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Abstract: Mathematical programming, and above all, the multi-objective scheduling 
problems  stand as remarkably versatile tools, highly useful for optimizing the health care 
services. In this context, the present work is designed to put forward two-fold multi-
objective mixed integer linear programs, simultaneously integrating the objectives of 
minimizing the patients’ total waiting and flow time, while minimizing the doctors' work-
load variations. For this purpose, the three major health-care system intervening actors are 
simultaneously considered, namely, the patients, doctors and machines. To the best of our 
knowledge, such an issue does not seem to be actually addressed in the relevant literature. 
To this end, we opt for implementing an appropriate lexicographic method, whereby, 
effective solutions enabling to minimize the performance of two-objective functions could 
be used to solve randomly generated small cases. Mathematical models of our study have 
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been resolved using the CPLEX software. Then, results have been comparatively assessed 
in terms of both objectives and CPU times. A real laser-treatment case study, involving a 
set of diabetic retinopathy patients in the ophthalmology department in Habib Bourguiba 
Hospital in Sfax, Tunisia, helps in illustrating the effective practicality of our advanced 
approach. To resolve the treated problem, we use three relevant heuristics which have been 
compared to the first-come first-served rule. We find that the program based on our second 
formulation with time-limit provided the best solution in terms of total flow time. 

Keywords: Minimizing waiting time and flow time, doctors' workloads, multi-objective 
mixed integer linear programs, lexicographic solutions. 

MSC: 90C29. 

1. INTRODUCTION 

Diabetic Mellitus (DM) is defined as a state of chronic hyperglycemia that follows an 
abnormal secretion of insulin, insulin action, or both anomalies simultaneously. Basically, 
this chronic disease is classified into two main categories, namely, Type I and Type II 
diabetes [1]. It is ranked as a severe disease, frequently predominant in the developed as 
well as developing countries, alike. Future prevalence estimates indicate well that diabetes 
is a worldwide spread disease [2]. The early detection and treatment of diabetes is 
mandatory, and with the existence of resource constraints in developing countries, more 
undiagnosed than diagnosed cases tend to persist. For this reason, this disease is followed 
by serious complications such us diabetic nephropathy which causes renal disease, the 
macro diabetic angiopathy which is a major etiology of cardiovascular diseases including 
gangrene and amputations lower limbs, and Diabetic Retinopathy (DR) which leads to 
blindness. 

As a manifestation of DM complication, DR is most often a symptomatic in its early 
stages [3], usually affecting both eyes. If someone has DR, he might not initially witness 
noticeable changes in his vision. As time goes by, however, DR could seriously aggravate 
and bring about vision loss [4]. Consequently, care of DR affected patients stands as a 
highly necessary procedure for the development of the disease to be effectively restricted 
[3], and owing to the critical situation marking most of the DR affected patients, it is 
mandatory to provide them with highly efficient health care services. It is for this purpose 
that [5] developed an automatic computer system to maintain an effective planning of 
coagulation for diabetic retinopathy affected patients. As to [6], they proposed a special 
mathematical model enabling to determine DR screening recommendations, whose cost-
effectiveness was assessed by means of a Markov-chain Monte-Carlo simulation. 

Operations research is a powerful discipline enabling managers to reach the most 
optimal decisions regarding several application areas, particularly the healthcare domain.  
Indeed, it involves a wide range of problem-solving methods and frameworks designed to 
improve the quality of patient delivered care services. Worth citing, in this respect, is the 
scheduling theory, which stands as a major research area focused on retrieving the most 
appropriate sequences fit for optimizing relevant criteria [7]. Several models and ap-
proaches were proposed to solve the scheduling related problems, worth citing among 
which are the simulation techniques [8], heuristics [7, 9-10], simulation optimization 
algorithms [11-13], along with mathematical programming [14-16]. 

With respect to the health care domain, the scheduling theory has been widely applied 
in several known research studies, mainly, those conducted by [8-9, 12, 17-22]. In each 
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context, appropriate algorithms and heuristics have been selected to solve the problem 
addressed on the basis of its complexity, the number of machines used, the scheduling 
system adopted and the static or dynamic nature of patient arrival. 

The problem, of scheduling n patients on m machines, is considered NP-hard because 
it is a variant of the job shop problem, which has been proven to be NP-hard [23]. In 
addition, the goal of minimizing the flow time in scheduling problem of n tasks on one 
machine and with rj≠ 0, (rj is the ‘release date’ or ‘ready time’ which corresponds in our 
case to the date of availability for treatment of patient i), is an NP-hard problem [24]. Our 
problem is more complex, since its solution requires scheduling of patients not only to 
machines, but also to doctors.  

In this paper, we present two multi-objective mathematical models. In the first model, 
doctors can work in only one machine while in the second model they can switch between 
machines. In each model, two objectives are considered in order to improve patients' 
satisfaction and balanced doctors' utilization and workload: The first objective function is 
minimizing the flow time of all the patients treated with laser machines in the 
ophthalmology department, thereby reducing their overall length of stay. The second 
objective gives an optimal schedule that levels the workload between doctors in laser 
photocoagulation room during the day. Lexicographic solutions are obtained for randomly 
generated small instances. For medium sized real case, three heuristics are compared to the 
existent scheduling method. 

The paper is organized as follows. Section 2 involves a review of relevant literature, 
while section 3 is devoted to highlighting the problem addressed. Our mathematical model 
designs are detailed in section 4. Then, the proposed models are illustrated and compared 
in regard to small numerical examples in section 5. As to section 6, a comparison is 
established between our achieved results and a real case situation. Finally, the last section 
provides drawn conclusions, along with perspectives for potential research lines. 

2. LITERATURE REVIEW 

It is worth recalling that a parallel machine scheduling problem consists in a set of tasks 
to be processed via several identical machines over a given time period. Each task is 
exclusively assigned to a single machine, and each machine can process just a unique task 
at a time. Hence, a feasible schedule should highlight and determine the sequence of tasks 
relevant to each machine. In this respect, parallel machine-scheduling problem is designed 
to find an appropriate schedule fit for optimizing one or more objective functions [25]. The 
parallel machine scheduling problem plays an important role in decision making in a wide 
range of production manufacturing and industries [26]. The parallel machine scheduling 
problem is used by several practitioners in many fields [27]. It is applied in social science 
[28, 29], computer science [30] and health care systems [9]. In parallel machine scheduling 
problems, the objective functions are generally related to the completion times or the due 
dates of different jobs. We can cite for example the total flow time [31-33], the makespan 
[27, 34], the maximum tardiness [35, 36]. In [37], the authors addressed the problem of 
bounded single machine scheduling with release dates and rejections. Their objective was 
to minimize the sum of the makespan of the accepted jobs and the total penalty of rejected 
jobs. They developed a polynomial time algorithm for solving the problem. In [38], the 
authors examined the single machine scheduling problem with earliness and tardiness 
penalties. To resolve the problem, they used an algorithm in order to obtain the upper 
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bound of the problem which was efficiently integrated with the branch and bound search 
algorithm. With respect to [39], they developed a two-phase non-linear integer 
programming formulation for scheduling n jobs on two identical parallel machines with 
the objective of minimizing weighted total flow time. To this end, an optimization 
algorithm was constructed to deal with small problems, and a heuristic to resolve large 
problems, in order to find optimal or quasi-optimal solutions. As for [40], they investigated 
unrelated parallel machine scheduling with renewable constraints. Initially, they proposed 
an efficient mixed-integer linear programming model to solve the two-machine related 
problem. Then, for problem with more than two machines, they suggested implementing a 
two-stage heuristic. Similarly, [41] studied an order acceptance and scheduling problem 
regarding unrelated parallel machines enabling to maximize the total net revenue of 
accepted orders. For this purpose, they formulated two mixed-integer programming 
models, then developed enhancement techniques to improve performance of the proposed 
models. In a final stage, they developed a branch-and-bound algorithm to handle complex 
instances. Concerning [42], they investigated the unrelated-parallel machines problem with 
machine eligibility and sequence-dependent setup times. In order to minimize total 
tardiness, they put forward a mixed integer linear programming model. They managed to 
solve small instances enabling to assess the performance of two already-existent heuristics’ 
adapted versions along with two newly suggested ones. 

Regarding [43], they attempted to solve the problem of scheduling n jobs on m identical 
parallel machines in order to minimize total tardiness, by proposing a special branch and 
bound algorithm. As to [44], they studied a problem with unrestricted idle time by means 
of least-process-time as well as adjusted-short-process-time algorithms fit for treating large 
problem instances. Worth citing, in this respect, also, are the works of [45], that developed 
a polynomial lower bound scheme with job fragmentation or relaxation of release date 
constraints, and [46] that provided special set-up time constraints heuristics. Similarly, [47] 
developed a linear programming approach with due-time constraints relaxation by 
considering identical parallel machine scheduling problem with release due-date and 
equal-processing time constraints to be resolved via a polynomial algorithm. With respect 
to [25], and on investigating a distributional robust scheduling problem on identical parallel 
machines, they minimized the worst-case expected total flow time, and optimized the inner 
maximization sub-problem, to reduce their min-max formulation into an integer second-
order cone program. They highlighted their algorithm high efficiency through 
demonstrating its ability to optimize instances involving a remarkably high number of jobs 
within a few seconds. In turn, [48] studied the parallel machine scheduling problem with 
time constraints on machine qualifications. Their objective was to minimize the flow time 
and the number of disqualified job families on machines, while [49] developed a 
mathematical model allowing to resolve the identical parallel machine scheduling problem 
with the aim of minimizing total flow time by means of a special heuristic algorithm. 

On studying the problem of parallel identical machines scheduling, [50] aimed to 
minimize the makespan by devising a special O(nlogn) algorithm. To test their achieved 
results, they compare them to those reached via other state-of-the-art algorithms available 
in the relevant literature. The makespan minimization objective was also considered by 
[51], through parallel-uniform machines problem with a single preemption. In their work, 
they highlighted the difference between two distinct cases: the case of two uniform ma-
chines, solvable in polynomial time, and the case where the number of machines exceeds 
two, for which they established a global tight bound. As regards to [52], they considered 
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treating a special case of job sequencing problem with tool requirements. Their objective 
function was specifically designed to minimize the makespan. Similarly, [53] proposed an 
identical parallel-machine scheduling problem that serves to minimize the jobs’ com-
pletion time. To determine the optimum schedule, they considered adopting a heuristic and 
proposing a new lower bound, and subsequently, a branch and bound algorithm. On 
treating the problem of uniform parallel machines scheduling, In [54], the authors con-
sidered minimizing the total weighted completion time. To solve this problem, they made 
appeal to two hybrid meta-heuristics, and tested their methods on a large set of instances. 
As for [55], who studied the parallel machine scheduling problem, they set as an objective 
function the minimization of completion time. To this end, they made use of an ejection 
chain algorithm that yielded more effective results than those proposed in the literature. 
Worth recalling in this respect, also, is the [56] advanced architecture, designed to 
incorporate a backward scheduling framework, along with a backward algorithm. 

Actually, multi-objective programming still remains a major research area that con-
tinues to draw the attention of researchers and academics, alike, owing mainly to the 
versatile real-world applications they provide. For instance, [57] devised a mixed integer-
linear programming model useful for implementation in the pharmaceutical industry. They 
made use of a multi-criteria decision analysis for supplier selection purposes. In turn, and 
on studying the interval multi-objective linear programming models, [58] put forward 
expected Value and variance operators coupled with a Monte-Carlo simulation to reach an 
efficient solution to their problem. In effect, as an effective measure fit for coping with 
non-linear programming related problems, multi-objective optimization has been 
demonstrated and widely recognized to provide efficient solutions. In this regard, [59] 
suggested appealing to sequential optimality conditions as appropriate options for coping 
with non-linear multi-objective optimization problems. 

In general, workload balancing was most often addressed as part of the parallel-
machine scheduling problems. In this regard, [60] set up a linear mixed integer program to 
help minimize the machines related workload discrepancies, implemented to resolve a 
number of persistent problems prevailing in the literature. In turn, [61] considered a special 
modeling design serving to analyze transshipment collaboration of multiple couriers with 
flexible time periods, in order to minimize both of the workload and waiting time 
conflicting objectives. As for [62], they investigated the non-identical parallel machines 
problem via a special objective function designed to minimize the manufacturing systems’ 
various products workload, through investigating an iterated min/max procedure. 

In effect, the workload minimization objective function stands as an important under-
taking in the process of solving health care problems, and remains subject of interest for 
several authors, scholars and practitioners. Worth citing in this respect, are the works 
elaborated by [63-68]. In this regard, also, [69] proposed an integer linear program useful 
for assigning patients to nurses, while maintaining the objective of balancing the nurses’ 
workloads. To this end, they adopted a nurse-zone based heuristic. As to [70], they devised 
a new Chemotherapy treatment targeted linear program, modeled to schedule the 
physicians’ working period. This program has been used for balancing their workload, and 
accounting for the patients’ treatment protocols, beds’ capacity and physicians’ planning 
related constraints. With regard to [71], they addressed the patients' scheduling problem, 
aiming at minimizing a Cancer Clinic nurses’ workload using a mathematical model. 
Concerning [72], they set up a stochastic mixed integer linear programming model to 
optimize the staff allocation problem in respect of multiple radiotherapy operations 
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following a set of patients in flow scenarios, under uncertain demand. A real case study 
was considered in the radiotherapy ward of the Netherlands Cancer Institute. Similarly, 
[73] initiated a number of physicians' workload minimizing methods relevant to the capture 
and analysis of electronic health records during outpatient treatment. In this respect, also, 
[74] conducted a whole year follow-up study focused on 72 primary home-care health 
teams operating in Catalonia of patients aged over 64 years. Their objective was to identify 
the chronic patients’ characteristics and living environment to predict and determine the 
nursing workload required one year following their inclusion in a home care program. 

3. PROBLEM DESCRIPTION 

In a previously conducted work, [75] applied discrete event simulation to study three 
specific models for diabetic patients with Retinopathy signs. They computed the total time 
for a DR affected patient to develop blindness via their ARENA software incorporated 
models. The average time was discovered to be estimated at around thirteen years in case 
of no treatment, around twenty-three years when a vitrectomy treatment is implemented, 
and around 46 years when the patient is treated with Laser photocoagulation. They, then, 
concluded that Laser treatment turns out to be the most effective in terms of blindness 
development extended time for Retinopathy affected patients.  

Hence, given the importance of Laser treatment for DR affected patients, and the high 
expenses necessary to get treated in the private sector, we undertake to develop two multi-
objective mathematical models, designed to maintain an effective scheduling of the laser-
treatment requiring patients in the ophthalmology department in Habib Bourguiba hospital 
of Sfax in Tunisia. Despite the great deal of research dealing with the health-care sector 
dedicated scheduling theory, almost no research work has been discovered to deal 
simultaneously with scheduling the doctors’ staff and machine resources, useful for treat-
ing these patients, while considering to minimize the patients’ treatment stay span and the 
doctors' workload variations. Our choice of the doctor-workload variations’ objective is 
owed to the fact that the number of doctors exceeds the number of laser machines in our 
real study case.  

4. MODEL FORMULATIONS 

At hospital, and particularly in the Laser treatment room, patients are usually serviced 
on a First Come First Served (FCFS) basis. Yet, this method does not necessarily help 
minimize the patients’ total stay time. Once the patients’ arrivals order is ignored, the total 
cumulative stay time might be reduced for all patients, yielding longer waiting time for 
some patients, having long processing time [76]. Hence, by introducing a maximum limit 
on the patients' flow time, long waiting time spans could be noticeably reduced. 

In our models, two main objectives are independently considered. While the first 
objective is aimed to minimize the Total Flow Time for all patients (TFT), the second is 
targeted to equitably distributing the total Workload among doctors (WL).   

4.1. Formulation of the first mathematical model 

It is worth noting that the patients' arrival for treatment is synonymous with the case of 
accepting n different tasks to be served on m parallel machines, whose processing would 
be executed via different machines. In this context, we assume that each task can be 
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processed on one single machine, and that the task interruption is not allowed [76]. In our 
study case, tasks denote patients, while machines denote the Laser machines. If, for 
instance, a patient started his/her treatment via a particular machine, he/she will pursue 
treatment via the same machine until completion. 

Our first bi-objective patients’ scheduling model is quite similar to the birth-allocation 
problem mathematical model used by [77], but includes doctors as supplement resources, 
an extra objective function and extra decision variables.  

Actually, our model maintains the following assumptions:  
 Every machine is able to process only one patient at a time. 
 Every patient can be assigned to only one machine. 
 Each doctor is to be assigned no more than a single machine at a time. 
 Each doctor can treat only a single patient at a time. 
 The processing time of patient i remains unchanged for all machines. 
 The processing time of patient i depends on the disease severity level. 
 If patient i is assigned to doctor l, he/she will continue to be treated by him/her 

till the end of the treatment process. 
 The planning process is considered as either dynamic (i.e., all patients might 

arrive at different times) or static (i.e., all patients would arrive at the same 
timing: time zero). 

 

Notations 

i: the patients related index, i = 1,..., I, i P. 
j: the available machines relevant index, j = 1,..., J, j M. 
l: the available doctors associated index, l = 1,..., L, l D. 
k: the patients service order relevant index, k= 1,..., I, kP. 
n: the index of patients order for each doctor, n = 1..., I, nP. 
 

Sets and parameters 

 D: the set of available doctors. 
 P: the patients’ set. 
 M: the set of available machines. 
 Pi: patient i processing time. 
 Ri: patient i release date (ready time). 
 Sl: doctor l availability date. 
 N: a large positive constant. 
 

Decision variables 
 

1 if patient i is assigned to machine j in order k 
0 otherwise  
 

1 if patient i is assigned to doctor l on machine j in order n 
0 otherwise 
 

Fijk: flow time of patient i assigned to machine j in order k. 
Cijk: 'Completion time', which corresponds to patient i treatment completion date on 
machine j in order k, according to the formula: Cijk = Fijk + (Ri* Xijk). 
Zijk = Fijk* Xijk. 

 

ijk
X 

lnij
Y 
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4.1.1. Mathematical model 
 

The analytical form corresponding to the first model is shown through Program 1. 
 

Program 1: 

TFT =  Min ∑ ∑ ∑   𝑍𝑘 ∈𝑂 𝑖𝑗𝑘𝑗∈𝑀𝑖∈𝑃  

WL =  Min ∑ |∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖  −
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)𝑛∈𝑁𝑗∈𝑀𝑖∈𝑃 |𝑙∈𝐷  

Subject to the following constraints: 

∑ ∑ 𝑌𝑖𝑗𝑙𝑛𝑛∈𝑃𝑙∈𝐷 − ∑ 𝑋𝑖𝑗𝑘 =(𝑘∈𝑃)≠0 0,    ∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑀                     (1) 

∑ ∑ 𝑌𝑖𝑗𝑙𝑛𝑗∈𝑀𝑖∈𝑃 ≤ 1,   ∀𝑙 ∈ 𝐷, 𝑛 ∈ 𝑃                  (2) 

∑ ∑ 𝑌𝑖𝑗𝑙𝑛𝑗∈𝑀𝑖∈𝑃 ≤ 1,   ∀𝑗 ∈ 𝑀, 𝑘 ∈ 𝑃                (3) 

∑ ∑ 𝑋𝑖𝑗𝑘𝑘∈𝑃𝑗∈𝑀 = 1,   ∀𝑖 ∈ 𝑃                              (4) 

∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛𝑗∈𝑀𝑙∈𝐷𝑗∈𝑀 =  1,   ∀𝑖 ∈ 𝑃                              (5) 

𝐹𝑖𝑗𝑘 ≥ 𝐶𝑡𝑗(𝑘−1) − (𝑟𝑖 × 𝑋𝑖𝑗𝑘) + (𝑃𝑖 × 𝑋𝑖𝑗𝑘),  

∀𝑖 ∈ 𝑃, 𝑘 ∈ 𝑃 𝑎𝑛𝑑 𝑘 ≠ 0, 𝑡 ∈ 𝑃 𝑎𝑛𝑑  𝑡 ≠ 𝑖 , 𝑗 ∈ 𝑀  (6) 

𝐹𝑖𝑗𝑘 ≥ (𝑃𝑖 × 𝑋𝑖𝑗𝑘),   ∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑃      (7) 

𝐹𝑖𝑗𝑘 = 𝐶𝑖𝑗𝑘 − (𝑟𝑖 × 𝑋𝑖𝑗𝑘),   ∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑃       (8) 

𝐶𝑡𝑗0 = ∑ ∑ (𝑌𝑖𝑗𝑙1 × 𝑆𝑙),   𝑙∈𝐷𝑖∈𝑃 ∀ 𝑡 ∈ 𝑃 , 𝑗 ∈ 𝑀                 (9) 

𝐹𝑖𝑗𝑘 + 𝑁(1 − 𝑋𝑖𝑗𝑘 ) ≥  𝑍𝑖𝑗𝑘 ,   ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑃      (10) 

𝑁(1 − 𝑋𝑖𝑗𝑘) + 𝑍𝑖𝑗𝑘 ≥ 𝐹𝑖𝑗𝑘,   ∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑃      (11) 

𝑁(𝑋𝑖𝑗𝑘  ) ≥ 𝑍𝑖𝑗𝑘,   ∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑀, 𝑘 ∈ 𝑃      (12) 

∑ ∑ ∑ 𝑌𝑖′𝑗′𝑙𝑛′(𝑗′∈𝑀)≠𝑗  𝑛′∈𝑃𝑖′∈𝑃  ≤ 𝑁(1 − 𝑌𝑖𝑗𝑙𝑛),   ∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑀, 𝑙 ∈ 𝐷, 𝑛 ∈ 𝑃   (13) 

𝑁( 1 − 𝑤2𝑙) + ∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖  −
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
 ≥  0𝑛∈𝑃𝑗∈𝑀𝑖∈𝑃 ,   ∀  𝑙 ∈ 𝐷                           (14) 

𝑤1𝑙 +  𝑁( 1 − 𝑤2𝑙) ≥ ∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖  −
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)𝑛∈𝑃𝑗∈𝑀𝑖∈𝑃 ,   ∀  𝑙 ∈

𝐷                          (15) 

𝑤1𝑙  ≤  ∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖  −
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
  + 𝑁 (1 − 𝑤2𝑙),    𝑛∈𝑃𝑗∈𝑀𝑖∈𝑃 ∀  𝑙 ∈ 𝐷                  (16) 

𝑁 𝑤2𝑙  − (∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖  −
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)𝑛∈𝑃𝑗∈𝑀𝑖∈𝑃 ) ≥ 0,   ∀  𝑙 ∈ 𝐷                         (17) 

𝑤1𝑙 +  𝑁  𝑤2𝑙  ≥  −  (∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖  −
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
) 𝑛∈𝑃𝑗∈𝑀𝑖∈𝑃 ,   ∀  𝑙 ∈ 𝐷                   (18) 

𝑤1𝑙 ≤ −(∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖  −
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
 )𝑛∈𝑃𝑗∈𝑀𝑖∈𝑃  + 𝑁 𝑤2𝑙,   ∀  𝑙 ∈ 𝐷                    (19) 
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𝑋𝑖𝑗𝑘 {0,1}, 𝑌𝑖𝑗𝑙𝑛 {0,1}, 𝑍𝑖𝑗𝑘 ≥ 0, 𝑁: a large constant, 𝑤2𝑙{0,1},  𝑤1𝑙 ≥

0,   ∀ 𝑖, 𝑘, 𝑛 ∈ 𝑃, 𝑗 ∈ 𝑀, 𝑙 ∈ 𝐷 (20) 

The constraints’ respective descriptions are as follows: 
Constraints (1) guarantee that if Xijk = 0, then Yijln = 0, and if  Xijk = 1, Yijln = 1. Constraints 
(2) guarantee that each doctor is to be simultaneously assigned just a single machine and a 
single patient at a time. Constraints (3) guarantee that each machine is to be used by at 
most one patient at a time. Constraints (4) guarantee that all patients will be served by one 
machine in a given service order. Constraints (5) guarantee that all patients will be served 
by one doctor in a given service order. Constraints (6) give the flow time value of patient 
i on machine j according to the order k, where Ctj(k-1) is greater than ri. Constraints (7) show 
the flow time value of the patient i on machine j according to the order k, when ri is greater 
than Ctj(k-1). Constraints (8) highlight the relation between flow time and completion time. 
Constraints (9) show the initial value of the completion time Cjt0, which is equal to Sl. 
Constraints (10) and (11) ensure that if Xijk =1 then Zijk = Fijk. Constraints (12) guarantee 
that if Xijk = 0 then Zijk = 0. Constraints (13) guarantee that each doctor works only on one 
machine. Constraints (14), (15) and (16) guarantee that if ∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖 −𝑛∈𝑁𝑗∈𝑀𝑖∈𝑃
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
≥ 0   then 𝑤1𝑙 = ∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖 −

∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)𝑛∈𝑁𝑗∈𝑀𝑖∈𝑃 . Constraints (17), (18) and (19) 

guarantee that if −(∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖 −
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
) ≥  0𝑛∈𝑁𝑗∈𝑀𝑖∈𝑃 , then:   𝑤1𝑙 =

−(∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖 −
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
 ) 𝑛∈𝑁𝑗∈𝑀𝑖∈𝑃 . Constraints (20) define the decision variables. 

 
4.1.2. Lexicographic solution 

 

This subsection is devoted to presenting our model’s two suggested formulations. 
While the first formulation is designed to minimize the patients' total flow time (Program 
2), the second is targeted to minimize the doctors' workloads variations (Program 3). 

A. Total Flow time objective 

Our first mathematical model is aimed to fulfill the Total Flow Time (TFT) 
minimization objective. The model’s analytical formulation is presented as follows: 

Program 2: TFT* =  Min ∑ ∑ ∑   𝑍𝑘 ∈𝑂 𝑖𝑗𝑘𝑗∈𝑀𝑖∈𝑃  

Subject to constraints (3), (4), (6), (7), (8), (9), (13), (20). 

Since 𝑍𝑖𝑗𝑘 = (𝐹𝑖𝑗𝑘 × 𝑋𝑖𝑗𝑘) is non-linear, we consider introducing the constraints (10), 
(11) and (12) for linearization purpose. 

B. The Doctor-workload variations objective 

The workload need be distributed as uniformly as possible among doctors scheduled 
for the shift. The following mathematical model should serve to attain a sequence enabling 
to minimize the workload discrepancy among doctors in service. The optimal workload 
variation value, WL*, is then obtained in the following way: 

Program 3:   WL* =   Min ∑ |∑ ∑ ∑ 𝑌𝑖𝑗𝑙𝑛 𝑃𝑖 −
∑ 𝑃𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)𝑛∈𝑁𝑗∈𝑀𝑖∈𝑃 |𝑙∈𝐷  
Subject to the constraints (1), (2), (3), (4), (5), (13), (20). 
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Constraints (14), (15), (16), (17), (18) and (19) are used to maintain linearization of this 
objective function absolute value to resolve Program 3. 

4.2. Notation and formulation of the second mathematical model 

Our second bi-objective model, relevant to scheduling patients to treatment, is similar 
to [40] developed mixed-integer linear program, to help in scheduling jobs on unrelated 
parallel machines with a renewable resource constraint (UPMR). In their established 
model, [40] attempted achieving both of the TFT and make span minimization objectives. 
As to our constructed model, it is designed to account for both of the TFT and doctor-
workload variations minimization objectives, as the makespan minimization objective is 
not subject of the present work. In the first formulation, adopted from [77] published work, 
a doctor is only allowed to work on one single machine, as determined through our real 
case study of Habib Bourguiba hospital. In our current formulation, however, doctors are 
allowed to work on different machines. 

 

Notations 

i: the patients’ index, i=1,..., I, i P. 
j: the index of machines available, j = 1,..., J, j M. 
l: the index of doctors, available l = 1,..., L, l  D. 
 
Sets and parameters 

 D: the set of available doctors; 
 P: the set of patients; 
 M: the set of available machines; 
 Si: processing time of patient i; 
 Ri: patient i availability date; 
 Al: doctor l availability date; 
 Bj: machine j availability date; 
 N: a large positive constant. 
 

Decision variables 
 

 1 if patient i is assigned to machine j 
 0 otherwise  
 

1 if patient i is assigned to doctor l 
0 otherwise 
 

𝑄𝑖𝑘: auxiliary variable; 
Fi: flow time of patient i; 
waitingi: the waiting time of patient i; 
CSi: 'Completion time', which corresponds to the treatment end date of patient i; 
𝑇𝑖𝑚𝑒𝑙 = ∑ ( 𝑌𝑖𝑙𝑖∈𝑃  ×  ∑ 𝑋𝑖𝑟𝑟∈𝑀  ×  𝑆𝑖  ): the working time executed by each doctor. 
 
4.2.1. Mathematical modeling 

Our envisioned model involves the achievement of two independent objectives: on the 
one hand, it targets minimizing the total flowtime (TFT), while attempting, on the other 

ij
X 

il
Y 



 S. Kanoun et al. / Multi-Objective Mathematical Models for Scheduling Problems 587 

hand, to equally distribute the total workload among doctors (WL). The model’s analytical 
form is depicted through Program 4. 

 
Program 4: 

𝑇𝐹𝑇 = 𝑀𝑖𝑛 ∑ 𝐹𝑖𝑖∈𝑃   

𝑊𝐿 = 𝑀𝑖𝑛 ∑ |∑ 𝑌𝑖𝑙𝑖∈𝑃  × 𝑆𝑖  − (
∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
)|𝑙∈𝐷   

Subject to the following constraints: 

∑ 𝑋𝑖𝑗 𝑗∈𝑀 = 1,   ∀ 𝑖 ∈ 𝑃               (1) 

∑ 𝑌𝑖𝑙  = 1,   ∀ 𝑖 ∈ 𝑃           𝑙∈𝐷   (2) 

𝐶𝑆𝑖   −   ∑ 𝑋𝑖𝑗  ×  𝑆𝑖𝑗∈𝑀   ≥ 0,   ∀ 𝑖 ∈ 𝑃           (3) 

𝐶𝑆𝑖 − 𝐶𝑘 − ∑ 𝑋𝑖𝑟

𝑟∈𝑀

× 𝑆𝑖 + 𝑁 × (2 − 𝑋𝑖𝑗 − 𝑋𝑘𝑗 + 𝑄𝑖𝑘) ≥ 0 , 

 ∀ 𝑖 ∈ 𝑃, 𝑘 ∈ 𝑃, 𝑖 < 𝑘, 𝑗 ∈ 𝑀  (4) 

𝐶𝑆𝑘 − 𝐶𝑖 − ∑ 𝑋𝑘𝑟𝑟∈𝑀 × 𝑆𝑘 + 𝑁 × (2 − 𝑋𝑖𝑗 − 𝑋𝑘𝑗 + 1 − 𝑄𝑖𝑘) ≥ 0,  

∀ 𝑖 ∈ 𝑃, 𝑘 ∈ 𝑃, 𝑖 < 𝑘, 𝑗 ∈ 𝑀 (5) 

𝐶𝑆𝑖 − 𝐶𝑆𝑘 − ∑ 𝑋𝑖𝑟𝑟∈𝑀 × 𝑆𝑖  + 𝑁 × (2 − 𝑌𝑖𝑙  −  𝑌𝑘𝑙  + 𝑄𝑖𝑘)  ≥ 0  

∀ 𝑖 ∈ 𝑃, 𝑘 ∈ 𝑃, 𝑖 < 𝑘, 𝑙 ∈ 𝐷 (6) 

𝐶𝑆𝑘 − 𝐶𝑆𝑖 − ∑ 𝑋𝑘𝑟𝑟∈𝑀 ×  𝑆𝑘  + 𝑁 × (2 − 𝑌𝑖𝑙  −  𝑌𝑘𝑙  + 1 − 𝑄𝑖𝑘)  ≥ 0  

∀ 𝑖 ∈ 𝑃, 𝑘 ∈ 𝑃, 𝑖 < 𝑘, 𝑙 ∈ 𝐷 (7) 

𝑤𝑎𝑖𝑡𝑖𝑛𝑔𝑖  −  𝐶𝑆𝑖  +  ∑ 𝑋𝑖𝑟𝑟∈𝑀  ×  𝑆𝑖 +  𝑅𝑖  ≥ 0,   ∀ 𝑖 ∈ 𝑃         (8) 

𝐹𝑖  −  𝐶𝑆𝑖   +  𝑅𝑖  ≥ 0,    ∀ 𝑖 ∈ 𝑃 (9) 

𝑐𝑠𝑖  −  𝑆𝑖  − 𝐴𝑙  + 𝑁 × (1 − 𝑌𝑖𝑙)  ≥ 0 , ∀ 𝑖 ∈ 𝑃, 𝑙 ∈ 𝐷 (10) 

𝑐𝑠𝑖  −  𝑆𝑖  − 𝑅𝑖  + 𝑁 × (1 − 𝑋𝑖𝑗)  ≥ 0,    ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝑀        (11) 

𝑐𝑠𝑖  −  𝑆𝑖  − 𝐵𝑗  + 𝑁 × (1 − 𝑋𝑖𝑗)  ≥ 0,    ∀ 𝑖 ∈ 𝑃, 𝑗 ∈ 𝑀        (12) 

𝑁( 1 − 𝑤2𝑙) + ∑ 𝑌𝑖𝑙𝑖∈𝑃  × 𝑆𝑖  − (
∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
) ≥ 0,   ∀  𝑙 ∈ 𝐷      (13) 

𝑤1𝑙 +  𝑁( 1 − 𝑤2𝑙) ≥ ∑ 𝑌𝑖𝑙𝑖∈𝑃  × 𝑆𝑖  − (
∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
),   ∀  𝑙 ∈ 𝐷     (14) 

𝑤1𝑙  ≤  ∑ 𝑌𝑖𝑙𝑖∈𝑃  × 𝑆𝑖  − (
∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
) + 𝑁(1 − 𝑤2𝑙),   ∀  𝑙 ∈ 𝐷     (15) 

𝑁𝑤2𝑙  − ∑ 𝑌𝑖𝑙𝑖∈𝑃  × 𝑆𝑖  − (
∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
) ≥ 0,   ∀  𝑙 ∈ 𝐷    (16) 
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𝑤1𝑙 +  𝑁  𝑤2𝑙  ≥  −  ∑ 𝑌𝑖𝑙𝑖∈𝑃  × 𝑆𝑖  − (
∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
),   ∀  𝑙 ∈ 𝐷   (17) 

𝑤1𝑙 ≤ −(∑ 𝑌𝑖𝑙𝑖∈𝑃  × 𝑆𝑖  − (
∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
)) + 𝑁𝑤2𝑙,   ∀  𝑙 ∈ 𝐷 (18) 

Xij {0,1}, Yil{0,1},  N:a large positive constant, 𝑤1𝑙 ≥  0, 𝑤2𝑙{0,1}  

∀𝑖 ∈ 𝑃, 𝑗 ∈ 𝑀, 𝑙 ∈ 𝐷 (19) 

The constraints respective descriptions turn out to be: 

Constraints (1) guarantee that each patient i is exclusively assigned to a single machine j; 
Constraints (2) guarantee that each patient i is exactly assigned to a single doctor l. 
Constraints (3) guarantee that the completion time of patient i is greater than its processing 
time. Constraints (4) and (5) guarantee that there is no overlapping among the set of 
patients assigned to the same machine. Constraints (6) and (7) guarantee that there is no 
overlapping among the patients assigned to the same doctor. Constraints (8) provide the 
value of waiting time of each patient i. Constraints (9) provide the value of each patient i 
flow time. Constraints (10) ensure that any patient’s treatment starting time cannot by any 
means precede the doctor’s availability. Constraints (11) guarantee that each patient’s 
treatment starting time cannot precede the patient associated release date. Constraints (12) 
guarantee that any patient’s starting treatment time cannot precede the machine’s 
availability. Constraints (13), (14) and (15) guarantee that if ∑ 𝑌𝑖𝑙𝑖∈𝑃  × 𝑆𝑖  − (

∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
)  ≥ 0 

then 𝑤1𝑙 = ∑ 𝑌𝑖𝑙𝑖∈𝑃  × 𝑆𝑖  − (
∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
). Constraints (16), (17) and (18) guarantee that if 

 −  (∑ 𝑌𝑖𝑙𝑖∈𝑃  × 𝑆𝑖  − (
∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
)) ≥ 0 then  w1l = − ∑ Yili∈P  × Si  − (

∑ Sii∈P

card(D)
). Constraints (19) 

define the decision variables. 
 
4.2.2. Lexicographic solution 

In this subsection, two mathematical programs are put forward, whereby, each of the 
model objectives associated optimal solution could be determined. Thus, by optimizing 
Program 5, the total flow time objective (TFT*) relating optimal solution could be 
achieved. Then, for the doctors' workloads variation associated objective (WL*) to be 
reached, Program 6 should be resolved. 

A. The Total Flow time objective 

For the TFT to be effectively minimized, we consider the following mathematical 
model, whose analytical form looks as follows: 

 

Program 5: TFT* =  min ∑ 𝐹𝑖𝑖∈𝑃  

Subject to constraints (1), (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12), (19). 

B. The Doctors' workloads variation objective 

The workload should be distributed as uniformly and equitably as possible among the 
shift scheduled doctors. The following mathematical model is designed to help attain an 
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appropriate sequence fit for minimizing the workload discrepancy among doctors. The 
relating optimal solution (WL*) is obtained as follows: 

 

Program 6:   WL* =  Min ∑ |∑ 𝑌𝑖𝑘𝑖∈𝑃 × 𝑆𝑖 − (
∑ 𝑆𝑖𝑖∈𝑃

𝑐𝑎𝑟𝑑(𝐷)
)|𝑘∈𝐷  

Subject to the constraints: (2), (13), (14), (15), (16), (17), (18), (19). 

In the subsequent section, a small numerical example is provided to illustrate the 
implementation of our two multi-objective models, as depicted through the Programs 2, 3, 
5 and 6. Then, a number of varying instances are applied to compare results in term of 
values and computational times. 

5. NUMERICAL EXAMPLES 

5.1. Small example 

Let us consider the example of scheduling eight patients i=1,...,8 on three machines 
j = 1,...,3 and four doctors l = 1,...,4 to be processed for the purpose of optimizing the 
patients’ total flow time and the doctors' workload variations, simultaneously. The patients, 
their processing time (in minutes) as well as availability time (in minutes) are presented in 
Table 1, below. As for the Tables 2 and 3, they respectively illustrate the machines and 
doctors’ availability in minutes. 

Table 1: Patients related values 
Patient Processing time Ready time 

P1 15 10 
P2 20 5 
P3 15 10 
P4 30 15 
P5 25 5 
P6 25 5 
P7 10 15 
P8 15 5 

Table 2: Machines' availability 

Table 3: Doctors' availability 
Doctor Availability 

D1 0 
D2 0 
D3 0 
D4 50 

 
The scheduling sequences, allowing to optimize the second mathematical model, are 

achieved by implementing the following steps: 

Machine Availability 
M1 0 
M2 0 
M3 0 
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Step 1: Considering the first total-flow-time objective function, the optimal solution is 
obtained through Program 5, after eight minutes and twenty three seconds of running time. 
TFT* = 245 minutes and WL= 77.5 minutes. The patients' schedule associated sequence 
is depicted through the Gantt chart diagram, below. 
 

-  
Figure 1: Gantt chart diagram using Program 5 on a small-scale sample 

Step 2: Applying Program 6, the optimal solution enabling to minimize the doctors' 
workloads variations is attained within two seconds. This solution leads to achieving the 
scheduling sequence displayed on the below figuring Gantt chart diagram, with WL* = 7.5 
minutes and TFT=285 minutes. 
 

 
Figure 2: Gantt chart diagram using Program 6 on a small-scale sample 

In effect, the first mathematical model appears to take greater time to resolve the eight-
patient related problem of TFT minimization objective. So, to compare both of the 
Programs 2 and 5 illustrated mathematical formulations, we end up opting for considering 
five, six and seven patient involving samples to fulfill the TFT objective. As to the WL 
variation objective, the second model turns out to provide an optimal solution with a 
number of patients ranging up to seventeen. Still, our initially designed mathematical 
model turns out to require greater CPU time in relation to the second. Then, on comparing 
Programs 3 and 6, we end up settling for the five, six, seven and eight patient involving 
samples for WL variation objective to be effectively achieved. 

   D1     
M1   P8 P7 P5    

                 
   D3  

M2   P2 P1 P4  
                 
   D2       

M3   P6 P3       
                 
                               

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Time 
 

   D3 D1 D2 D4  
M1   P8 P6 P5 P4  

                      

   D1                  
M2   P1                  

                      

     D4 D2 D3          
M3     P7 P3 P2         

                      
                                        

 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 Time 
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5.2. Comparing the two developed models  

After several execution attempts, the mathematical models have been discovered to 
differ noticeably in terms of values of optimal solutions and CPU times, for the optimal 
TFT and WL variation solutions. 

5.2.1. Flow time minimization 

To minimize the objective function associated total flow time, we consider assessing 
our two developed models’ respective performance and comparing their achieved outputs 
on executing and processing ten problems involving five, six and seven patients as modeled 
via Programs 5 and 2, respectively. Table 4, below, displays the results reached to solve 
our test instances by means of three machines and four doctors, following implementation 
of the Program 2 and Program 5 defined models. 

Table 4: The TFT objective function reached results 

Treated cases With 5 patients With 6 patients With 7 patients 
Number of instances 10 10 10 
Number of instances in which Pr5 gives 
better solution 

2 1 3 

Number of instances in which Pr5 is faster 10 8 8 
Number of instances in which Pr2 is faster 0 2 2 
Average CPU for Pr5 (in seconds) 1.9 298.8 451.5 
Average CPU for Pr2 (in seconds) 43.7 309 1090 

 
As could be noticed, Program 5 turns out to record shorter CPU time with respect to 

the entirety of the five patient associated problems, and to most of the six and seven patients 
involving problems. 

5.2.2. Workload minimization deviation 

Regarding workload variation minimization objective, noticeable differences have 
been identified in regard to computation times. For comparison purposes, we consider 
processing ten problem instances involving five, six, seven and eight patients to assess both 
of the Program 6 and Program 3 defined models. The number of instances solved through 
the WL deviation minimization objective proves to exceed those processed through the 
TFT minimization objective. Table 5, below, displays the results achieved on considering 
to resolve our test instances by means of three machines and four doctors on implementing 
the Programs 3 and 6 respective models. 

Table 5: The WL deviation objective function achieved results 

Treated cases With 5  
patients 

With 6  
patients 

With 7  
patients 

With 8  
patients 

Number of treated cases 10 10 10 10 
Number of instances in which Pr6 is faster 10 10 10 10 
Number of instances in which Pr3 is faster 0 0 0 0 
Average CPU for Pr6 (in seconds) 0.2 1.2 1.4 1.5 
Average CPU for Pr3 (in seconds) 0.7 6.1 54.1 200 
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In light of these examples, one might well note that Program 6 appears to record lower 
CPU execution time as compared to Program 3, with respect to the entirety of the problems 
involving five, six, seven as well as eight patients, respectively. 

In the following section, our mathematical models will be put to test regarding a real 
case problem of assigning patients to machines and doctors. 

6. REAL CASE 

The Habib Bourguiba hospital ophthalmology department is equipped with three laser 
photocoagulation machines in the laser treatment room, frequently used by four Doctors 
(3 senior doctors and a resident). Every day, a P number of patients need be scheduled for 
laser photocoagulation treatment. This number is selected in advance in conformity with 
each machine’s daily capacity. In this context, a real sample of laser photocoagulation-
machine treated patients is selected. Fifteen patients are usually treated on a daily basis. 
Our study case will therefore include fifteen patients i =1,...,15 to be scheduled on three 
machines j = 1,...,3 and four doctors l = 1,...,4 in order to optimize the total flow time and 
the doctors' workloads variation. The patients, their processing time (in minutes) along 
with their availability time (in minutes) are displayed in Table 6, while Tables 7 and 8 
respectively depict the machines' and doctors' availabilities in minutes. 

Table 6: Patient values for a real study case 

Patient Processing time  Ready time  
P1 19 0 
P2 10 0 
P3 11 3 
P4 13 5 
P5 16 5 
P6 13 8 
P7 3 10 
P8 11 10 
P9 8 11 
P10 23 12 
P11 15 13 
P12 18 14 
P13 21 15 
P14 10 15 
P15 19 16 

Table 7: Machines' availabilities for a real study case 

Table 8: Doctors' availabilities for a real study case 

Doctor Availability 
D1 0 
D2 0 
D3 0 
D4 50 

 

Machine Availability 
M1 0 
M2 0 
M3 0 
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6.1. The first heuristic achieved results 

For easier resolution purposes, we consider subdividing our study case patients’ set into 
two subsets, in conformity to the below stated steps.  

Step 1: Consists in running the first subset of eight patients, figuring on table 6, using 
the tables 7 and 8 provided availabilities. Considering the first total flow time related 
objective function, the first patients’ subset relevant ideal solution is reached by 
implementing Program 5, after twenty-six minutes of running time. Thus, TFT1* = 138 
minutes, and WL1= 48 minutes. Then, 3.7 seconds following Program 6 execution, the 
effective doctor-workload variations minimizing solution is achieved, which turns out to 
be: WL1* = 4 minutes, and TFT1 =208 minutes. 

Step 2: The first subset reached results are used as input for the second subset figuring 
on table 6. Regarding the first total-flow-time associated objective function, the second 
patients’ subset relating optimal solution, reached following execution of Program 5, is 
achieved seven minutes following running time; accordingly, TFT2* = 302 minutes, and 
WL2= 40 minutes. Then, just 0.992 seconds following Program 6 implementation, we can 
obtain the most optimal doctor-workload variations minimizing solution, specifically: 
WL2* = 11 minutes, and TFT2 = 394 minutes. As regards the entire study case patients’ set 
relevant TFT, it is achieved through implementation of the heuristic (TFTh1), attained by 
summation of the two proposed subsets of patients' flow time, thereby, TFT1* = 138 
minutes, and TFT2* = 302 minutes. As to the entire fifteen patients’ set, the reached TFTh1 
= 440 minutes. The patients' schedule ensuing sequence is represented through the Gantt 
chart diagram, below. 

 

 
Figure 3: Study case relevant Gantt chart diagram using Program 5 

6.2. The second heuristic reached results 

At hospital, particularly in the laser room, patients are usually serviced following the 
First Come First Served (FCFS) rule. Thus, patients with minimum ready times are most 
often the first to be scheduled. Considering the total-flow-time related objective function, 
and on implementing Program 5, the associated FCFS flow time turns out to be: TFTh2 = 
468 minutes. The resultant patients' schedule sequence is depicted through the Gantt chart 
diagram below. 

 

         Availability         
M1 P2 P7 P8 P5 P14 P15    
 D3 D3 D4    

       Availability           
M2 P1 P6 P12 P10   
 D2 D2   

      Availability            
M3 P3 P4 P9 P11 P13    

 D1 D4 D1    

                                 

 5 10 13 20 25 32 35 40 45 50 55 60 65 70 73 Time  
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Figure 4: Gantt chart diagram of real case using FCFS rule 

Given the NP hard nature of our problem, as our study case involves I = 15, we are 
required to use the time limit on running the Programs 2 and 5 to attain schedules that give 
approximate solutions. Hence, the time limit is fixed at thirty-three minutes. 

6.3. The third heuristic results 

The approximate solution reached through Program 2 and Cplex software thirty three 
minutes following running time turns out to be: TFTh3 = 454 minutes, and WL= 89 minutes. 
The resultant patients' schedule sequence is illustrated through the Gantt chart diagram 
(Figure 5). 

 

 
Figure 5: Study case associated Gantt chart diagram using Program 2 with time limit 

6.4. The fourth heuristic reached results 

Considering the second mathematical model, the approximate solution obtained  
through Program 5 and Cplex software following thirty three minutes of running time turns 
out to be: TFTh4 = 429 minutes and, WL= 68 minutes. The resultant patients' schedule 
relating sequence is presented in Figure 6. 
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Figure 6: Study case related Gantt chart diagram using Program 5 with time limit 

6.5. Comparing the four proposed methods  

An examination of the various results regarding the real study case obtained through 
our proposed methods, one could well note that the subdivision heuristic turns out to 
provide the most effective TFT solution as compared to the FCFS rule and Program 2 with 
time limit. Still, Program 5 with time limit proves to yield the most appropriately fit and 
efficient solution over all the assessed methods. Regarding the WL variation objective, 
however, the entirety of the suggested methods proved to yield quasi similar WL values 
equal to two. The difference between the four administered methods achieved values is 
presented in Figure 7. 

 

 
Figure 7: Comparison between the different methods’ patient TFT 

Hence, it seems rather appropriately useful to deploy the subdivision heuristic to get an 
effective patients’ schedule that efficiently accounts for the problem’s dynamic nature. 
Indeed, the ready and processing times might well vary noticeably over time. Hence, by 
appealing to the subdivision heuristic, one could always opt for a range of efficiently 
operable schedules rather than just a single schedule. More specifically, this particular 
method is liable to ensure remarkable performance, owing mainly to the significant 
flexibility and practicality it demonstrates in catering for the patients’ dynamic nature. 
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7. CONCLUSION AND PERSPECTIVES 

The present work is predominantly focused on maintaining an effective scheduling 
framework, whereby, patients requiring laser photocoagulation treatment by qualified 
doctors using special machines could be equitably and efficiently treated. To this end, two 
distinguishable mathematical models have been proposed. While the first mathematical 
model enables doctors to work exclusively on a single machine throughout the schedule 
the second allows doctors to utilize several machines. In this context, we construct two 
novel bi-objectives models, and compare their performance in terms of reliability and CPU 
time. 

A major outcome and contribution provided through the present study lie mainly in the 
fact that the same problem could be addressed and processed in different ways through 
different modeling frameworks. This allows us to opt for the most effective design, 
whereby, both accurate and approximate solutions could be efficiently maintained. 
Actually, the [40] modeling based framework proves to demonstrate higher performance 
over the [77] based strategy, as confirmed by the real case study achieved results. Given 
the NP-hard nature of the problem, the developed models turn out to require greater 
computational time for the program to be optimally applicable on a larger number of 
patients, machines and doctors. To surmount this difficulty, appeal could be made to a 
meta-heuristic, such as genetic algorithm, or variable neighborhood search. In this respect, 
pinpointing the most appropriate formulation fit for the implementation of the meta-
heuristic remains an issue that requires further investigation. 

As a matter of fact, we have been able to achieve and provide two fold lexicographic 
solutions. The first should serve to minimize the total flow time of patients with the aim of 
minimizing the doctors' workloads variation by means of a second objective function 
(while simultaneously maintaining the first objective). As for the second solution, it is 
designed to help optimize the doctors’ workload variations, while considering the total 
flow-time minimization objective. We could, therefore, opt for introducing manager 
preferences, whereby, a compromise solution enabling to minimize the deviations between 
the achievement level of each objective and its ideal value could be reached to 
simultaneously consider both of the patient and doctor satisfaction objectives. 

Ultimately, the developed models could serve to solve other health care related 
scheduling problems, and might even fit for implementation in other application domains, 
such as the industrial sector, wherein, doctors could be substituted by workers and patients 
by jobs. 
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