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Abstract: Classical combinatorial optimization concerns finding a feasible subset of
a ground set in order to optimize an objective function. We address in this article the
inverse optimization problem with the k-max function. In other words, we attempt to
perturb the weights of elements in the ground set at minimum total cost to make a
predetermined subset optimal in the fashion of the k-max objective with respect to the
perturbed weights. We first show that the problem is in general NP -hard. Regarding
the case of independent feasible subsets, a combinatorial O(n2 logn) time algorithm
is developed, where n is the number of elements in E. Special cases with improved
complexity are also discussed.
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1. INTRODUCTION

Combinatorial optimization is undoubtedly an interesting topic in operations
research due to its potential importance in practical and theoretical contributions.
In a combinatorial optimization problem, a ground set and a class of its subsets
(the so-called feasible solutions) are given. Then, we aim to find a feasible solu-
tion that optimizes an objective function determined by a decision maker. Inverse
optimization problem is, on the counterpart, to adjust relative parameters at least
in order to make a predetermined feasible solution optimal with respect to the
adjusted parameters. The problem, defined in such a way, has become a grow-
ing topic with intensively investigations and promising applications. For recent
models and solution approaches concerning this topic, one can read the survey of
Heuberger [1]. In what follows, let us discuss some existing inverse optimization
problems.

The first paper concerning the inverse optimization problem investigated the
inverse shortest path problem; see Burton and Toint [2]. They also focused on the
application of the problem in earthquake prediction. Then, Ahuja et al. [3] proved
that the inverse linear programming problem can be reduced to the problem of the
same type by applying the condition of complementary slackness. These pioneering
researches set up a stone for later investigation on the inverse optimization. The
minimum spanning tree problem is a key topic in combinatorial optimization and
its inverse problem was worthwhile to be further studied with efficient solution
algorithm; see [4, 5, 6]. Also, [7, 8] developed combinatorial algorithms for the
inverse network flows problems under different cost norms based on their special
structure. The inverse version of matroid theory, which integrates graph theory
and linear algebra, was formulated and solved by Cai and Li [9], Zhang et al.
[10]. The inverse {0, 1}-knapsack problem under the rectilinear or Chebyshev
norm was modeled as a bilevel integer programming formulation by Roland et al.
[11]. He also showed numerical results for the efficiency of the solution approaches.
Chung and Demange [12] considered the inverse travelling salesman problem and
proposed the approximation result for the problem. One particular case of the
general inverse optimization theory, the so-called inverse location problem has
been growing with special interest; we can refer to [13, 14, 15, 16, 17, 18] and the
concerning references for models, solution algorithms and potential applications.

Modern optimization problem further focused on universal approaches for a
wide class of objective functions given by a decision maker. Concerning this pur-
pose, the ordered median function was coined by Nickel and Puerto [19] to gen-
eralize a class of functions, where the median and the center functions are among
them. Then, the inverse ordered median location problem was also taken into
account, for instance, in [20, 21, 22, 23]. The following facts motivates further re-
search on the topic of inverse combinatorial optimization with universal objective
function.
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1. In optimization theory, a bottleneck problem means to find a feasible so-
lution on the ground set in order to minimize the maximum weight of element
in the solution set. On the other hand, the inverse bottleneck problem aims to
modify the parameters at minimum cost so that a prespecified feasible solution
become the bottleneck of the problem, i.e., its maximum weighted element is the
smallest one in comparison to other solutions. The inverse bottleneck problem
was intensively studied under various cost functions, we can read [24, 25, 26] for
references.

2. By applying the ordered median function, the k-max objective function can
be considered as a generalization of the bottleneck problem for k = 1. Precisely,
the objective focuses on the kth maximum weight of elements in the feasible set
instead of the maximum one as in the bottleneck problem. The non-inverse k-max
problem can be formulated as a linear integer program by Gorski and Ruzika [27].
Numerical experiments showed the efficiency of the corresponding formulation.

3. The inverse k-max problem is consequently a generalization of the inverse
bottleneck problem and plays an important role in exploring the structure of the
inverse bottleneck problem as well as in practical situation, where the decision
maker tends to choose the kth best of the items in a feasible solution. In spite of
its importance, the inverse k-max optimization problem has not been studied so
far. For example, in network design the bottleneck value is so vague to measure
and it is far from being interesting to the community, then a reasonable presentable
value of the network should be given. The k-max is a candidate one as the decision
make should focus on the kth maximum weight among the elements in a feasible
set. The inverse problem plays the role as resetting the network parameters in an
exact way so that the desired feasible solution satisfies the outcome of the decision
maker.

In this paper the inverse k-max optimization problem is considered with the
ground set and the set of all feasible solutions being the input. This assumption is
reasonable. For example, we can exactly know and store the set of spanning trees or
the set of paths connecting two vertices in a small-scaled network problem. For the
organization of the paper, Section 2 introduces a general setting and optimality
condition for the inverse k-max optimization problem. We also prove that the
inverse bottleneck problem is NP-hard. For the problem with the condition of
independency of feasible subsets, we represent the cost function as a single variable
function and prove its convexity. Then, we develop a polynomial time algorithm
for the problem in Section 3. Some special cases with improved complexity are
also discussed in this section.

2. PROBLEM SETTING AND COMPLEXITY

Let a ground set E of n elements be given and be equipped with a weight
function w : E −→ R+ where w(e) > 0 for e ∈ E. A class of subsets F :=
{F0, F1, . . . , Fp} with Fi ⊂ E, for i = 0, 1, . . . , p, contains all feasible solution of
a relevant combinatorial optimization problem. Furthermore, we assume that all
subsets Fi have exactly m elements for i = 0, 1, . . . , p. This assumption is applied
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in the case of cardinality constrained optimization, where all feasible sets have the
similar cardinality. From now on, we index the elements in Fi such a way that
Fi := {ei1, ei2, . . . , eim} with eij ∈ E for i = 0, 1, . . . , p and j = 1, . . . ,m. Note that,

two elements eij and ei
′

j′ for i ̸= i′ can stand for one element in E. Let σi(·) be a
permutation such that

w(eiσi(m)) ≤ w(eiσi(m−1)) ≤ . . . ≤ w(eiσi(1)
).

The k-max function K : F −→ R+ is defined as K(Fi) := w(eiσi(k)
) for Fi ∈ F ,

i.e., it is the the weight of the kth largest element in the underlying subset. In the
function K, the value k is implicitly given for the sake of simplicity. A subset Fi0

is, by definition, a minimum k-max in F if and only if

K(Fi0) ≤ K(Fi)

for i = 0, 1, . . . , p. Particularly, if k = 1, one obtains the so-called classical bottle-
neck element in F .

We derive the condition for a set that is a minimum k-max of F .

Theorem 1. (k-max criterion) The subset Fi0 for i0 ∈ {1, . . . , p} is a k-max in
F iff ∣∣∣{e ∈ E : w(e) < K(Fi0)

}⋂
Fi

∣∣∣ ≤ m− k

for i = 0, 1, . . . , p.

Proof. For a minimum k-max Fi0 in F , then K(Fi0) ≤ K(Fi) for all i = 0, 1, . . . , p.
Hence, there are at most m−k elements in Fi, i ∈ {0, 1, . . . , p}, whose weights are
strictly less than K(Fi0) as otherwise, the k-max objective at Fi is strictly smaller
than K(Fi0) and it contradicts the optimality of Fi0 . In other words, we obtain∣∣∣{e ∈ E : w(e) < K(Fi0)

}⋂
Fi

∣∣∣ ≤ m− k

for all i = 0, 1, . . . , p.
Conversely, we assume that∣∣∣{e ∈ E : w(e) < K(Fi0)

}⋂
Fi

∣∣∣ ≤ m− k

for all i = 0, 1, . . . , p. Then, there are at most m−k elements in each Fi ∈ F whose
weights are strictly less than K(Fi0). The remaining k elements in Fi are larger
than or equal to K(Fi0), or K(Fi) ≥ K(Fi0). Hence, the set Fi0 is a minimum
k-max in F .

Note that in Theorem 1, the optimality criterion is equivalent to∣∣∣{e ∈ E : w(e) ≥ K(Fi0)
}⋂

Fi

∣∣∣ ≥ k

for all i = 0, 1, . . . , p. By taking k = 1, the k-max problem is indeed the bottleneck
problem. The corresponding optimality criterion can be restated as
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}⋂

Fi

∣∣∣ ≥ 1

for all i = 0, 1, . . . , p, i.e., the set of elements in E whose weights are at least

K(Fi0) intersects all feasible solutions Fi for i = 0, 1, . . . , p. The set
{
e ∈ E :

w(e) ≥ K(Fi0)
}

is called a cut in E in term of Guan and Zhang [24]. Also, they

proved that the subset Fi0 is a bottleneck if and only if the number of element(s)
in the cut with respect to the maximum weight of elements in Fi0 is at least
1. Therefore, Theorem 1 is a generalization of the bottleneck condition in the
mentioned paper.

Now we formally state the inverse k-max optimization problem. Let F0 be,
without loss of generality, a predetermined subset in F . We can either increase
or reduce each element e in E by p(e) or q(e), i.e., the perturbed weights are
w̃(e) := w(e)+ p(e)− q(e) for e ∈ E. The new weights are assumed to be positive,
i.e., q(e) < w(e) for e ∈ E. Furthermore, increasing or reducing one unit weight

of e pays a cost c(e). We denote K̃(·) the k-max function with respect to the new
weights. The inverse k-max optimization problem is to modify the elements in E
in order to adapt the following conditions.

i) The set F0 becomes a minimum k-max in F with respect to w̃, i.e., K̃(F0) ≤
K̃(Fi) for all i = 1, . . . , p.

ii) Modifying cost
∑

e∈E c(e)(p(e) + q(e)) should be minimized.

ii) Bound constraints hold, i.e., 0 ≤ p(e) ≤ p̄(e) and 0 ≤ q(e) ≤ q̄(e) for e ∈ E.

We start with the complexity of the problem in the following result.

Theorem 2. The inverse bottleneck optimization problem is NP -hard.

Proof. Let us first revisit the set cover (SC) problem: ’Given a ground set S =
{1, . . . , n} of n elements, its m subsets S1, S2, . . . , Sm with

⋃m
i=1 Si = S, and an

integer l, determine whether there exists l of the given subsets such that their
union equals S.’ The (SC) is NP-complete according to Garey and Johnson [28].

The decision version of inverse bottleneck optimization problem (IBP) can be
stated as: ”Given an instance of the inverse bottleneck problem, determine if there
exists a feasible modification such that the total cost is at most B.”

Let an instance of (SC) be given. Let e1, e2, . . . , em represent m subsets
S1, S2, . . . , Sm. We derive an instance of (IBP) as in polynomial time as below:

� There are n+ 1 feasible sets F0, F1, F2, . . . , Fn. If i in Sj , then element ei is
in Fj . To assure that |F0| = |Fj | = m for all j = 1, . . . , n, we add auxiliary
elements to each feasible set. Here, an element e ∈ Fj\{e1, e2, . . . , em}, then
e ̸∈ Fs for s ̸= j.

� We can choose elements in F0 such that K(F0) = 2. For Fj with j ̸= 0, we
set w(e) = 1 for all e in Fj and j = 1, . . . ,m.
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� Set p̄(ei) = 1, q̄(ei) for i = 1, . . . , n and p̄(e) = q̄(e) = 0 for any e ̸∈
{e1, e2, . . . , em}.

� We consider the uniform cost for modifying any element of the corresponding
ground set E =

⋃
i=0,...,n Fi and B = l.

After constructing an instance of the (IBP), we now prove that the (SC) and the
(IBP) are equivalent.

If (SC) gives a ’yes’ answer, there exists l subsets, without loss of generality,

say S1, . . . , Sl such that
⋃l

i=1 Si = S. We set p(ej) = p̄(ej) = 1 for j = 1, . . . , l.

As
⋃l

i=1 Si = 1, . . . , n, we know that there exists an element in {e1, e2, . . . , em}
that is also in Fj for j = 1, . . . , n. Furthermore, K̃(Fj) = 2 for j = 1, . . . , n due to
w̃(ei) = 2 for i = 1, . . . ,m. Therefore, F0 is become the bottleneck of the modified
instance and the cost is l.

If the answer to (IBP) is ’yes’, then K̃(Fj) = 2 for j = 1, . . . , n and the cost
is at most l. For any element ei for i = 1, . . . ,m with 0 < p(ei) < 1, we can
assume that p(ei) = 0 without increasing the cost. Hence, we can assume that
p(ei) ∈ {0, 1} for i = 1, . . . ,m. Let J := {i ∈ 1, . . . ,m : p(ei) = 1}. We know that
|J | ≤ l as

∑m
i=1 p(ei) ≤ l. Furthermore, each Fj contains an element ei such that

p(ei) = 1 to ensure that K̃(Fj) = 2 for j = 1, . . . , n. Therefore, we imply that⋃
i∈J Si = S. We also attain ’yes’ answer to (SC).

Corollary 3. The inverse k-max optimization problem is NP -hard.

3. SOME POLYNOMIALLY SOLVABLE CASES

By the proof Theorem 2, the overlap in the sets is a proven reason for NP-
hardness. In this section, we focus on the special case with independent feasible
subsets F0, F1, . . . , Fn, i.e., the condition Fi ∩Fj = ∅ holds for any i ̸= j and i, j ∈
{1, . . . , n}. Moreover, it is possible that Fj ∩F0 ̸= ∅ for some index j ∈ {1, . . . , p}.
Then, we know that mp = O(n).

3.1. Special Properties of the Problem

We assume K(F0) > K(Fi), or equivalently∣∣∣{e ∈ E : w(e) < K(F0)
}⋂

Fi

∣∣∣ > m− k,

for some indices i ∈ {1, . . . , p}. Otherwise, a trivial solution with no modification
is derived. Let the set

I := {i ∈ 1, . . . , p : K(Fi) < K(F0)}

contain all indices that violate the optimality criterion. We parameterize the
inverse k-max problem by setting t := K̃(F0). This means t is the modified k-max
objective of F0. Moreover, we denote by

I(t) := {i ∈ I : K(Fi) < t}
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the set of all feasible solutions whose k-max objectives are strictly less than t.

To get the criterion in Theorem 1, we reduce the cardinality of the set
{
e ∈

E : w(e) < t
}⋂

Fi for i ∈ I(t) until it is at most m − k. If t > K(F0), then∣∣∣{e ∈ E : w(e) < t
}⋂

Fi

∣∣∣ is even larger than that of the current value t0 := K(F0).

Thus, we focus on the value t < K(F0) and increase the weights of elements e in
Fi with w(e) < t for i ∈ I to obtain the optimality criterion. The following result
helps to observe the property of modifications.

Proposition 4. If t ∈ [w(e0σ0(j+1)), w(e
0
σ0(j)

)) for j ≥ k, then there exist j−k+1
elements in the set

{e0σ0(j)
, e0σ0(j−1), . . . , e

0
σ0(1)

}

whose weights are indeed reduced. If t ∈ [w(eiσi(l+1)), w(e
i
σi(l)

)) for i ∈ I(t), then
there exist k − l elements in the set

{eiσi(m), e
i
σi(m−1), . . . , e

i
σi(l+1)}

whose weights are indeed increased.

Proof. As t ∈ [w(e0σ0(j+1)), w(e
0
σ0(j)

)) and t = K̃(F0), we do not modify the weights
of elements in

{e0σ0(m), e
0
σ0(m−1), . . . , e

0
σ0(j−1)}.

On the other hand, as w(e0σ0(r)
) > t for all r = 1, 2, . . . , j we have to reduce the

weight of j − k + 1 elements in

{e0σ0(j)
, e0σ0(j−1), . . . , e

0
σ0(1)

}

to obtain the k-max value t.
For i ̸∈ I(t), we know K(Fi) ≥ t and we hence do not increase the k-max

objective value of Fi. Let us consider i ∈ I(t) and t ∈ [w(eiσi(l+1)), w(e
i
σi(l)

)). We
modify the weights of elements in Fi so that∣∣∣{e ∈ E : w̃(e) < t

}⋂
Fi

∣∣∣ = k − 1.

Therefore, we increase exactly k − l elements in

{eiσi(m), e
i
σi(m−1), . . . , e

i
σi(l+1)}

in order to obtain the (k − l) + l = k maximum objective t.

For example, we are given a ground set E = {e1, . . . , e9} with w(ei) = i for
i = 1, . . . , 9. Moreover, the feasible sets are F0 := {e1, e2, e7, e8, e9} and F1 :=

{e2, e3, e4, e5, e6} with m = 5. We consider k = 2, then K(F0) = 8 and
∣∣∣{e ∈ E :

w(e) < K(F0)
}⋂

F1

∣∣∣ = 5 > m− k. Thus, F0 is not a minimum k-max in F . For

t ∈ [5, 6) = [w(e2), w(e7)) ∩ [w(e5), w(e6)), then j = 3 and l = 1. We reduce the
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weights of j−k+1 = 2 elements in {e7, e8, e9} and increase the weight of k− l = 1
element in {e2, e3, e4, e5} in order to obtain the k-max value t of both F0 and F1.

Next we identify an interval that contains feasible parameters of the inverse k-
max optimization problem. After setting w(e0j ) := w(e0j )− q̄(e0j ) for j = 1, . . . ,m,

we obtain the set M := {w(e0j ) : e0j ∈ F0}. Let tM be the kth maximum element
in M. This point can be found in O(m) time by an advanced computation that
prunes a half of the elements in each iteration, for example, one can see Balas
and Zemel [29]. We know that the value of K̃(Fi0) can be reduced to at least

tM. Moreover, as it is enough to reduce K̃(Fi0) to mini∈I K(Fi) to reach the
optimality criterion, we set the lower bound of the parameter as

t := max{tM; mini∈I K(Fi)}.

Similarly, after setting w̄(eij) := wi
j + p̄(eij) for i = 1, . . . , p and j = 1, . . . ,m, we

consider the set N i := {w̄(eij) : eij ∈ Fi}. Let tN i be the kth largest element in N i.
As it is enough to increase the k-max value of all Fi for i = 1, . . . , p to K(F0) such
that conditions in Theorem 1 holds, we get the upper bound of the parameter

t̄ := min{K(F0); min
i=1,...,p

tN i}.

Computing t and t̄ costs O(pm) = O(n) time as there are at p feasible solutions
in F\{F0}.

Proposition 5. The inverse k-max optimization problem is feasible iff t ≤ t̄.

Proof. If t > t̄, by Proposition 4 we can not modify the weights such that the
optimality criterion holds. Conversely, if t ≤ t̄, we guarantee to modify the weights
to obtain the optimality criterion.

We now aim to represent the cost function. Considering

t ∈ [w(e0σ0(j+1));w(e
0
σ0(j)

))
⋂

i∈I(t)

[w(eiσi(li+1));w(e
i
σi(li)

)),

the cost function, due to Proposition 4, is written as

C(t) :=
∑

i∈α(t)

c(e0i )(w(e
0
i )− t) +

∑
i∈I(t)

∑
j∈βi(t)

c(eij)(t− w(eij)).

Here, α(t) is the set of the smallest j−k+1 elements in {c(e0i )(w(e0i )−t) : w(e0i ) >
t} and βi(t) is the set of k− li smallest elements in {c(eij)(t−w(eij)) : w(e

i
j) < t}.

Note that α(t) ∩ βi(t) = ∅ for i ∈ I(t). The cost C(t) is indeed piecewise linear
and one can present the corresponding slope at t as

slope(t) :=
∑

i∈I(t)

∑
j∈βi(t)

c(eij)−
∑

i∈α(t)

c(e0i ).

We can further derive an important property of the cost function.
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Proposition 6. The function C(t) is convex for t ∈ [t, t̄].

Proof. Take t, t′ ∈ [t; t̄] and t′ > t. We further assume that t ∈ [w(e0σ0(j+1));w
0
σ0(j)

)

and t′ ∈ [w(e0σ0(j′+1));w
0
σ0(j′)

). As t′ > t, one implies j′ ≤ j. We know that α(t)

(α(t′)) is the set of the smallest j−k+1 (j′−k+1) elements in {c(e0i )(w(e0i )− t) :
w(e0i ) > t} ({c(e0i )(w(e0i ) − t′) : w(e0i ) > t′}). As j′ − k + 1 ≤ j − k + 1 and
{e0i ∈ F0 : w(e0i ) > t′} ⊂ {e0i ∈ F0 : w(e0i ) > t}, there are two cases α(t′) ⊂ α(t)
or α(t′) ̸⊂ α(t). In the first case, it holds

∑
i∈α(t′) c(e

0
i ) ≤

∑
i∈α(t) c(e

0
i ). For

the second case, we take c(e0j )(w(e
0
j ) − t′) in α(t′)\α(t). As c(e0j′)(w(e

0
j′) − t′)

is a decreasing function, we obtain c(e0j′)(w(e
0
j′) − t′) ≤ c(e0j′)(w(e

0
j′) − t). As

c(e0j′)(w(e
0
j′) − t) ̸∈ α(t) and j′ − k + 1 ≥ j − k + 1, there exists an element

c(e0j )(w(e
0
j ) − t) ∈ α(t) that replaces c(e0j′)(w(e

0
j′) − t′). Then, we imply that

c(e0j′) < c(e0j ). For example, we consider Figure 1 with c(e0j )(w(e
0
j )− t) = 2(4− t)

and c(e0j′)(w(e
0
j′)− t′) = 3(3− t). These two functions intersect at t = 1. Hence,

for t < 1 and t′ > 1, the ordering of these two functions is changed.

1 2 3 4 5

1

2

3

4

5

6

7

8

9

t

y

O

Figure 1: Two functions 3(3-t) and 2(4-t)

Therefore, we also get
∑

i∈α(t′) c(e
0
i ) ≤

∑
i∈α(t) c(e

0
i ) in the second case.

By the similar argument, we further get
∑

j∈βi(t) c(e
i
j) ≥

∑
j∈βi(t′) c(e

i
j) for

i ∈ I(t). As I(t) ⊃ I(t′), the inequality slope(t) ≤ slope(t′) holds for t < t′. In
summary, the function C(t) is indeed a convex function.

Next we aim to solve the inverse k-max optimization problem with efficient algo-
rithm as well as discuss the complexity improvement in its special cases.

3.2. Solution Approach

We develop in this section a combinatorial algorithm for the inverse k-max
optimization problem based on characteristics of the problem, which are settled
in the previous section. As the function C(t) is piecewise linear and convex for
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t ∈ [t; t̄], we can find an optimal solution on the set of its breakpoints in the
following two steps.

Step 1: Find an interval that contains an optimal value.
We denote by

B :=
(
{w(eij) : j = 1, . . . ,m and i = 0, 1, . . . , p} ∪ {t, t̄}

)
∩ [t; t̄].

As there are at most O(n) elements in B, we can sort all items in B nondecreasingly
in O(n log n) time and get B = {b1, b2, . . . , bq} with b1 ≤ b2 ≤ . . . ≤ bq and
q = O(n). Then, we search for an interval [bi0 , bi0+1] for i0 ∈ {1, . . . , q − 1},
which contains an optimal solution of cost function C(t) for t ∈ [t; t̄] by a binary
search algorithm. We start with computing C(bi) and C(bi+1) for i := ⌊ 1+q

2 ⌋. If
C(bi) < C(bi+1), we know that the optimal solution is less than or equal bi. Thus,
we consider the new set B := {b1, . . . , bi}. Otherwise, we take into account the set
B := {bi+1, . . . , bq}. We stop if the set B contains only one element; otherwise, we
continue with the updated set B.

For the complexity of this step, we consider the time for computing the cost
C(t) of modifying the set F0 and Fi such that K̃(F0) = K̃(Fi) = t for i ∈ I(t) and
t ∈ B. Assume that t = w(e0σ0(j+1)), the cost concerning modifying elements in F0

can be done by finding and summing up j − k + 1 smallest elements of the set

{c(e0σ0(l)
)(w(e0σ0(l)

)− t) : l = 1, 2, . . . , j}

in O(m) time. By the same argument, the cost for modifying elements in Fi can be
also computed in O(m) time. Thus, we can claim that the mentioned task can be
computed in O(pm) = O(n) time. As the binary search stop in O(log n) time, the
complexity of this step is O(n log n) time. Note that, the advantage from this step
is that the set I(t) does not change for t ∈ [bi0 , bi0+1]. Hence, we know exactly
the sets Fi whose k-max values are increased for i ∈ I(bi0+1).

Step 2: Search for an optimal solution in [bi0 , bi0+1].
After completing Step 1, we aim to find the optimal solution of the problem in

the predetermined interval. We first find the intersections of c(eij)(w(e
i
j)− t) and

c(eij′)(w(e
i
j′) − t) for all pairs eij , e

i
j′ in the feasible set Fi with j, j′ ∈ {1, . . . ,m},

j ̸= j′, and w(eij), w(e
i
j′) ∈ [bi0 , bi0+1], w(e

i
j) ̸= w(eij′). They are calculated as

tijj′ :=
c(eij)w(e

i
j)− c(eij′)w(e

i
j′)

c(eij′)− c(eij)
.

This procedure can be done in O(n2) time as there are at most O(n2) pairs of
corresponding functions by considering the pair of functions based on elements in
E. Then, it yields the set

Q := {tijj′ : i = 0, . . . , p and j ̸= j′, j, j′ ∈ {1, . . . ,m}} ∩ [bi0 , bi0+1].

Note that Q contains O(n2) many elements. In the previous section, we state
that the presentation of C(t) depends on the ordering of the relevant functions
c(e)(w(e) − t) for e ∈ E. Therefore, Q contains possible breakpoints of C(t). As
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the objective function C(t) is a piecewise linear convex function with breakpoints
in Q, we can find its optimal solution in O(n2 log n) time by a binary search
algorithm.

Due to the analysis in the two steps, we get the relative result.

Theorem 7. The inverse k-max optimization problem with disjoint feasible sub-
sets is solvable in O(n2 log n) time with n being the input size of E.

Let us illustrate the algorithm in the following example.

Example 8. Consider the ground set E := {e1, e2, . . . , e10}. The set F of fea-
sible solutions contains F0 := {e5, e6, e7, e8, e10}, F1 := {e1, e3, e4, e8, e9}, F2 :=
{e2, e5, e6, e7, e10}. The weights, costs, modification bounds of elements are given
in Table 1.

Table 1: Input data concerning of the inverse k-max problem

i 1 2 3 4 5 6 7 8 9 10
w(ei) 1 1 2 2 8 8 9 9 10 10
c(ei) 1 1 2 2 4 4 6 6 1 2
p̄(ei) 7 7 5 5 2 2 1 1 1 1
q̄(ei) 1 1 1 1 4 4 4 4 6 6

For k = 3, we get K(F0) = 9;K(F1) = 2;K(F2) = 8. Hence, F0 is not a 3-max
of F . We can compute t := 4, t̄ := 9, and the set of break points B := {4; 8; 9}.
Step 1: We find the interval [4, 8] which contains an optimal solution.
Step 2: We now consider the variable t ∈ [4; 8]. The set of break points in the
interval [4, 8] is Q := {4; 22

7 ; 8}, where 22
7 is the intersection of two functions

c(e5)(w(e5) − t) and c(e10)(w(e10) − t). Furthermore, applying a binary search
algorithm on [4, 8] yields an optimal solution t = 8 with cost value C(8) = 11 (by
setting q(e10) = 2 and p(e1) = 7).

3.3. Improvement for Special Situations

Uniform-cost inverse k-max problem

We now consider the uniform-cost inverse k-max optimization problem, i.e.,
c(e) = 1 for all e ∈ E. For t ∈ [w(e0σ0(j+1));w(e

0
σ0(j)

)), we remind that there exist
exactly j − k + 1 elements in{

e0σ0(j)
, e0σ0(j−1), . . . , e

0
σ0(1)

}
whose weights are indeed reduced; see Proposition 4. We can directly find the
desired elements for modification by gradually comparing

w(e0σ0(j)
), w(e0σ0(j−1)), . . . , w(e

0
σ0(1)

)
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with t in that ordering and take the one with value less than t until there are
j− k+1 elements. This procedure trivially derives a minimum cost for modifying
elements in F0 such that K̃(F0) = t in O(m) time. For example, we consider the
set E := {ei : i = 1, . . . , 6} with w(ei) = i for i = 1, . . . , 6 and F0 = {e1, e2, e3, e4}
with w(e2) = w(e4) = 1 and w(e3) = 2. For k = 2 and t ∈ [1; 2), we reduce the
weights of j − k + 1 = 2 elements in {e2, e3, e4}. Then, the weights of e2 and e4
are indeed reduced.

For i ∈ I(t), we can find the minimum cost for K̃(Fi) = t in O(m) time by the
similar argument. Hence, it costs O(pm) = O(n) time to compute the cost function
at a fixed parameter t. After computing the set B as in the previous section, where
|B| = O(n), we know that the B is the set of breakpoints of C(t) since two functions
w(eij)−t and w(eij′)−t for i ∈ {0, . . . , p} and j ̸= j′, j, j′ ∈ {1, . . . ,m} are coincided
or have no intersection. Therefore, we can apply a binary search approach to find
an optimal solution of C(t) in B. Since the binary search terminates after O(log n)
iterations, the time complexity of the problem is O(n log n).

Theorem 9. The uniform-cost inverse k-max optimization with disjoint feasible
subsets is solvable in O(n log n) time.

Note that, for the uniform-cost problem, Step 2 of the general problem is pruned.
This simplification leads to the improvement in the computational complexity.

Inverse bottleneck optimization problem

Let us further consider another special case with k = 1, i.e., the corresponding
problem is the inverse bottleneck optimization problem with the set of feasible
solutions being a part of input. For t ∈ [w(e0σ0(j+1));w(e

0
σ0(j)

)), all elements in{
e0σ0(j)

, e0σ0(j−1), . . . , e
0
σ0(1)

}
are indeed reduced as j − k + 1 = j and there is exactly one element in Fi, for
i ∈ I(t). By elementary computation, the slope of the cost function C(t) is written
as

slope(t) :=
∑

i∈I(t)

∑
j∈γi(t)

c(eij)−
j∑

l=1

c(e0σ0(l)
)

Here, we use the abbreviation

γi(t) := argmin
{
c(eij)(t− w(eij)) : j = 1, . . . ,m

}
.

As the set γi(t) contains exactly one index, we focus on identifying the lower
envelope of a class of functions

{
c(eij)(t− w(eij)) : j = 1, . . . ,m

}
and retrieve the

desired index in each iteration. Applying the technique of Hershberger [30], we can
find the lower envelope of m lines in O(m logm) time. Hence, it costs O(n logm)
time to find all breakpoints corresponding to sets Fi for i ∈ I. As there are n
elements in E that correspond to n line segments, at most O(n) breakpoints are
concerned. The binary search algorithm stops in O(log n) time, we can thus solve
the problem in O(n log n) time. To summarize, the final result is stated as below.
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Theorem 10. The inverse bottleneck problem with disjoint feasible subsets can be
solved in O(n log n) time.

Note that, we improve the complexity of this special case based on the computation
of lower envelope of the cost modifications.

4. CONCLUSIONS

We considered the inverse k-max optimization problem, which is a general-
ization of the inverse bottleneck problem. It was showed that the problem is
NP-hard in general. However, if the feasible solutions are disjoint, it can be solved
in O(n2 log n) time, where n is the cardinality of the ground set. Finally, we devel-
oped improved algorithms with O(n log n) time complexity for both inverse k-max
optimization problem with uniform cost and the inverse bottleneck optimization
problem. Studying this problem under various objective functions, for examm-
ple, Chebyshev norms and Hamming distance, is a promising topic. Another new
direction is to devise algorithmic approaches for the inverse k-max optimization
problem with an intractable set of feasible solutions.
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