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Abstract: This paper deals with a M/M/c queueing system with waiting servers, balk-
ing, reneging, and K-variant working vacations subjected to Bernoulli schedule vacation
interruption. Whenever the system is emptied, the servers wait for a while before syn-
chronously going on vacation during which services are offered with a lower rate. We
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obtain the steady-state probabilities of the system using the matrix-geometric method.
In addition, we derive important performance measures of the queueing model. More-
over, we construct a cost model and apply a direct search method to get the optimum
service rates during both working vacation and regular working periods at lowest cost.
Finally, numerical results are provided.

Keywords: Queueing models, matrix analytic method, performance measures, cost model,

optimisation.
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1. INTRODUCTION

Queueing theory addresses one of life’s most infuriating experiences; waiting.
Queueing is very common in diverse areas, such as industry, emergency services,
military logistics, finance, telecommunication systems, computer systems, and so
on. This subject has attracted many researchers’ attention [1, 2, 3].

Vacation queues have gained a particular focus since Levy and Yechiali [4] be-
cause of their excellent applications in various real-life problems, including manu-
facturing/production, inventory systems, computers and communication systems,
and so on. Eminent surveys on these models can be found in [5, 6, 7, 8] and the
references therein.

The concept of working vacation (WV) policy at which the server continues
providing service at a lower rate during the vacation period has been introduced
by Servi and Finn [9]. Over the last years, a great variety of queueing models with
working vacations in different context has been done, for a detailed overview on
the theme, the readers may refer to [10, 11, 12, 13, 14, 15, 16, 17, 18].

Nevertheless, we often come across the cases where the vacation may be inter-
rupted, like for instance when number of customers reaches a predetermined value.
Here, the interruption of the vacation avoids significant waiting costs for customers.
This concept was initiated by Li and Tian [19] and Li et al. [20]. Since then, many
studies have been provided on the subject (cf. [21, 22, 23, 24, 25, 26, 27]).

Customers’ impatience has a very bad impact on different real-life systems
including telecommunication, manufacturing and production systems. Working
vacation queues with impatient customers have been well studied. The behavior of
customers’ impatience in working vacation queueing models have been extensively
analysed. Prominent research papers can be found in [28, 29, 30, 31, 32, 33].

Moreover, impatience behavior in queueing models with variant of multiple
vacation where the server can take a determined number of sequential vacations
if there is no customers present in the queue at the end of a vacation have been
considerably investigated (e.g., [34, 35, 36, 37]).

In different practical contexts, the server waits for a while before taking a
break once the system gets empty. This frequently happens while considering the
human behavior as a server. This topic has been thoroughly investigated (e.g.,
[38, 39, 40, 41, 42, 43]).
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In practice, multi-server queues with station vacation (the servers, all together,
synchronously go on vacation) and server vacation (the servers individually take
vacations) are more applicable than single server queueing models. However, the
analysis of these systems appears to be limited due to their complexity [44, 45, 46,
47, 48, 49, 50, 51, 52, 53, 54].

In recent decades, a large literature has been done on queueing models with
impatience behavior of customers, nevertheless, no research work to date has inves-
tigated a variant working vacation queueing system with multiple servers, vacation
interruption, waiting servers, balking and reneging. The present queueing model
finds a powerful application in call centers (see Subsection 2.1).

The main goals of the current study are:

� To establish the stationary analysis of the suggested queueing system using
the matrix geometric method;

� To derive different system characteristics.

� To develop a cost model in order to define the optimum service rates in both
regular working period and working vacation period that optimize the total
expected cost using the direct search method.

The remainder of this research article is structured as follows. In Section
2, we describe the queueing model. In Section 3, we use the matrix geometric
method to obtain the stationary probabilities of the system. In Section 4, the
system performance measures as well as the expected cost function per unit time
are developed. Section 5 presents numerical examples for a sensitivity analysis
and uses a direct search method to minimize the cost function, subject to the
equilibrium condition. In 6 section, some conclusions are drawn.

2. THE MODEL

Consider a M/M/c queueing system with K-kind of variant working vacations,
vacation interruption, waiting servers, balking, and reneging:

- Customers arrive at the system in accordance to a Poisson process with rate
λ.

- The service times during regular busy state are considered to be an i.i.d ex-
ponential random variables (r.v) with rate µ. The service discipline is FCFS.

- Whenever the system is emptied (the regular working period is ended), the
servers stay idle before going on vacation (waiting servers), this period follows
an exponential distribution with parameter ω.

- At a vacation completion, if no customers are present in the queue, the servers
are allowed to take other vacations of shorter durations until the number
of working vacations reached the maximum (defined by K-vacations), then
the system returns to the regular working state, waiting for new customers.
Type-j, j = 0,K − 1 working vacation times are supposed to be i.i.d random
variables that follow exponential distributions with parameter ϕj, where ϕj >
ϕj−1.
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- During the vacation time, incoming customers have the possibility for being
serviced. Here, the service times are assumed to be an i.i.d exponential
random variables with rate ν such that ν < µ. Within this period, when the
service is completed, if there are some customers in the queue, the servers
can stop (interrupt) the vacation under Bernoulli’s rule and turn to the
normal working state with probability β′ or remain in the vacation state
with probability β = 1 − β′. It should be noted that the service during the
vacation can be offered only to the first arrival.

- If on arrival, the customer finds some servers idle, he will be directly served.
Otherwise, the arrivals may join the queue with probability θ, or decide to
balk with a complementary probability θ′ = 1 − θ.

- During the working vacation time, the customers may get impatient and
abandon the system (renege) if their services are not yet accomplished. Here,
the impatience times are supposed to be i.i.d random variables that follow
exponential distributions with rate ξ.

- The above variables (the inter-arrival times, service times, waiting server
times, working vacation times, are impatience times) are mutually indepen-
dent.

The considered model is schematically depicted in the Figure 1.

Arrivals

Balking

Joining
the system

Departure

Infinite buffer

Servers

Normal busy period

The waiting
servers
duration
ended

Working
vacation
ended or
vacation

interruption

Working vacation periodReneging

Figure 1: Schematic representation of the queueing system
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2.1. Practical application

The proposed queueing model has a potential application in call centers, where
the calls can reach the call center after traversing through different intermediate
routers. If the agents are unoccupied, a call request is immediately processed.
Otherwise, they will be waiting in a buffer to be serviced according to first-come-
first-serve (FCFS) policy. When there is no calls in the system, before going
synchronously ’as a group’ on vacation, they will wait a random period of time
(waiting servers duration). During the vacation period, the agents can deal with
the new calls (if any) at the slower rate to economize the cost (working vacation
period). During this period, at the end of each service, the agents check if there
are new calls in the system and decide whether or not to return from their va-
cation, whether it is over or not (vacation interruption). In addition, if there is
no calls request at a vacation completion, the agents starts a finite number of
working vacations (variant working vacation). Otherwise, the agents begin a new
regular busy period. During both periods, the call may balk based on the queue
length. Further, during working vacation, a waiting call in the system may become
impatient and quit the system after a long wait (reneging).

3. ANALYSIS OF THE MODEL

The behaviour of our queueing system is described by two-dimensional infinite
state continuous-time Markov chain {(S(t); L(t)); t ≥ 0} with state space Ω =
{(j,n) : n ≥ 0, j = 0,K}, where L(t) stands for the number of customers in the
system and S(t) specifies the state of the servers at time t, where

S(t) =
{

j, the system is on (j + 1)th WV at time t, j = 0,K − 1;
K, the system is on regular working state at time t.

Let Pj,n = lim
t→∞

P{S(t) = j, L(t) = n}, n ≥ 0, j = 0,K be the system state probabilities

of the process {(S(t); L(t)), t ≥ 0}. Before proceeding with the analysis of the
queueing system let us consider the following notations that are necessary for the
rest of the article:

χ0,n =

 ν + ξ, n = 1,
n(βν + ξ), 2 ≤ n ≤ c − 1,
cβν + nξ, n ≥ c,

χ1,n =

 nµ, 1 ≤ n ≤ c − 1,

cµ, n ≥ c,

and

αn =

 0, n = 0,1
n(1 − β)ν, 2 ≤ n ≤ c − 1,
c(1 − β)ν, n ≥ c.

The transition diagram is illustrated in Figure 2.
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Figure 2: State-transition-rate diagram

3.1. Matrix-geometric method

In this section, we apply the matrix geometric method to obtain the stationary
probabilities. According to [55], the infinitesimal generator Q for the process could
be given as:

Q =



A0 C0
B1 A1 C0

B2 A2 C0
. . .

. . .
. . .

Bc−1 Ac−1 C0
Bc Ac C1

Bc+1 Ac+1 C1
. . .

. . .
. . .

BN AN C1
BN AN C1

. . .
. . .



,
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where N is a large enough number so that when the number of customers n ≥ N,
we approximate the matrices An and Bn by AN and BN, respectively.

C0=



λ
λ

. . .

. . .

. . .

λ
λ


K+1×K+1

,

C1=



θλ
θλ

. . .

. . .

. . .

θλ
θλ


K+1×K+1

,

A0=



−(λ + ϕ0) ϕ0
−(λ + ϕ1) ϕ1

. . .
. . .

. . .
. . .

−(λ + ϕK−1) ϕK−1
ω −(λ + ω)


K+1×K+1

,

B1=



χ0,1
χ0,1

. . .

. . .

. . .

χ0,1
µ


K+1×K+1

,

Bn=



χ0,n nβ′ν
χ0,n nβ′ν

. . .
...

. . .
...

. . .
...

χ0,n nβ′ν
nµ


K+1×K+1

, 2 ≤ n ≤ c − 1,
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Bn=



χ0,n cβ′ν
χ0,n cβ′ν

. . .
...

. . .
...

. . .
...

χ0,n cβ′ν
cµ


K+1×K+1

, c ≤ n ≤ N − 1,

An=



−Θ0 ϕ0
−Θ1 ϕ1

. . .
...

. . .
...

−ΘK−1 ϕK−1
−(λ + nµ)


K+1×K+1

, 1 ≤ n ≤ c − 1,

where Θj = (λ + ϕj + αn + χ0,n), 0 ≤ j ≤ K − 1,

An=



−δ0 ϕ0
−δ1 ϕ1

. . .
...

. . .
...

−δK−1 ϕK−1
−(θλ + nµ)


K+1×K+1

, c ≤ n ≤ N − 1,

where δj = (θλ + ϕj + χ0,n + cβ′ν), 0 ≤ j ≤ K − 1,

Bn=



χ0,N cβ′ν
χ0,N cβ′ν

. . .
...

. . .
...

. . .
...

χ0,N cβ′ν
cµ


K+1×K+1

, n ≥ N,

and An=



−Γ0 ϕ0
−Γ1 ϕ1

. . .
...

. . .
...

−ΓK−1 ϕK−1
−(θλ + cµ)


K+1×K+1

, n ≥ N,

where Γj = (θλ + ϕj + χ0,N + cβ′ν), 0 ≤ j ≤ K − 1.
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Based on Neuts [55], the approximated system is stable and the steady-state
probability vector exists iff YC1e < YBNe, where Y is an invariant probability of
the matrix ψ = BN + AN + C1. Y satisfies the equations Yψ = 0 and Yen = 1,
where en is the column vector of appropriate dimension n with all elements equal
to one.

Under the stability condition, the stationary probability vector Π of the gen-
erator Q exists, satisfying the balance equation ΠQ = 0 and Πen = 1, where 0
is the row vector with all elements equal to zero. The vector Π partitioned as
Π = [Π0,Π1,Π2, ...], where Πn=[P0,n, P1,n, P2,n, ..., PK,n].

Clearly, when the stability condition is fulfilled, the sub-vectors of Π, relating
to various levels satisfy

Πn = ΠNRn−N , n ≥ N, (1)

where the matrix R is the minimal non-negative solution of the matrix quadratic
equation

C1 + RAN + R2BN = 0. (2)

In fact, the QBD process is positive recurrent iff the spectral radius Sp(R) < 1.
However, it is quite complicated and tedious to define the explicit expression of the
matrix R by resolving equation (2). Neuts [55] developed an iterative algorithm for
numerically computing R. Starting with initial iteration R0 = 0, we can compute
the successive approximation

Rn+1 = −(C1 + R2
nBN)(AN)

−1,n ≥ 0.

From equation ΠQ = 0, the governing system of difference equations can be given
as

Π0A0 + Π1B1 = 0, (3)

Πn−1C0 + ΠnAn + Πn+1Bn+1 = 0, 1 ≤ n ≤ c (4)

Πn−1C1 + ΠnAn + Πn+1Bn+1 = 0, c + 1 ≤ n ≤ N − 1, (5)

Πn−1C1 + ΠnAN + Πn+1BN = 0, n ≥ N, (6)

and the normalizing condition

∞

∑
n=0

Πne = 1. (7)

From equations (3) to (6), after some mathematical manipulations, we obtain

Πn−1 = Πn φn, 1 ≤ n ≤ N, (8)

ΠN [φNC1 + AN + RBN ] = 0, (9)

where

φ1 = −B1(A−1
0 ), φn = −Bn(An−1 + φn−1C0)

−1,2 ≤ n ≤ c + 1,

φn = −Bn(An−1 + φn−1C1)
−1, c + 2 ≤ n ≤ N.
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Using equations (7) and (8), we obtain

ΠN

[ N

∑
n=1

n

∏
i=N

φi + (I − R)−1
]

e = 1. (10)

By solving equations (9) and (10), we find ΠN. Then, We employ equations (1)
and (8) to obtain Πn for n ≥ 0.

4. PERFORMANCE MEASURES AND COST MODEL

4.1. Performance measures

� The expected number of customers in the system during WV:

E[Lwv] =
K−1

∑
j=0

∞

∑
n=1

nPj,n.

� The expected number of customers in the system during regular working
period:

E[LK] =
∞

∑
n=1

nPK,n.

� The expected number of customers in the system:

E[L] = E[Lwv] + E[LK].

� The servers remain idle during regular working period with probability

P[Ib] = PK,0.

� The servers remain idle during WV period with probability

Pidle =
K−1

∑
j=0

Pj,0.

� The probability that the servers are in WV period is given as

Pwv =
K−1

∑
j=0

∞

∑
n=0

Pj,n.

� The probability that the servers are busy during regular working state is as
follows:

Pbusy = 1 − PK,0 −
K−1

∑
j=0

Pj,0.
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� The average rate of reneging is

Rren = ξE[Lwv].

� Throughput is given as

TP = µ
c−1

∑
n=1

nPK,n + cµ
∞

∑
n=c

PK,n + ν
K−1

∑
j=0

∞

∑
n=1

Pj,n

4.2. Cost model

We develop a cost model to analyze the optimization of the cost function of
the model. The total expected cost function per unit time is as:
F[µ,ν] = cl E[L] + cb (µ + ν)Pbusy + cr Rren + ci P[Ib] + Cµ µ,
where
Cl ≡ Cost per unit time per customer present in the system ,
Cb ≡ Cost per unit time when the servers are busy,
Cr ≡ Cost per unit time when a customer reneges,
Ci ≡ Cost per unit time when the servers are idle during busy period,
Cµ ≡ Fixed service purchase cost per unit during busy period.
The cost minimization problem is illustrated mathematically as:

F[µ∗,ν] =minimizeµF[µ,ν],

F[µ∗,ν∗] =minimizeνF[µ∗,ν].

5. SOME SPECIAL CASES

In this section, we present some important particular cases of our queueing
model.

– For both K → ∞, and K = 1, if c = 1, ν = 0, ϕi = ϕ, i = 0,K − 1, ω = 0, β = 1,
and θ = 1, then our model reduces to the models investigated in Altman and
Yechiali [56].

– If c = 1, ν = 0, ϕi = ϕ, i = 0,K − 1, ω = 0, ξ = 0, β = 1, and θ = 1, our system
is reduced with that studied by Yue et al. [35].

– When c = 1, ϕi = ϕ, i = 0,K − 1, ω = 0, ξ = 0, and β = 1, our queueing
model coincides with that examined by Vijaya Laxmi and Rajesh [36].

– When ϕi = ϕ, i = 0,K − 1, ω = 0, θ = 1, and β = 1, and the customers may
be impatient before the service begins, then the queueing model presented
in the current paper match with that given by Vijaya Laxmi and Kassahun
[49].
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6. NUMERICAL ILLUSTRATIONS

Numerical computations were carried out in this section using Mathematica
software, and the results are provided in the form of graphs given below. Unless
their values are indicated in the appropriate places, the model parameters are
assumed to be λ = 1.0, µ = 5.0, β = 0.6, ν = 3.0, θ = 0.5, ω = 0.7, ξ = 0.8, ϕ[0] = 0.5,
ϕi = ϕi−1 + 0.1, 1 ≤ i ≤ K − 1. Cost parameters are taken as cl = 25, cb = 20,
cr = 10, ci = 6, and cµ = 5.

Figure 3: Effect of λ on Pbusy and PK,0 for different µ

Figure 3 shows the effect of arrival rate λ on Pbusy and probability PK,0, for
different values of service rate in busy period µ. As λ increases, Pbusy and PK,0
increases and decreases, respectively. This is because, an increase in customers
inflow into the system increases the probability of busy servers resulting in a de-
crease in server idleness. Further, for a fixed λ, contrary trend is observed as µ
increases, which is true. The point of intersection of curves is indicated by the
value of λ at which Pbusy and PK,0 are the maximum and minimum, respectively.
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Figure 4: Effect of ν on E[L] for different K

The impact of ν on E[L], for different number of working vacations K, is shown
in Figure 4. The figure shows that for a fixed K, the increase in ν decreases E[L],
which is obvious. Moreover, for a constant ν, E[L] shows an opposite trend with
the increase of K because of the slower service rates during the vacations. Also,
E[L] is observed smaller for K = 1.

Figure 5: Effect of λ on E[L]

In Figure 5, we discuss the effect of λ on E[L] for two scenarios; queueing model
without balking and without reneging. We notice that when there is balking but
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no reneging, the system size is larger, and smaller when there is reneging but no
balking. This demonstrates that for this system reneging constraint has a negative
impact than balking factor.

Figure 6: Effect of c on TP

Figure 6 depicts the impact of number of servers c on throughput of the system
Tp with and without reneging. As we see, the increase in c increases Tp. Also,
for a fixed c, Tp is observed higher in the absence of reneging because of a longer
queue.

Figure 7: Effect of λ on Rren for different β′
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The impact of λ on Rren is shown, for various vacation interruption probabilities
β′, in Figure 7. Initially, average reneging rate of the customer is high when there is
no vacation interruption (β′ = 0). Further, as β′ increases, Rren tends to decrease.
This is due to as β′ increases, the servers spend more in busy period and also
service rates are higher during regular busy period.

Figure 8: Effect of λ on E[L] for different θ′ and ξ

In Figure 8, we compare E[L] in three cases θ′ <=> ξ with respect to λ. This
figure reveals that the system length is larger when θ′ > ξ and smaller for θ′ < ξ.
Hence, for the multi-server systems with balking and reneging of customers, in
order to sustain the system properly, reneging rate should be maintained smaller
than balking probability.

Table 1: Effect of λ on cost function

λ (µ∗,ν) F[µ∗,ν] (µ∗,ν∗) F[µ∗,ν∗]
0.8 (7.5,3.0) 471.331 (7.5,2.2 ) 463.783
1.0 (6.8,3.0) 509.298 (6.8,1.9) 501.366
1.2 (6.0,3.0) 539.570 (6.0,1.7) 528.748
1.4 (5.0,3.0) 563.339 (5.0,1.4) 546.111
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Table 2: Effect of ξ on cost function

ξ (µ∗,ν) F[µ∗,ν] (µ∗,ν∗) F[µ∗,ν∗]
0.5 (7.2,3.0) 524.532 (7.2,2.4) 520.176
0.7 (6.9,3.0) 514.101 (6.9,2.0) 507.029
0.9 (6.7,3.0) 504.835 (6.7,1.9) 496.425
1.1 (6.5,3.0) 496.982 (6.5,1.7) 488.481

Table 3: Cost function vs. c

c (µ∗,ν) F[µ∗,ν] (µ∗,ν∗) F[µ∗,ν∗]
3 (5.1,3.0) 547.081 (5.1,1.3) 525.976
5 (7.7,3.0) 473.907 (7.7,2.6) 470.265
7 (8.4,3.0) 416.053 (8.4,3.7) 411.996
9 8.5,3.0 372.56 (8.5,4.3) 367.004

Using direct search method, the effect of λ, ξ, and c on optimum cost F[µ∗,ν∗],
optimum service rates, during busy period µ∗, and working vacation period ν∗, are
shown in Tables 1-3, respectively.

� As arrival rate λ increases, the optimum service rates µ∗ and ν∗ decrease and
the minimum cost F[µ∗,ν∗] increases, which is necessary in order to maintain
the stability of the system.

� Further, the optimum service rates and the minimum cost decrease with
the increase of reneging rate ξ. This agrees with the fact that to attract
the reneged customers in the system there should be some decrease in the
minimum cost.

� However, the minimum cost decreases and the optimum service rates grow
with the increase of number of servers c.

7. CONCLUSION

In this paper, we investigated a multi-server queue with K- variant working
vacations, vacation interruption, waiting servers and customers’ impatience. The
stationary solution of the queueing system is established. Different performance
measures are derived. In addition, cost optimization along with numerical results
are presented. Our results show that

1. An increase in the number of the servers increases the throughput of the
system.

2. The average reneging rate lowers as the probability of the vacation interrup-
tion increases.
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3. For the better maintenance of the system, reneging rate should be smaller
than balking probability.

4. The minimum cost and optimal service rates are reduced when the reneging
rate rises.

The method used in this paper can be applied to study different Markovian
models, such as GeoX/G/c and GIX/Geo/1 queues with variant working vaca-
tions, Bernoulli-schedule vacation interruption and impatient customers.

Funding. This research received no external funding.
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