) By () +4 By (5) fy (8) 1 as) -

4

[(B3(s)—2 B4 (s)-Bi(8) h(s) ] +[Be(s) h(8)] } x(s,us)ds <

ts
Co(§ us) [[R(@ dOds +Cy(& ue) (t- O +Cy(& us),
$&

for t > &2t,,u. € Us where
Co(& us) = B4 (&) k(O p(O) + B4 (O h(D %' (£, ua) +
[Ba(5) -8 By (D -2 F3(O) 1 h(O) x(& us).

Taking into account the conditions 2) of the Theorem and relations (4), (5), we
can find that there exists t, 2 ¢, , such that the integrals on the left hand side of the last
inequality are non—negative for all £ > £ 2¢, . Hence

B @) h(t) p(t) + B () h(D) x (t, 1) +

[Ba()-3B,t)-2 5 | h(D) x(t,ue) <
(@hY i ,

Co(& ue) [ [R(O) dOds +Cy (& ue) +(t - O + Cy(§ ue),
5

t>E2t,, u. € U,.
After the integi'ation in (15) on [, t], we get

4
[ (Ba(s) pls) +[ B3(s)—4 fiy(s) - 3 fi(s) | x(t, us) } h(s) ds + Py (t) h(t) x(t, us) <
¢

tsv

Co(& us) [ [ [R(O) dOdvds +%cl(¢, ue) (t — % + Co(& ua) (t - O + C3(&, o),
§6¢

for t>E2t,, us. € U., where

C3 = B4(8) h(&) x({, u.) .
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From f; <0 and (5) it follows that there is ¢5, £;2¢,, such that the integrals on
the left hand side of the above inequality are non-negative for all £ > £ > ¢, , so that

ts v

B h®) x(t,us) < Co(&ue) [[[h(6) d6dvds+
£&¢

%Cl(g,u-)(t—s‘)z +Cy(& ue) (¢ - O+ C3(& ua),

for t >&21,, u. € U.. Consequently
Lim || 2() —ue || <2 Hm [ B, &) R@E) T { Ca(& ua) + Co(& ue) (£ - &) +

t— t—o0
tsv

%cl(g, ue) (t- &2 +Co(&us) [ [ [R(@dOdvds) =
EEL

2 Fn lim R () C3(& ue) + Co(& us) (- &) +
tsyvy

> Ci(§u) - 92 +Co(g un) [ [ [ M@ dodvds).
EEE

It is clear that lim A(f) = +co. In order to calculate the limit of the right hand side

f{—o

we will use the L' Hospital rule three times. After that we will get

lim u(t)—us || <by Co(&, us),
lim | II* <o Co(4 A

§2t3’ u.e U.-

where by =2 f;%. Using (5) and f, <0, it is not difficult to see that the third term on

the left hand side of (15) is non—negative for some £, >, and all £>¢, . From here and
denotations (10) we have

e @IF +<u @), ut)-us> <

t s
2 {Co(& ue) [ [R(O dOds +Cy(& ua) (- + Co(&ua) [ BLO R T,
£E

t>E21,, u. € U..
Therefore from (16) and the inequality

2|<a,b>|<|al?+|b]?, a,be E® (17)

it follows
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Iim llum(t)ll2 < by Co(& us) +
{—

——— t 8
2 Lim [ 5,(&) h(®) ' {Co(§ ua) + Cy(§ua) (= O+ Co(& ue) [ [R(O) dOds} =
£¢
bO Co(‘f:u*) +

{8
E—z—Pm{Co(f,m)JIh(Q) dOds +Cy(& us) (t— O +Ca(& us) } R71(2).
ot &

Using the L' Hospital rule two times, it can be obtained

lim || ') |2 <&y Co(&, u)
{—0 (18)

§2t4, u'e U',

where b, = 4 +2/ﬁ‘2w. From (4), (5) it is clear that there is ¢ 2 ¢, , such that the third

and the sixth terms on the left hand side of (14) are non—negative. Taking into account
(10) and (17) in a similar way as before, we can get

lim B, [ K@ - B, 1" OIF
f—»o0 2

E{%[ummnnu—w 12 +[1+”'12“)' '@ |2 +

t
[ A(2) I—l [ Co(é, u-)_[h(S)ds + Cl(é us)]},
S

where f;(t)=B)-2B,()-F(t), t>0. Let M, > 0, such that |f,(£)|<M,,t20. Then

3 gl
ﬂ4m[ﬂzm--§ﬁ4m]hmllu(t)llz <
{—c0
1+ M,

lim { ||u-u.||2+[1+—}'—I—1-]||u'(t)||2+
{—c0 2

t
[A@®) T [Co(& ue) [h(s)ds + Cy (& ue)]} .
<
From (5) we have £y [ fo - (3/2) 4 1> 0. Using L' Hospital's rule on the right
hand side of the above inequality and the estimates (16), (18) we will get

lim || u ®)|* <by Co(& us), o

E2tg, u.cU.,

where b, does not depend on ¢ and u.. Taking into account (4), (5), (17) and
denotations (10), from (13) we can obtain
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{ 4
ef (2 N1uP @I+, ||us)- o |[* } ds +
£ =1

VA ORYAGY ACKAG 7 =
1HOe [P+ 00w |+ fa@®|]le—u |12 + Co(& us),

t>E2tg, u.€ U.,,

where the functions f;, i = 2, 3, 4; are bounded and do not depend on & and u.. Let
M, > 0, such that |f;(t) |<M,, i =2,3,4; t20. Since

lim [ B3(t)—Ba() o)~ Bs(t) 1= B3co = Bao Poo — Pao >0,
then there exist a moment ¢,2t; and a number &, 0 <8 < ¢, such that for all £>1,:
B () [ Ba(t)— By (t) f5(t) - B4 (£) ]> 5,. Hence

t 4 _ i
S{[ X NuPGIE+FS) | |uls)—ue |* 1ds+][u" |} <
& i=1

My [l [ +1u | +[]u—us |F]+Co(& ua),
forallt > E>¢,, u. € U, . Consequently

t 4 _
5{_[[Z||u(’)(s)||2+f(s)||u(s)—um||2]ds < b3 Cy(& u.), (20)
& =1

lim ||u" )| < b3 Co(&us),
{—c0 (21)

E2t,, u.cU..

where by = 61 [M, (b, + b, + b,) + 1]. From (20) it follows that there is a sequence
{s;} <O, +00) such that

den Llien Sy
lim [ Y [[«®s)|*] = jﬁmlzuu“’(s,on"] = 0,
e l=1 —2% i=l
1.e.
lim [|u®(s;)||=0, i=123,4. (22)

J®
Then from (16) and the conditions 2) of the Theorem, it is obvious that there exist
a subsequence {3; }, a point u_ € E” and a real number a_ > 0, such that
lim ||u(s;)-ug||=0, lim a(s;) = e, - (23)

J—>0 J—®©
Setting ¢t =3 ; 1n the differential equation (3), from (22) and (23), we can get,
hm ”ﬂ4(§J) uw(gj) +ﬂ3(§,}) um(§_,) +ﬂz(§_’) u'(EJ) n u'(EJ) + u(EJ) _a

J—»o

Py [us;)-as;)J ()]l =
|t = By [t — @ J (u)]]| = O.
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Consequently (see[4], pp.171) u, € U.. From (12) where ¢(=5;, us=u_ e U.,
along with (22), (23) we have
hm CO(SJ,H ) 0.

J—®

Let jp21 be such a number that s; 2 t;, for every j2j,. Then the relations (16),
(18)=(21) hold for £=s;, j2j, and u.=u, . Therefore
hmllu(t) —u, |1 < by lim Co(sj,um) 0.

J—®

hmllum(t)IFSb, !.lﬂlCo(Sj,um):O, i=1,2,3.
{— J—©

Hence
Lim ||u(f) -u,||=0, lim |[|z®@®)||=0, i=12,38  (24)
{—c0 {—»c0

From the differential equation (3) and the relations, when f—> o, it can be
obtained
lim || " (¢)||=0. (25)
{5

The inequality (20) and the relations (24), (25) give the statement of the theorem.

3. CONCLUSION

The projection—gradient methods of the higher order are important because of
their higher rate of convergence in comparison with the methods of that type of the
first order [1]. Besides that, the continuous methods give us a large choice of the
numerical integration methods for solving the corresponding differential equations.
These facts justify the investigation of the continuous methods of the higher order.
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