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Abstract: Uncertainty is an inherent characteristic of a decision-making process. Oc-
casionally, historical data may be insufficient to accurately estimate the probability dis-
tribution suitable for an unknown variable. In these situations, we deal with fuzzy
stochastic variables in solving a problem. As a result, decision-makers, particularly those
in the military, are confronted with numerous issues. This article discusses the maxi-
mum network flow interdiction under fuzzy stochastic hybrid conditions. The capacity
of arcs has been treated as a fuzzy stochastic variable in this problem. The primary
objective of this paper is to propose a model to the decision-maker that can be used
to manage unknown factors in the network. Since this topic is explored concurrently in
a stochastic and fuzzy environment, it is impossible to solve it directly. Consequently,
three probability-possibility, probability-necessity, and probability-credibility techniques
are utilized to transform it into a deterministic state. Eventually, the proposed model’s
efficacy is demonstrated by presenting a numerical example.
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1. INTRODUCTION

Living in the information age, whether as a service provider or as a consumer,
is all affected by the undeniable role of communication networks. These networks
include computer networks, social networks, railways, airlines, and land networks.
However, some of these services may threaten other countries and their residents,
making it critical to identify these dangers and threats in the first stage and at-
tempt to mitigate or prevent them in the subsequent steps. Undoubtedly, the most
challenging aspect of the work is proper decision-making and adopting appropri-
ate strategies in such scenarios, especially for military commanders who cannot
evaluate their own decisions except during times of war. In these instances, formu-
lation is one of the most crucial tools for analyzing the decision-making process,
particularly in military domains, gaining experience, and even debugging errors
without spending excessive money, which enables military decision-makers to as-
sess their techniques, methods, and capabilities in a non-combat environment to
discover prospective flaws. In recent decades, numerous scholars have considered
the Network Interdiction Problem (NIP), which covers a wide range of networks.
Moreover, the NIP is a combinatorial optimization problem, one of the most signif-
icant bi-level programming problems. In these types of problems, there is always
a network in which the network user (attacker) in the first level attempts to op-
timize its target function. In contrast, the interdictor in the second level, with
its limited budget, attempts to minimize this optimal value for the network user.
As a result, we have a network in which each arc, in addition to the usual pa-
rameters, is assigned a parameter called the cost of interdiction. In its simplest
form, this problem was introduced during the Vietnam War in the 1960s to dis-
rupt the movement of Vietnamese soldiers and warfare equipment by U.S. military
researchers [1]. Thus, the majority of early models concentrated on military ap-
plications, followed by applications such as counter-trafficking (drugs, weapons,
humans, and nuclear materials [2], identifying the susceptibility of infrastructure
networks to terrorist attacks [3], controlling infectious diseases such as swine flu,
Ebola [4], and, more recently, coronavirus in emergencies, and monitoring com-
puter networks [5], which increased the importance of this topic for researchers
in the fields of military, network security, and healthcare. In the NIP, in general,
traveling the shortest route [6], discovering the most reliable path [7], and lastly,
delivering the maximum flow from the source node to the destination node [8]
could be considered one of the attacker’s most critical acts. Alternatively, the
interdictor endeavors to inflict the greatest damage on the attacker’s actions with
its limited budget. These problems are classified into three broad categories: the
shortest path interdiction problem, the most reliable path interdiction problem
[9], and the maximum flow interdiction problem [10] in the literature. As novel
research conducted in this field, a new interdiction problem called the minimum
st-cut interdiction was proposed by Abdolahzadeh et al. [11], in which the at-
tacker aims at selecting the least amount of st-cut, provided it intersects every
possible path between the source and destination. Instead, the defender wishes to
maximize the minimal cut amount by increasing the capacity of the arcs within a
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given budget. Xiao et al. [12] investigated a two-objective model for the shortest
network path interdiction problem with nodal interdiction. Forghani et al. [13]
established a two-objective model for the partial interdiction problem on capaci-
tated hierarchical facilities. Their model has been recommended to anticipate and
address the detrimental impacts of a malicious attack on multi-layered hierarchical
capacitated facilities. Bigdeli et al. [14] considered mathematically modeling the
problem of identifying the enemy traversal path in ground defense. By solving
their proposed model, the best solution is given to help the commanders of the
ground unit to prevent the transfer of enemy forces and equipment. The majority
of research in this field is focused on deterministic and stochastic interdictions
as well as the study of the interdiction format via the game theory, also referred
to as dynamic interdiction [15, 16, 17, 18, 19]. As the term “deterministic in-
terdiction” suggests, the interdictor has comprehensive knowledge of a network’s
data and characteristics in this format. Conversely, some information in stochastic
interdiction is unclear, e.g., the interdictor’s edge capacities.

In this research, the focus will be on the maximum flow interdiction problem.
In such cases, the goal of the interdictor is to prevent the flow of some undesired
items (such as contraband, hostile weaponry, etc.) within a capacitated network.
The interdictor accomplishes its objective by altering some of the network prop-
erties, such as the capacity of arcs. Numerous studies have been conducted on
this subject. For instance, Ratliff et al. [20] were among the first to address the
cardinality problem or determine the most vital K of an arc. Janjarassuk et al.
[21] described interdiction variables using Bernoulli’s random variable and pre-
sented a mixed-integer programming problem with several exponential constraints
utilizing linearization methods. Chauhan [22] investigated a NIP based on the
maximum flow, considering the arc capacity uncertainty and interdiction resource
use. Afsharirad [23] proposed a novel interpretation of the network maximum flow
interdiction problem, defining the concept of ”optimal cut.” Additionally, He of-
fered a heuristic algorithm to acquire an approximate value for cut and its error
bound. Mirzaei et al. [24] examined the interdiction problem of a smuggling net-
work, which involves organizing police efforts to prevent criminals from smuggling
commodities successfully. This research is concerned with asymmetric information,
unpredictable conditions, multi-commodity, and various sources and destinations
in the literature about the network maximum flow interdiction problem. Bigdeli
and Bavandi [25] studied a multi-period dynamic interdiction problem in fuzzy
conditions investigated in order to help military decision-makers and commanders
to choose an appropriate strategy.

Let us briefly review the network maximum flow interdiction problem. For
G = (N,A) as a directed graph, in which N and A are the sets of nodes and arcs,
respectively, two specific nodes are considered the source and destination nodes,
respectively shown by s and d. Each arc (i, j) ∈ A has a capacity of uij and
xij ≥ 0 is the feasible flow on this arc, which cannot exceed the arc capacity. Let
us assume that the interdictor has a total number of R units of sources used for
the interdiction of arcs, and rij units of sources are required for the interdiction
of each arc. An artificial arc has been defined corresponding to each s and d node
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with uds = ∞ and rds = ∞. Assume yij to be a binary decision variable defined
as follows:

yij =

{
1, if the arc(i, j) is interdicted
0, o.w

Furthermore, a set of feasible decisions of the interdictor is demonstrated as follows:

Y =

yij

∣∣∣∣∣∣
∑

(i,j)∈A

yijrij ≤ R, yij ∈ {0, 1} ,∀ (i, j) ∈ A


Accordingly, the network maximum flow interdiction problem can be formulated
as below [26]:

Problem 1:(DNIP)

min
y∈Y

max
x

xds

s.t.
∑

j:(i,j)∈A′
xij −

∑
j:(j,i)∈A′

xji = 0 ∀i ∈ N

0 ≤ xij ≤ uij (1− yij) ∀ (i, j) ∈ A,

(1)

in which A′ = A ∪ (d, s). The first constraint is the mass balance constraint, and
the second is the arc capacity constraint.

In general, the capacity of arcs, the input and output flow values of vertices,
and transmission costs may be dependent on elements such as weather condi-
tions, network emergencies, maintenance, and traffic congestion, as well as certain
unforeseen factors such as changes in petrol prices, complications related to the
network components, and so on. As a result, it is possible that the flow in the
network, and thus the maximum flow in the network, cannot be reliably measured
in such scenarios. Indeed, despite all the desired features that the interdiction
approaches have in the network, the measurement in them is carried out using
traditional methods, and computations are made in a deterministic setting. How-
ever, in the real world, the most critical issue is the existence of uncertainty in
the data. Liu [27] introduced the uncertain network problem to model a project
scheduling problem with unknown durations. The inaccuracy or ambiguity of the
data in fuzzy environments and the measurement errors and disruptions in the
sample observed in stochastic environments are all significant causes of uncer-
tainty. However, it should be emphasized that there is not sufficient data available
to determine the probability distribution in many circumstances. In some in-
stances, the data collected is inaccurate, and experts’ judgments are imprecisely
replaced. In such cases, we are confronted with a combination of stochastic and
fuzzy phenomena [28, 29]. In other words, we are dealing with a random variable
that acquires inaccurate or fuzzy values. To this end, this article introduces a novel
model for the maximum network flow interdiction in a stochastic fuzzy environ-
ment. The concept of fuzzy random variables was introduced by Kwakernoak [30].
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Mathematically, a fuzzy random variable can be regarded as a mapping from a
probability space to a set of fuzzy variables[31]. Generally, calculations in a fuzzy
stochastic uncertain environment would be more complicated because fuzzy and
stochastic approaches are typically used differently to solve their respective models
[32]. However, each approach its own optimization problems using the measure-
based technique. The probability measure, necessity measure, credibility measure
in a fuzzy environment, and the possibility measure in a stochastic environment
are among the sizes typically applied in this area, usually in the form of Chance
Constraint Programming (CCP) to solve probability and fuzzy models. This study
will combine and use three measurement sets, namely the probability-possibility
measure, probability-necessity measure, and probability-credibility measure. This
research also aims to demonstrate the extent to which uncertainty of data over-
shadows a network’s vulnerability.

2. FUZZY STOCHASTIC MAXIMUM FLOW INTERDICTION
PROBLEM

In this section, we consider three fuzzy stochastic NIP models using three
different approaches of possibility, necessity, and credibility in the form of CCP
programming. The capacity of arcs (i, j) are fuzzy parameters whose mean is a
random variable with a normal distribution in these models.

2.1. Probability-possibility approach

Consider graph G = (N,A). Assume us
ij = (us

ij , u
α
ij , u

β
ij) to indicate the fuzzy

stochastic variables corresponding to the capacity of uij , in which us
ij is a ran-

dom variable with a normal distribution as us
ij ∼ N(uij , σ

2
ij), and uα

ij and uβ
ij are

the order of left and right spread, respectively. Model(2) displays the NIP fuzzy
stochastic model in the form of chance constraint programming using the proba-
bility measure of Pr and the possibility measure of Pos.

Problem 2:

min
y∈Y

max
x

xds

s.t.
∑

j:(i,j)∈A′
xij −

∑
j:(j,i)∈A′

xji = 0 ∀i ∈ N, (c1)

Pr
[
Pos

(
xij ≤ ũs

ij (1− yij)
)
≥ δ

]
≥ γ ∀ (i, j) ∈ A, (c2)

xij ≥ 0 ∀ (i, j) ∈ A. (c3)

(2)

where δ, γ ∈ [0, 1] are pre-determined confidence levels. The membership function
of the random fuzzy variable ũs

ij is defined as follows.

µũs
ij
(t) =


L
(

us
ij−t

uα
ij

)
, if us

ij − uα
ij < t ≤ us

ij

R

(
t−us

ij

uβ
ij

)
, if us

ij ≤ t < us
ij + uβ

ij

(3)
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The letters L and R are the abbreviations of non-increasing continuous functions
[0, 1] to [0, 1], so that L(0) = R(0) = 1 and L(1) = R(1) = 0 are called left and
right functions, respectively. Henceforth, we will assume:

L (x) = R (x) =

{
1− x, 0 ≤ x ≤ 1
0, o.w.

(4)

The constraints should be definite to solve model(2). For this purpose, first, the
theorem [33] and then the lemma [34] can be expressed as below.

Theorem 1. Let ũs
ij is a fuzzy random vector and gj , j = 1, . . . , n are real-valued

continuous functions, we have:

1. The possibility Pos
{
gj

(
ũs
ij (ω)

)
≤ 0, j = 1, ..., n

}
is a random variable.

2. The necessity Nec
{
gj

(
ũs
ij (ω)

)
≤ 0, j = 1, ..., n

}
is a random variable.

3. The credibility Cr
{
gj

(
ũs
ij (ω)

)
≤ 0, j = 1, ..., n

}
is a random variable.

Lemma 2. Let ũ1 and ũ2 to be two independent fuzzy numbers type LR.

1. Pos (ũ1 ≥ ũ2) ≥ α ⇔ ũR
1,α ≥ ũL

2,α

2. Nec (ũ1 ≥ ũ2) ≥ α ⇔ ũL
1,1−α ≥ ũR

2,α

where ũL
1,α, ũ

R
1,α and ũL

2,α, ũ
R
2,α are the α-cut corner points of fuzzy numbers ũ1

and ũ2.
The following theorem presents a deterministic substitute for the uncertain

constraint c2.

Theorem 3. Let the fuzzy random variable ũs
ij = (uα

ij , u
s
ij , u

β
ij) to be the capac-

ity on the (i, j) arc. For the confidence levels δ, γ ∈ [0, 1], the constraint c2 is
equivalent to the following constraint:

xij ≤
(
uij +R−1 (δ)uβ

ij +Φ−1 (1− γ)σuij

)
(1− yij)

Proof. From lemma 2 and membership function 3, we have:

Pos
(
xij ≤ ũs

ij (1− yij)
)
≥ δ ⇔ xij ≤

(
us
ij +R−1 (δ)uβ

ij

)
(1− yij)

Letting ūs
ij = us

ij + R−1 (δ)uβ
ij , since us

ij ∼ N
(
uij , σ

2
ij

)
, then ūs

ij is clearly a

random variable with a mean of ms
ūij

and variance of σ2
ūs
ij
as well. Thus, we have:

Pr
[

xij

(1−yij)
≤

(
us
ij +R−1 (δ)uβ

ij

)]
≥ γ

⇔ Pr

[
xij

(1−yij)
−mūs

ij

σūs
ij

≤
ūs
ij−mūs

ij

σūs
ij

]
≥ γ

⇔ 1− Φ

[
xij

(1−yij)
−mūs

ij

σūs
ij

]
≥ γ

⇔ xij ≤
(
mūs

ij
+Φ−1 (1− γ)σūs

ij

)
(1− yij)

⇔ xij ≤
(
uij +R−1 (δ)uβ

ij +Φ−1 (1− γ)σuij

)
(1− yij)
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where Φ(−1) is the inverse function of the distribution function Φ of the standard
normal distribution N(0, 1). This concludes the proof of the theorem.

According to Theorems 1 and 3 and Lemma 2, the following model is the deter-
ministic equivalent of Model(2).

Problem 3:

min
y∈Y

max
x

xds

s.t.
∑

j:(i,j)∈A′
xij −

∑
j:(j,i)∈A′

xji = 0 ∀i ∈ N, (c1)

xij ≤ ūij (1− yij) ∀ (i, j) ∈ A, (c′2)
xij ≥ 0 ∀ (i, j) ∈ A. (c3)

(5)

Where ūij = uij +R−1 (δ)uβ
ij +Φ−1 (1− γ)σuij

.

Obviously, when the interdiction operation occurs on the (i, j) edge, the con-
straint c′2 causes zero flow. Moreover, in case there is no interdiction on this edge,

the flow could increase up to uij +R−1 (δ)uβ
ij +Φ−1 (1− γ)σuij

.

Given that x = 0 is a feasible solution to the internal maximization problem in
Model(5) and the feasible area corresponding to this problem is bounded, there is
no duality gap according to the strong duality theorem. Additionally, the target
function values of the primary and dual problems are identical in optimality. Thus,
the internal maximization problem can be replaced by its dual problem with no
influence on the optimal solution.

Assuming πi(i ∈ N) and βij(i, j ∈ A) as dual variable vectors corresponding
to the constraints c1 and c′2, respectively, Problem 3 can be rewritten as follows:

Problem 4:

min
∑

(i,j)∈A

ūijβij (1− yij)

s.t. πi − πj + βij ≥ 0, ∀ (i, j) ∈ A
πd − πs ≥ 1,

βij ≥ 0, ∀ (i, j) ∈ A
y ∈ Y.

(6)

Due to the nonlinear expression in the target function, the earlier problem is also
nonlinear. To commence the process of linearization, we define a non-zero variable,
ηij = βijyij ≥ 0. In order to complete the procedure, the following constraints are
then added to Problem4.

yij + βij − 1 ≤ ηij , ∀ (i, j) ∈ A (7)

ηij ≤ yij , ∀ (i, j) ∈ A (8)
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ηij ≤ βij , ∀ (i, j) ∈ A (9)

By considering the abovementioned replacements, Problem4 is converted into the
following equivalent form:

min
∑

(i,j)∈A

ūij (βij − ηij)

s.t. πi − πj + βij ≥ 0, ∀i ∈ N, ∀ (i, j) ∈ A
πd − πs ≥ 1,

yij + βij − 1 ≥ ηij , ∀ (i, j) ∈ A
ηij ≤ yij , ∀ (i, j) ∈ A
ηij ≤ βij , ∀ (i, j) ∈ A
βij ≥ 0, ∀ (i, j) ∈ A
ηij ≥ 0, ∀ (i, j) ∈ A
y ∈ Y.

(10)

The previous problem could be solved via common methods for mixed-integer
linear programming methods.

2.2. Probability-necessity approach

In this section, the fuzzy necessity measure replaces the possibility measure in
the previous section. To this end, Model(2) is transformed as follows:

Problem 5:

min
y∈Y

max
x

xds

s.t.
∑

j:(i,j)∈A′
xij −

∑
j:(j,i)∈A′

xji = 0 ∀i ∈ N,

Pr
[
Nec

(
xij ≤ ũs

ij (1− yij)
)
≥ δ

]
≥ γ ∀ (i, j) ∈ A,

xij ≥ 0 ∀ (i, j) ∈ A.

(11)

In order to transform Model(11) into a deterministic form, the procedure in the
former section is followed, which has been presented in below:

Problem 6:

min
∑

(i,j)∈A

ū′
ij (βij − ηij)

s.t. πi − πj + βij ≥ 0, ∀i ∈ N, ∀ (i, j) ∈ A
πd − πs ≥ 1,

yij + βij − 1 ≥ ηij , ∀ (i, j) ∈ A
ηij ≤ yij , ∀ (i, j) ∈ A
ηij ≤ βij , ∀ (i, j) ∈ A
βij ≥ 0, ∀ (i, j) ∈ A
ηij ≥ 0, ∀ (i, j) ∈ A
y ∈ Y.

(12)
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where ū′
ij = uij − L−1 (1− δ)uα

ij +Φ−1 (1− γ)σuij
.

The problem above can also be solved using standard mixed-integer linear
programming techniques.

2.3. Probability-credibility approach

Similar to the previous section, another fuzzy measure will be developed here.
Credibility measure is one of the essential fuzzy measures that is defined in terms
of possibility and necessity measures. Model(13) is the probability-credibility form
of Model(2):

Problem 7:

min
y∈Y

max
x

xds

s.t.
∑

j:(i,j)∈A′
xij −

∑
j:(j,i)∈A′

xji = 0 ∀i ∈ N,

Pr
[
Cr

(
xij ≤ ũs

ij (1− yij)
)
≥ δ

]
≥ γ ∀ (i, j) ∈ A,

xij ≥ 0 ∀ (i, j) ∈ A.

(13)

Theorem4 is presented to solve the probability-credibility programming of Model(13).

Theorem 4. let ũ1 = (uα
1 , u

s
1, u

β
1 ) and ũ2 = (uα

2 , u
s
2, u

β
2 ) are two independent fuzzy

numbers type LR. For δ ∈ [0, 1], we have:

1. If δ ≤ 0.5, that is:

Cr {ũ1 ≥ ũ2} ≥ δ ⇒ us
1 + uβ

1R
−1 (2δ) ≥ us

2 − uα
2R

−1 (2δ)

2. If delta > 0.5, that is:

Cr {ũ1 ≥ ũ2} ≥ δ ⇒ us
1 − uα

1L
−1 (2 (1− δ)) ≥ us

2 + uβ
2L

−1 (2 (1− δ))

Proof. According to the fuzzy set theory, û = ũ1 − ũ2 (in which there is also a

type-LR fuzzy number) is equal to
(
ûα = uα

1 + uβ
2 , û

s = us
1 − us

2, û
β = uα

2 + uβ
1

)
,

and hence the credibility of the fuzzy event Cr {û ≥ 0}, is expressed as follows:

Cr {ĉ ≥ 0} =


1, 0 ≤ ûs − ûα,

1− 1
2L

(
ûs

ûα

)
, ûs − ûα ≤ 0 ≤ ûs,

1
2R

(−ûs

ûβ

)
, ûs ≤ 0 ≤ ûs + ûβ

0, 0 > ûs + ûβ

Now, let us consider Cr {û ≥ 0} ≥ δ. If δ ≤ 0.5, then

δ ≤ 1
2R

(−ûs

ûβ

)
⇔ R−1 (2δ) ≥ −ûs

ûβ

⇔
(
uα
2 + uβ

1

)
R−1 (2δ) ≥ − (ûs

1 − us
2)

⇔ us
1 + uβ

1R
−1 (2δ) ≥ us

2 − uα
2R

−1 (2δ)
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and if 0.5 < δ ≤ 1, that is

δ ≤ 1− 1
2L

(
ûs

ûα

)
⇔ 2 (1− δ) ≥ L

(
ûs

ûα

)
⇔

(
uα
1 + uβ

2

)
L−1 (2 (1− δ)) ≥ (ûs

1 − us
2)

⇔ us
1 − uα

1L
−1 (2 (1− δ)) ≥ us

2 + uβ
2L

−1 (2 (1− δ))

and the proof is concluded.

According to Theorem4, the deterministic form of Problem7 in terms of the δ value
is represented as the two following models:

Problem 8: (δ ≤ 0.5)

min
∑

(i,j)∈A

ū′′
ij (βij − ηij)

s.t. πi − πj + βij ≥ 0, ∀i ∈ N, ∀ (i, j) ∈ A
πd − πs ≥ 1,

yij + βij − 1 ≥ ηij , ∀ (i, j) ∈ A
ηij ≤ yij , ∀ (i, j) ∈ A
ηij ≤ βij , ∀ (i, j) ∈ A
βij ≥ 0, ∀ (i, j) ∈ A
ηij ≥ 0, ∀ (i, j) ∈ A
y ∈ Y.

(14)

and

Problem 9: (δ > 0.5)

min
∑

(i,j)∈A

ū′′′
ij (βij − ηij)

s.t. πi − πj + βij ≥ 0, ∀i ∈ N, ∀ (i, j) ∈ A
πd − πs ≥ 1,

yij + βij − 1 ≥ ηij , ∀ (i, j) ∈ A
ηij ≤ yij , ∀ (i, j) ∈ A
ηij ≤ βij , ∀ (i, j) ∈ A
βij ≥ 0, ∀ (i, j) ∈ A
ηij ≥ 0, ∀ (i, j) ∈ A
y ∈ Y.

(15)

where ū′′
ij = uij+R−1 (2δ)uβ

ij+Φ−1 (1− γ)σuij and ū′′′
ij = uij−L−1 (2 (1− δ))uα

ij+

Φ−1 (1− γ)σuij .

As can be observed, all of the models provided thus far have in common the
usage of probability measure and triple measures of possibility, necessity, and cred-
ibility in solving the uncertainty anticipated. Possibility and necessity measures
are used to evaluate the possibility of occurrence and the necessity of its fulfill-
ment. Furthermore, the credibility measure guarantees the decision-maker that a
fuzzy event will undoubtedly occur.
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3. NUMERICAL EXAMPLE

Consider a battlefield where alliance forces are engaged in combat with the
enemy in two distinct locations, with the enemy forces sandwiched between the
two. Allied troops in one area have demanded equipment from the other area.
The routes connect the two regions, either via adversaries or unknown routes. A
number of obscured pathways with unknown costs and capacities have been iden-
tified, each of which is considered a fuzzy random variable as ũs

1 = (uα
ij , u

s
ij , u

β
ij),

in which the objective is to maximize the flow of equipment to allied forces. We
will formulate it as a maximum flow interdiction problem. To this end, each com-
bat zone is regarded as a network node, whereas direct routes between the two
zones are regarded as network arcs. In Figure 1, the aforementioned network is
depicted, in which s and t serve as the source and destination nodes, respectively.
Table 2 contains information on indeterministic fuzzy stochastic variables and the
resources required to interdict each edge. The total amount of resources necessary
for interdicted edges is equal to R = 9.

Figure 1: Network G for example
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Table 1: Example data

Arc Capacity Resource Arc Capacity Resource
(s,1) (N ∼ (9, 32), 1, 3) 8 (4,14) (N ∼ (13, 32), 1, 5) 2
(s,2) (N ∼ (6, 0.52), 2, 4) 9 (5,15) (N ∼ (6, 42), 2, 4) 6
(s,3) (N ∼ (9, 0.252), 1, 3) 7 (6,16) (N ∼ (8, 52), 2, 5) 3
(s,4) (N ∼ (11, 42), 2, 5) 10 (7,16) (N ∼ (2, 12), 3, 6) 4
(s,5) (N ∼ (4, 32), 1, 4) 12 (8,16) (N ∼ (5, 22), 4, 7) 3
(1,6) (N ∼ (6, 12), 3, 5) 4 (9,17) (N ∼ (8, 52), 2, 4) 3
(1,7) (N ∼ (2, 0.52), 2, 4) 4 (10,17) (N ∼ (9, 42), 2, 3) 3
(1,8) (N ∼ (7, 12), 1, 3) 3 (11,17) (N ∼ (11, 12), 1, 2) 2
(2.8) (N ∼ (11, 22), 1, 3) 5 (12,d) (N ∼ (11, 12), 1, 2) 6
(2,9) (N ∼ (5, 0.52), 3, 5) 4 (13,18) (N ∼ (11, 22), 2, 4) 3
(2,10) (N ∼ (4, 12), 1, 2) 5 (14,18) (N ∼ (2, 32), 4, 6) 4
(3,10) (N ∼ (3, 0.252), 2, 4) 5 (15,18) (N ∼ (7, 12), 2, 4) 4
(3,11) (N ∼ (10, 52), 3, 5) 5 (16,d) (N ∼ (13, 52), 3, 5) 8
(3,12) (N ∼ (5, 22), 1, 2) 5 (17,d) (N ∼ (9, 42), 1, 4) 6
(4,13) (N ∼ (6, 42), 2, 4) 3 (18,d) (N ∼ (18, 22), 2, 6) 7
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In order to create a better depiction of the spectrum of changes, δ and γ were
selected within the [0.1, 0.9] interval. The calculations were performed using the
GAMS 24.1.2 program. Table 3 shows the objective function variations and the
interdicted edges for different values of δ and γ. Based on the acquired values, it is
concluded that the best solution corresponds to δ = γ = 0.9. If the decision-maker
is risk-averse, the best response will favor necessity. On the other hand, a risk-
taking decision-maker may select the best possibility solution. A decision-maker
who intends to monitor the risk can benefit from an optimal credibility solution.
The schematic representation of the optimal solution to the problem is presented
in Figure 2.

Figure 2: Probability-Possibility, Probability-necessarily and Probability-Credibility Optimal
Solution

4. CONCLUSIONS AND SUGGESTIONS

This study aimed to analyze the network maximum flow interdiction prob-
lem under fuzzy stochastic conditions to assist decision-makers in selecting an
effective strategy. In this case, the capacity of arcs was assumed to be a fuzzy
stochastic variable. The fuzzy stochastic maximum flow interdiction problem was
initially converted into the deterministic ultimate flow interdiction problem uti-
lizing probability-possibility, probability-necessity, and probability-credibility ap-
proaches to address the proposed model. Subsequently, by using the duality tech-
nique, the resulting deterministic bi-level problem was simplified into a single-level
problem. Finally, a standard linearization approach was proposed for generating
a mixed-integer linear optimization problem. The presented models are applicable
for both risk-taking and risk-averse decision-makers. In other words, risk-averse
decision-makers typically prioritize the optimal necessity solutions, whereas risk-
takers may choose the optimal possibility solutions. Decision-makers pursuing risk
monitoring and control are more interested in the optimal credibility solutions.
These are used to help decision-makers, particularly military decision-makers, es-
tablish appropriate policies. Time complexity can be seen as one of the challenges
of solving the interdiction problem in large dimensions. However, meta-heuristic
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algorithms can be used to solve large-scale problems. To do this, the problem
must first be transformed into its deterministic equivalent form. Recommenda-
tions for future studies could encompass the dynamic model of this problem in
indeterministic fuzzy random environments. Additionally, the fuzzy randomness
can be examined on other parameters such as edge time instead of edge capacities.

Funding. This research received no external funding.
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