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Abstract: In this article, we investigate the solution of a new class of the absolute
value equation (NCAVE) A1x − |B1x − c| = d. Based on spectral radius condition,
singular value condition and row and column W-property, some necessary and sufficient
conditions for unique solvability for NCAVE are gained. Some new results for the unique
solvability of the new generalized absolute value equation (NGAVE) A1x−|B1x| = d are
also obtained.
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1. INTRODUCTION

The absolute value equations (AVEs) are an interesting topic for researchers
in the optimization field. Firstly, Jiri Rohn [1] in 2004 considered the generalized
absolute value equation (GAVE) A1x + B1|x| = b and provided an alternative
theorem for the solution of this equation. Many authors studied about GAVE and
its particular case as B1 = I (see [2, 3, 4, 5] and references therein).
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The importance of AVEs is due to their wide applications in many domains of
mathematics. Absolute value equations have many applications in various fields of
applied mathematics, like game theory, linear complementarity problems (LCP),
optimization problems, linear interval systems, bi-matrix games, etc. The LCP
is a general problem that unifies quadratic programs, linear programs, bi-matrix
games, and absolute value equations. LCP can be written as an equivalent form
of AVE and vice-versa, so the results of the linear complementarity problem are
also applicable for the absolute value equations and conversely.

In this article, we are considering a new class of the absolute value equation
(NCAVE)

A1x− |B1x− c| = d, (1)

where A1, B1 ∈ Rn×n and c, d ∈ Rn are given.
When we take c = 0 (zero vector) and B1 = I (Identity matrix) in (1), then

we get a new generalized absolute value equation (NGAVE)

A1x− |B1x| = d, (2)

and standard absolute value equation

A1x− |x| = d, (3)

respectively.
The general form of (3) is generalized absolute value equation (GAVE)

A1x−B1|x| = d. (4)

In 2021, NGAVE (2) was first considered by Wu [6], and discussed its different
conditions for a unique solution and indicated that the work of Wu [6] could be
extended for the NCAVE (1). Based on our knowledge, no one has yet studied a
new class of the AVE (1) in detail. So there are some gaps and void conditions for
their unique solutions. As it has non-differentiable and non-linear terms, studying
the NCAVE is exciting and challenging. The study of the absolute value equations
is going in two directions: one is a theoretical analysis of AVEs (see [2, 4, 7, 8, 9, 10]
and references therein). Another one is, based on theoretical analysis to develop
some numerical methods (see [11, 12, 13, 14, 15, 16, 17, 18, 19] and references
therein), for the solution of AVEs. Solving and checking the unique solution of
the AVEs is an NP-hard problem [3].

We will denote D = diag(di) with 0 ≤ di ≤ 1 is a diagonal matrix. In×n, On×n

are denotes identity matrix and zero matrix, respectively. σmax(.) (or σ1(.)) and
σmin(.) (or σn(.)) are denotes maximum and minimum singular value, respectively
and ρ(.) is use for the spectral radius of a matrix.

This article is arranged as, Section (2) contains some useful results for further
uses in Section (3). In Section (3), we obtain the unique solution condition for
NCAVE (1). We conclude our discussion in Section (4).
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2. PRELIMINARIES

In this section, we recall some definitions, lemmas and theorems for further
use.

Definition 1. [20] The LCP(r,P) is defined as:

0 ≤ z ⊥ Pz + r ≥ 0, (5)

where r ∈ Rn , P ∈ Rn×n and z is unknown.

Definition 2. [20] For unknown x ∈ Rn, vertical linear complementarity problem
(VLCP) is defined as

G1x+ p ≥ 0, H1x+ q ≥ 0, (G1x+ p)T (H1x+ q) = 0, (6)

where p, q ∈ Rn and G1, H1 ∈ Rn×n.

Definition 3. [21] A matrix M ∈ Rn×n is called a P-matrix if all its principal mi-
nors are positive and further, every positive definite (PD) matrices are P-matrices.

Definition 4. [22] Let M = {M1,M2} denote the set of matrices with M1,M2 ∈
Rn×n. A matrix R ∈ Rn×n is called a row (or column) representative of M, if
Rj. ∈ {(M1)j., (M2)j.} (or R.j ∈ {(M1).j , (M2).j}) j=1,2,...,n, where Rj., (M1)j.,
and (M2)j. (or R.j, (M1).j, and (M2).j) denote the jth row (or column) of R, M1

and M2, respectively.

Definition 5. [22] The set M holds the row (or column) W-property if the de-
terminants of all row (or column) representative matrices of M are positive.

Lemma 6. [22] A matrix M ∈ Rn×n is a P-matrix if and only if the determinants
of all row representative matrices of {I,M} are positive.

Lemma 7. [23] A matrix M ∈ Rn×n is a P-matrix if and only if matrix M +
D(I −M) or I −D +DM is non-singular for any D.

Lemma 8. [20] Let a1,b1 ∈ R. Then a1, b1 ≥ 0, a1.b1 = 0 if and only if a1+ b1 =
|a1 − b1|. This result is also applicable for vectors in Rn.

Lemma 9. [20] For real square matrix A and B, we have σi(A + B) ≥ σi(A) −
σ1(B), i = 1, 2, ..., n.

Theorem 10. [22] Following statements are equivalent, for set {G1, H1}:
(i) The VLCP (6) has a unique solution;
(ii) {G1, H1} holds the row W-property;
(iii) G1 is invertible and {I,H1G

−1
1 } holds the row W-property.
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Theorem 11. [8, 10] The following statements are identical:
(i) the AVE (3) has exactly one solution for any d;
(ii) {A1 − I, A1 + I} holds the column W-property;
(iii) (A1−I) is invertible and {I, (A1−I)−1(A1+I)} holds the column W-property;
(iv) (A1 − I) is invertible and (A1 − I)−1(A1 + I) is a P-matrix;
(v) (A1 + (I − 2D)) is invertible for any D ;
(vi) {(A1−I)F1+(A1+I)F2} is invertible, where F1, F2 ∈ Rn×n are two arbitrary
non-negative diagonal matrices with diag(F1 + F2) > 0.

Theorem 12. [8, 10] If A1 is non-singular matrix in AVE A1x − |x| = d, and
satisfy the conditions

ρ(A−1
1 (I − 2D)) < 1 (7)

for any D, or

σmax(A
−1
1 ) < 1, (8)

or

ρ(|A−1
1 |) < 1, (9)

then AVE (3) has a unique solution for any d.

Theorem 13. [6]The following statements are equivalent:
(i) the AVE (3) has a unique solution for any d;
(ii) {A1 + I, A1 − I} has the row W-property;
(iii) (A1 + I) is invertible and {I, (A1 − I)(A1 + I)−1} has the row W-property;
(iv) (A1 + I) is invertible and (A1 − I)(A1 + I)−1 is a P-matrix;
(v) {F1(A1+I)+F2(A1−I)} is invertible, where F1, F2 ∈ Rn×n are two arbitrary
non-negative diagonal matrices with diag(F1 + F2) > 0.

Theorem 14. [8] If all diagonal entries of A1 + I have the same sign as the
corresponding entries of A1 − I, then AVE A1x− |x| = d has exactly one solution
for any d, if any one of the following conditions is true:
(i) A1 − I and A1 + I are strictly diagonally dominant by columns;
(ii) A1 − I, A1 + I and all their column representative matrices are irreducibly
diagonally dominant by columns.

Theorem 15. [24] AVE A1x− |x| = d has exactly one solution for any d, if the
interval matrix [25] [A1 − I,A1 + I] is regular.

3. MAIN RESULTS

In this section, we obtained sufficient and necessary conditions for the unique
solution of NCAVE (1).

In the following proposition, NCAVE is written in equivalent AVE under the
non-singularity condition on B1.
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Proposition 16. If matrix B1 is non-singular, then NCAVE (1) is expressed as
the following AVE form

A1B
−1
1 y − |y| = f1, (10)

where y = B1x− c and f1 = d−A1B
−1
1 c.

By the help of Proposition (16) with Theorems (11), (12) and (13), we ob-
tained the following results, see Theorem (17), Theorem (18) and Theorem (19)
respectively.

Theorem 17. If det(B1) ̸= 0 , then the following assertions are equivalent:
(i) the NCAVE (1) has exactly one solution for any d;
(ii) {A1B

−1
1 − I, A1B

−1
1 + I} holds the column W-property;

(iii) (A1B
−1
1 −I) is invertible and {I, (A1B

−1
1 −I)−1(A1B

−1
1 +I)} holds the column

W-property;
(iv) (A1B

−1
1 − I) is invertible and (A1B

−1
1 − I)−1(A1B

−1
1 + I) is a P-matrix;

(v) (A1B
−1
1 + (I − 2D)) is invertible for any D ;

(vi) {(A1B
−1
1 −I)F1+(A1B

−1
1 +I)F2} is invertible, where F1, F2 ∈ Rn×n are two

arbitrary non-negative diagonal matrices with diag(F1 + F2) > 0.

Theorem 18. If A1 is non-singular matrix and satisfies the conditions

ρ(B1A
−1
1 (I − 2D)) < 1 (11)

for any D, or

σmax(B1A
−1
1 ) < 1, (12)

or

ρ(|B1A
−1
1 |) < 1, (13)

then the NCAVE (1) has a unique solution.

Theorem 19. If det(B1) ̸= 0 , then the following assertions are equivalent:
(i) the NCAVE (1) has a unique solution;
(ii) {A1B

−1
1 + I, A1B

−1
1 − I} has the row W-property;

(iii) (A1B
−1
1 + I) is invertible and {I, (A1B

−1
1 − I)(A1B

−1
1 + I)−1} has the row

W-property;
(iv) (A1B

−1
1 + I) is invertible and (A1B

−1
1 − I)(A1B

−1
1 + I)−1 is a P-matrix;

(v) {F1(A1B
−1
1 + I)+F2(A1B

−1
1 − I)} is invertible, where F1, F2 ∈ Rn×n are two

arbitrary non-negative diagonal matrices with diag(F1 + F2) > 0.

Based on Theorem (14) and Theorem (15), we can obtain the following results
for NCAVE (1), see Theorem (20) and Theorem (21).
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Theorem 20. Let all diagonal entry of A1B
−1
1 + I have the same sign as the

corresponding entries of A1B
−1
1 − I. Then NCAVE (1) has exactly one solution

for any d if any one of the following conditions is true:-
(i) A1B

−1
1 − I and A1B

−1
1 + I are strictly diagonally dominant by columns;

(ii) A1B
−1
1 − I, A1B

−1
1 + I and all their column representative matrices are irre-

ducibly diagonally dominant by columns.

Theorem 21. If matrix B1 is non-singular, then NCAVE (1) has exactly one
solution for any d, if the interval matrix [A1B

−1
1 − I, A1B

−1
1 + I] is regular.

The approach of Theorem (14) and Theorem (15) can apply to the AVE
A1x − B1|C1x| = d, related results are skipped here. For more about AVE
A1x−B1|C1x| = d one may refer [26].

Now, based on Lemma (8), we get a relation between VLCP and NCAVE, see
Lemma (22).

Lemma 22. The NCAVE (1) is identical to the following VLCP

(A1 +B1)x− (d+ c) ≥ 0, (A1 −B1)x− (d− c) ≥ 0

{(A1 +B1)x− (d+ c)}T .{(A1 −B1)x− (d− c)} = 0
(14)

Proof. The NCAVE A1x− d = |B1x− c| is equal to a1 + b1 = |a1 − b1|,
where a1 = (A1+B1)x

2 - (d+c)
2 , b1 = (A1−B1)x

2 - (d−c)
2 .

Then by using Lemma (8), we get a1 ≥ 0, b1 ≥ 0 and a1b1 = 0.
So our result holds.

Based on Lemma (22), we get the following conditions for the unique solution
of NCAVE (1), which are also given in [6] for the NGAVE (2) and results remain
same for the NCAVE (1).

Theorem 23. The following assertions are identical:
(i) For any d, the NCAVE (1) has a unique solution;
(ii) {A1 +B1, A1 −B1} holds the row W-property;
(iii) A1+B1 is invertible and {I, (A1−B1)(A1+B1)

−1} holds the row W-property.

Proof. By simple observations of Theorem (10) and Lemma (22), our result of
Theorem (23) is hold.

We have the following result based on the Theorem (23) and Lemma (6).

Theorem 24. Let A1 + B1 be non-singular. Then the NCAVE (1) has a unique
solution if and only if matrix (A1 −B1)(A1 +B1)

−1 is a P-matrix.

We get the following result based on Lemma (7).

Theorem 25. The NCAVE (1) has exactly one solution if and only if matrix
A1 +B1 − 2DB1 is non-singular for any D.
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Proof. Since matrix A1 + B1 − 2DB1 is non-singular for any D, so (A1 + B1) is
non-singular.
Now by simple calculations, we have

I −D +D[(A1 −B1)(A1 +B1)
−1]

= (I −D)(A1 +B1)(A1 +B1)
−1 +D[(A1 −B1)(A1 +B1)

−1]

= [A1 +B1 − 2DB1](A1 +B1)
−1.

This implies that matrix I −D +D[(A1 − B1)(A1 + B1)
−1] is non-singular, this

implies (A1 − B1)(A1 + B1)
−1 is a P-matrix. Then by Theorem (24), our result

holds.

Remark 26. By taking c = 0 in Theorem 23, Theorem 24, Theorem 25 and
conditions (11), (12), (13) of Theorem 18, we get the main results of the paper of
Wu [6].

Theorem (25) can be written in the following way when B1 is an invertible
matrix.

Theorem 27. The NCAVE (1) has exactly one solution if and only if matrix
A1B

−1
1 + I − 2D is non-singular for any D.

Based on Theorem (27) and Lemma (9), we get the following Theorems (28)
and (29), respectively.

Theorem 28. The NCAVE (1) has unique solution for any d if σmin(A1B
−1
1 ) >

1.

Proof. By Lemma (9), we have
σmin(A1B

−1
1 + I − 2D) ≥ σmin(A1B

−1
1 ) − σmax(I − 2D), for any D.

If σmin(A1B
−1
1 ) > 1 then σmin(A1B

−1
1 +I−2D) > 0, this implies (A1B

−1
1 +I−2D)

is non-singular, then by Theorem (27) our result is complete.

Theorem 29. The NCAVE (1) has unique solution for any d if σmax(B1) <
σmin(A1).

Proof. By Lemma (9), we have
σmin(A1 +B1 − 2DB1) ≥ σmin(A1) − σmax(B1 − 2DB1), for any D.
Since σmax(B1−2DB1) ≤ σmax(I−2D)σmax(B1) ≤ σmax(B1), as σmax(I−2D) ≤
1.
Then if σmax(B1) < σmin(A1) holds then σmin(A1+B1−2DB1) > 0, this implies
matrix A1+B1−2DB1 is non-singular and by Theorem (25) our result is hold.

Based on Lemma (7) and Theorem (24), we get the following result.

Theorem 30. The NCAVE (1) has exactly one solution if and only if det(A1 +
B1) ̸= 0 and for any D, matrix A1 −B1 + 2DB1 is non-singular.
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Proof. By simple calculations, we have

(A1 −B1)(A1 +B1)
−1 +D[I − (A1 −B1)(A1 +B1)

−1]

= (A1 −B1)(A1 +B1)
−1 +D(A1 +B1)(A1 +B1)

−1 −D(A1 −B1)(A1 +B1)
−1

= [A1 −B1 + 2DB1](A1 +B1)
−1.

This implies that matrix (A1−B1)(A1+B1)
−1+D[I− (A1−B1)(A1+B1)

−1]
is non-singular, so matrix (A1−B1)(A1+B1)

−1 is a P-matrix. Then by Theorem
(24), our result holds.

When we put B1 = I in Theorem (25) and Theorem (30), we get following
important results for AVE (3).

Corollary 31. Matrix A1 − I +2D is non-singular for any D if and only if AVE
A1x− |x| = d has exactly one solution.

Corollary 32. For non-singular matrix A1, AVE A1x − |x| = d has exactly one
solution if and only if matrix A1 + I − 2D is non-singular for any D.

Remark 33. Corollary (31) and Corollary (32) are the main results of [9] and
Theorem (25) and Theorem (30) will become “The basic theorem of the linear
system A1x = d for any d” by taking B1 = 0 and c = 0. Further, by taking c = 0
in Theorem (17), Theorem (19), Theorem (20), Theorem (21), Theorem (27),
Theorem (28), Theorem (29), and Theorem (30), we get the new results for the
unique solvability of the NGAVE (2). These results are not covered in the paper
of Wu [6].

4. CONCLUSION

In this paper, we consider a new class of the AVE A1x− |B1x− c| = d which
is generalized form of the NGAVE A1x − |B1x| = d and A1x − |x| = d. Some
necessary and sufficient results for a unique solution for NCAVE (1) are obtained.
Earlier work in [6] and [9] are generalized for the appropriate choice of B and
c. In Theorem(25) and Theorem(30), we got the basic theorem for linear system
A1x = d. Future discussions on the numerical solution of the NCAVE look to be
interesting.
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