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1. INTRODUCTION

The multiple objective knapsack problem is a well-known combinatorial optimization
problem which appears as sub problem in many real world applications like logistics,
industry, economics, transport and many fields. In this work we consider the 0-1 bi-
objective knapsack problem (denoted by BOKP). This problem has received a significant
attention in the literature, and has been widely studied by many researchers, and several
approaches have been proposed to solve it: exact algorithms which provide the set (or
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a subset) of efficient solutions and approximate algorithms which produce a good ap-
proximation of the efficient set. One of the well-known methods in the literature is the
two-phase method. It was introduced by Ulungu [1, 2] where in the first phase, the set
of supported efficient solutions is found by solving a weighted sum of the objective func-
tions. In the second phase, the unsupported efficient solutions are found by using either an
exact or an approximate method. Captivo et al. [3], however, modeled the BOKP by a bi-
objective shortest path problem, then used a labeling algorithm to solve it, in comparison
to the two phases method [1, 2], better results were obtained. Bazgan et al. [4] developed
three complementary dominance relations in a dynamic programming algorithm. These
relations were applied to fathom states that can’t lead to efficient solutions. The approach
only returns efficient solutions in criteria space and requires powerful programming tools
for large size instances. This method was improved in [5] by Figueira et al. who have
proposed new fathoming techniques to speed up the resolution process. Recently Correia
et al. [6] thought to improve the memory usage of a dynamic programming algorithm for
computing the set of efficient solutions in both objective and decision spaces. Besides
exact methods, some good approximations of the nondominated solutions of a BOKP
were also presented. Erlebach et al. [7] developed a fully polynomial time approximation
scheme (FPTAS) to computes a (1 + ϵ)-approximation for every nondominated solution.
In [8] Bazgan et al. proposed a new FPTAS using dominance relations on all objective
values. Some authors have also observed that a pretreatment of the problem is very impor-
tant before solving it. Jorge et al. in their paper [9] exposed several properties allowing
to find some parts of the structure of all efficient solutions. Daoud and Chaabane [10]
proposed a new way to reduce the dimension of the BOKP based on the item’s efficient
ratio. Better results where obtained compairing to those of Jorge et al. (see [9]).
The set of all efficient solutions could be very large and choosing among this set according
to the decision maker preference would be very difficult, thus optimizing the preference
(linear in the decision variables in our case) is imposed. This idea allows to calculate a
few number of efficient solutions, one of which optimizes the added criterion.

The problem of optimizing a linear criterion over the efficient set of a multiple objec-
tive programming problem is a linear program with nonconvex constraints. The difficulty
of this problem is due to the nonconvexity of the feasible set, therefore delicate meth-
ods are necessary. The problem has been studied widely in the literature in the case of
continuous variables (see, e.g., [11, 12, 13, 14, 15]), algorithms, theoretical results and
some examples were proposed, but not enough experimental study was provided. These
approaches and others were reviewed in [16]. As for integer variables, in the last three
decades, since 1992 (see [17]), it became one of the most important and interesting areas
in multicriteria programming. Nguyen [17] was the first to try to optimize over the integer
efficient set, where only an upper bound value for the main objective is proposed. Then
Abbas and Chaabane [18] developed for the first time a decision space search algorithm.
They used different types of cuts to ensure an improvement on the main objective value.
A criteria space search was proposed by Jorge [19] which is inspired by the work pre-
sented in [20]. Jorge’s approach defined a sequence of progressively more constrained
single-objective integer problems that eliminates unacceptable points. Unlike the pre-
vious methods, this method was implemented and tested on different problem instances
randomly generated. Chaabane and Pirlot [21] developed a cutting plane algorithm com-
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bining Sylva and Crema way of reducing the feasible set and exploring the admissible
region to improve the optimal efficient solution. Another algorithm was proposed by
Chaabane et al. [22]; it employs an augmented weighted Tchebychev norm, to reduce the
admissible region by the successive addition of constraints. The algorithm was tested on
a variety of randomly generated problems. Boland et al. [23] employed a decomposition
and search procedure to revise Jorge’s proposal [19] and confirmed their improvement
by a comparative experimental study. Mahdi and Chaabane [24] and Drici et al. [25]
considered the case when the main criterion is a fractional function, they used cutting
plane and branch and bound techniques respectively. Although some existing algorithms
developed for multiple objective integer programs are applicable to binary variables, to
our knowledge no study has been specially developed for this case.

In this work an algorithm is developed to optimize a linear function over the effi-
cient set of a BOKP without having to explicitly enumerate all the efficient solutions.
Our proposal is based on dynamic programming instead of linear programming or cut
techniques which are the most used in the above cited works. The algorithm is inspired
by the dynamic programming algorithm presented in [4]. However, we use some of the
dominance relations proposed in [4] in order to eliminate some partial solutions that can
not provide efficient solutions. Another relation that we propose is used to discard some
partial solutions that can not improve the main criterion, this relation allows to eliminate
early more solutions either efficient or not. In order to obtain an optimal solution, we
should keep the solutions in decision space in memory while the algorithm is running;
this should require more memory space and a longer computation time with dynamic pro-
gramming. Our algorithm employs an efficiency test program to ensure the efficiency of a
solution and returns the corresponding efficient solution in decision space without storing
the decision variables in memory. We assess the performance of the proposed algorithm
on well-known publicly available instances of BOKP. We compare our results with the
results given by Jorge’s algorithm [19] in terms of the percentage of computed efficient
solutions and cpu time.

In the following section some basic concepts, notations and definitions concerning the
dynamic programming applied to our problem are introduced. The informal explanation
the algorithm is described in section 3. Section 4 represents the technical description of
the proposed algorithm illustrated by a didactic example. In section 5 a computational
comparative study on different existing instances is provided. Finally, some conclusions
and perspectives are given in the last section.

2. DEFINITIONS AND BASIC CONCEPTS

Let a knapsack of capacity W and a set of n items of weights wj and profits p1j , p2j on
criteria Z1 and Z2 respectively, j ∈ {1, . . . , n}. A BOKP consists of selecting a subset
of items, which maximizes the overall profits on criteria Z1 and Z2, and putting them in
the knapsack without exceeding its capacity.

The problem can be stated, mathematically, as follows:
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(BOKP )



max Zi(x) =

n∑
j=1

pijxj , i = 1, 2

n∑
j=1

wjxj ≤W,

xj ∈ {0, 1} ∀j ∈ {1, . . . , n}

(1)

where xj is a decision variable which equals to 1 if the item j is included in the knapsack
and 0 otherwise. For each item, we correspond three parameters: non-negative integer
profit pij for i ∈ {1, 2} and j ∈ {1, . . . , n}, positive integer weight wj for j ∈ {1, . . . , n}.
We assume a positive integer value of the knapsack capacity W . In order to avoid trivial
solutions we suppose that

wj ≤W, ∀j = 1, . . . , n, and
n∑
j=1

wj > W.

We denote by p(i) the ith row vector (pij)j∈{1,...,n},i∈{1,2}.
Let X be a non-empty finite set of all feasible solutions, ∀x, x̃ ∈ X , x dominates x̃

(x∆x̃) if and only ifZi(x) ≥ Zi(x̃), i = 1, 2, with at least one strict inequality. If ∄x ∈ X
such that x∆x̃ then x̃ is efficient. Its corresponding vector Z(x̃) = (Z1(x̃) Z2(x̃))

′ is
said to be nondominated. The sets E and ND denote the set of all efficient solutions and

nondominated vectors respectively. Let ϕ(x) =
n∑
j=1

djxj a linear function called ”main

objective”, where dj , j ∈ {1, . . . , n} is supposed to be a positive integer.
The problem of optimizing a linear function over the efficient set of BOKP is given

by :

(PE)

 maxϕ(x) =

n∑
j=1

djxj

x = (x1 . . . xn)
′ ∈ E

(2)

Let’s consider the following problem:

(BOKPk)



max Zi(x) =

k∑
j=1

pijxj , i = 1, 2

k∑
j=1

wjxj ≤W,

xj ∈ {0, 1} ∀j ∈ {1, . . . , k}.

(3)

The problem (BOKPk) is the BOKP problem induced by the k first items (k = 1, . . . , n).
A state sk = (sk1 , s

k
2 , s

k
3 , s

k
4) represents a feasible solution of the (BOKPk), where ski

is the value on criterion i, (i = 1, 2), sk3 and sk4 its associated weight and main objec-
tive value respectively. The set of all feasible solutions of (BOKPk), k ∈ {1, . . . , n} is
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defined by Sk:

Sk = Sk−1∪
{(
sk−1
1 + p1k, s

k−1
2 + p2k, s

k−1
3 + wk, s

k−1
4 + dk

)
|

sk−1
3 + wk ≤W, sk−1 ∈ Sk−1

}
The initial set of states, S0, contains only the state s0 = (0, 0, 0, 0) which corresponds

to the empty knapsack. The final set of states Sn defines the set of all feasible solutions
of (BOKP ). Efficiency and dominance on Sk are defined in the same manner as on X .
Thus, for sk, s̃k ∈ Sk, sk∆s̃k if and only if ski ≥ s̃ki ,∀i ∈ {1, 2}, with at least one strict
inequality.

A state sn ∈ Sn is an extension of sk ∈ Sk, (k ≤ n) if and only if

sni = ski +
∑
j∈J

pij , i = 1, 2; sn3 = sk3 +
∑
j∈J

wj ; s
n
4 = sk4 +

∑
j∈J

dj

such that J = {j ∈ {k + 1, . . . , n} | sk3 +
∑
j∈J

wj ≤W}

Let sk, s̃k ∈ Sk. The lexicographic relation ∆lex is defined on Sk by: sk∆lexs̃
k ⇔

skt > s̃kt where t = min{i ∈ {1, 2} : ski ̸= s̃ki } or ski = s̃ki ,∀i ∈ {1, 2}. The lexi-
cographic relation ≥lex is defined on Sk by: sk ≥lex s̃k ⇔ sk3 < s̃k3 or (sk3 = s̃k3 and
sk∆lexs̃

k ).
In the following sections we denote by Ef the efficient solutions subset of (BOKP ),

by NDf , we mean the subset of nondominated solutions corresponding to Ef , ϕinf is
a lower bound of the main objective ϕ, xopt is an optimal solution of (PE) and ϕopt the
optimal value of the main objective ϕ.

3. GENERAL DESCRIPTION OF THE APPROACH

In this section, we describe the general principle of the method by highlighting each
used procedure.

The method consists of m stages (m ≤ n). First, we start from a lower bound ϕinf of
the function ϕ, then at each stage k, k = 1, . . . ,m we generate and trim progressively a
subset of states Ck ⊆ Sk from Ck−1, with C0 = S0. We use some comparison relations
to discard some states in Ck that can not lead to efficient solutions improving ϕinf . We
calculate a subset of efficient solutions improving the main criterion value then update
ϕinf .

In order to avoid generating useless states in Ck, we use the two relationsDk
r andDk

∆

proposed in [4]. Another relation that we call Zkb is used to omit states from Ck whose
upper bound are dominated by some nondominated solutions already found. This relation
is proposed in [4] to compare between specific extensions of a state and an upper bound
of the extensions of another state. To discard states that can’t conduce to an improvement
of the function ϕ we propose a new relation called Φkb .
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3.1. Finding a lower bound of the main objective ϕ

To determine a lower bound of the main objective ϕ, we have to find at least one
efficient solution of (BOKP ).
Two extreme efficient solutions x1opt and x2opt, however, are found lexicographically as
follows:

1. The single objective problem (P1) induced by the first objective Z1 is solved,

(P1) :
{
max Z1(x) = p(1)x, x ∈ X

}
,

let x1 be an optimal solution of (P1). In case it is unique then x1opt = x1. Other-
wise, we solve the problem

(P2) :
{
max Z2(x) = p(2)x, x ∈ X, p(1)x = p(1)x1

}
,

among the optimal solutions found, we select the best one, x1opt at the main criterion
ϕ.

2. In the same manner we obtain the second efficient solution x2opt.

Let ϕinf be a lower bound of the function ϕ, ϕinf = max{ϕ(x1opt), ϕ(x2opt)}.

3.2. Efficiency test
As a generated state s∗ = (s∗1, s

∗
2, s

∗
3, s

∗
4) ∈ Sn associated to a feasible solution x∗,

where p(1)x∗ = s∗1 and p(2)x∗ = s∗2, in the proposed procedure is feasible, not necessarily
efficient, we suggest using Ecker and Kouada efficiency test (see [26]) to know the nature
of the new solution.
Let (BOKP ) : {′′max” (p(1) p(2))x, x ∈ X} be the bi-objective problem defined in
(1).
Where p(1), p(2) are the objective coefficients of (1× n) array andX is the corresponding
admissible region.

Theorem 1. x∗ ∈ X is an efficient solution if and only if the optimal value of the objec-
tive function Θ is null in the following mixed integer linear programming problem:

(PΨ(x
∗))


max Θ =

2∑
i=1

ψi

p(1)x = ψ1 + p(1)x∗

p(2)x = ψ2 + p(2)x∗

x ∈ X; ψi are real non negative for i = 1, 2.

(4)
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3.3. Comparison between states
The following relations are used to compare between states.

Definition 2 (Relation Dk
r [4]). Let sk ∈ Sk and s̃k−1 ∈ Sk−1, k = 1, . . . , n. Dk

r is
defined as:

skDk
r s̃
k−1 ⇔



sk = (s̃k−1
1 + p1k, s̃

k−1
2 + p2k, s̃

k−1
3 + wk, s̃

k−1
4 + dk)

and

s̃k−1
3 ≤ W −

n∑
j=k

wj

(5)

The equation s̃k−1
3 ≤ W −

n∑
j=k

wj means that all the remaining items (items k, . . . , n)

can be added to the knapsack, so the only extension of sk that can represent an efficient
solution is the one that contains objects k, . . . , n, thus it is not necessary to calculate
extensions without item k. This relation is used to determine states in Ck−1 which can
belong to Ck at the stage k. The states in Ck, k = 1, . . . , n are sorted according to the
decreasing order with respect to the relation≥lex (see [4]). This order allows to determine
easily j the first index of states inCk−1 which is not dominated with respect to the relation
Dk
r , thus it is unnecessary to include states sk−1(1), . . . , sk−1(j−1) in Ck.

Definition 3 ( Relation Dk
∆ [4]). Let two states sk, s̃k ∈ Sk, k = 1, . . . , n. Dk

∆ is de-
fined as:

skDk
∆s̃

k ⇔ sk∆s̃k and sk3 ≤ s̃k3 , k < n (6)

Since sk3 ≤ s̃k3 , then all objects that can be selected from s̃k can also be from sk. Hence, if
sk∆s̃k then the state sk will provide solutions which are at least as good as those provide
from s̃k. The latter can be omitted for the rest.

Let u = (u1, u2, uϕ) be an upper bound of a feasible solution represented by a state sk.
Where u1, u2 are upper bounds of objective 1 and 2 respectively, uϕ an upper bound of
ϕ. We use the upper bound described in [4, 27]:
Let Oi, i = 1, 2, the decreasing order of profits to weight ratios pij/wj ,
j ∈ {k + 1, . . . , n}, i = 1, 2. ti is the position of the first item in {k + 1, . . . , n}
that cannot be added to sk when the items are reordered according to order Oi. Let
W (sk) = W − sk3 be the residual capacity associated to sk. An upper bound ui of the
objective i is calculated as follows:

ui = ski +

ti−1∑
j=k+1

pij +max

{
⌊W (sk)

piti+1

wti+1
⌋, ⌊piti − (wti −W (sk))

piti−1

wti−1
⌋
}
. (7)

Similarly, for the main objective ϕ:

uϕ = sk4 +

tϕ−1∑
j=k+1

dj+max

{
⌊W (sk)

dtϕ+1

wtϕ+1
⌋, ⌊dtϕ − (wtϕ −W (sk))

dtϕ−1

wtϕ−1
⌋
}
. (8)
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Where tϕ is the position of the first item in {k + 1, . . . , n} that cannot be added to sk

when the items are reordered according to order Oϕ. Oϕ is the decreasing order of profits
to weight ratios dj/wj , j ∈ {k + 1, . . . , n}.

In addition to the previous relations, we introduce a new relation (definition 4) in order
to reduce efficiently the set Ck and eliminate early more useless states.

Definition 4 ( Relation Zkb ). Let sk ∈ Sk, k = 1, . . . , n and u = (u1, u2, uϕ) its asso-
ciated upper bound. If ∃s = (s1, s2) ∈ NDf such that (s1, s2)∆(u1, u2), thus sk can’t
produce an efficient solution, Thus it can be eliminated.

In the following proposition, we show how to exclude states that can not be optimal for
the main problem (PE) by comparing an upper bound of the main objective function of a
current state to the present lower bound of the main objective.

Proposition 5 (Relation Φkb ). Let sk ∈ Sk, k = 1, . . . , n and u = (u1, u2, uϕ) its asso-
ciated upper bound. Let ϕinf be the lower bound of the objective ϕ updated at the stage
k. If ϕinf ≥ uϕ then sk can’t lead to an improvement of the main objective value, thus sk

can be omitted (sk is dominated with respect to Φkb ).

Proof. Let ϕinf be the lower bound of the objective ϕ updated at the stage k. Consider
that sk is dominated with respect to Φkb . This implies that there exists another state s̃k ∈
Sk leading to an efficient state s∗, s∗ = (s∗1, s

∗
2, s

∗
3, s

∗
4) with s∗4 = ϕinf . Let uϕ be an

upper bound of sk on the main objective value, it means that uϕ ≥ sn4 , for any extension
sn = (sn1 , s

n
2 , s

n
3 , s

n
4 ) of the state sk. Since ϕinf ≥ uϕ, thus sk is dominated by s̃k and it

can not provide an efficient state with better value of the main objective ϕ.

3.4. General step k

Let Ck−1 = {sk−1(1), . . . , sk−1|Ck−1|} the set of states kept in step k− 1, a subset of
states Ck is generated and reduced progressively (algorithm 1) as follows.
First we determine the states in Ck−1 that can belong to Ck. To do this, the dominance
relation Dr

k is applied. The order of states in Ck−1 allows to define the index j such
that states sk−1(j+1), sk−1(j+2), . . . , sk−1(|Ck−1|) can be added in Ck. Then we start
generating new states from Ck−1 according to the dominance relation Dk

∆.
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Algorithm 1 Procedure generate&trim(Ck−1)

%Ck−1 = {sk−1(1), . . . , sk−1(i), . . . , sk−1(|Ck−1|)} in the decreasing order of ≥lex.
Ck := ∅, Mk := ∅, i := 1, j := 1
% j, is the index of the first state of Ck−1 that is not dominated according to Dk

r .

while j ≤ |Ck−1| and sk−1(j)
3 +

n∑
l=k

wl ≤W

j := j + 1

while i ≤ |Ck−1| and sk−1(i)
3 + wk ≤W

sk := (s
k−1(i)
1 + p1k, s

k−1(i)
2 + p2k, s

k−1(i)
3 + wk, s

k−1(i)
4 + dk)

while j ≤ |Ck−1| and sk−1(j) ≥lex sk
Maintain NDS(sk−1(j),Mk, Ck)
j := j + 1

Maintain NDS(sk,Mk, Ck)
i := i+ 1

while j ≤ |Ck−1|
Maintain NDS(sk−1(j),Mk, Ck)
j := j + 1

We maintain a subset Mk ⊆ Ck which stores nondominated states of Ck. A new gen-
erated state sk is inserted in Ck if and only if there exists no state mk in the current Mk

such that mk∆sk. The subsets Mk and Ck are updated at each insertion of new state.
Mk is sorted according to a decreasing order with respect to the relation ∆lex (algorithm
2).

Algorithm 2 Procedure Maintain NDS(sk,Mk, Ck)

%Mk = {mk(1), . . . ,mk(|Mk|)} in decreasing order of ∆lex.
dom := false, ℓ := 1

while ℓ ≤ |Mk| and mk(ℓ)
1 ≥ sk1

ℓ := ℓ+ 1
if ℓ > 1 and mk(ℓ−1)

2 > sk2
dom := true

if dom = false
Mk :=Mk ∪ {sk} in the ℓth position of Mk

Ck := Ck ∪ {sk}
if ℓ > 1 and mk(ℓ−1)

1 = sk1 and mk(ℓ−1)
2 < sk2

Mk :=Mk \ {mk(ℓ−1)}
ℓ := ℓ− 1

ℓ = ℓ+ 1
while ℓ ≤ |Mk| and sk1 ≥ m

k(ℓ)
1

Mk :=Mk \ {mk(ℓ)}
ℓ := ℓ+ 1
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Once the generation and trim of states is finished, we look for efficient states improv-
ing ϕinf as follows:
For each state of Mk, an extension is generated according to O1. Only extensions im-
proving the criterion ϕ and nondominated by any solution in NDf are listed. These latter
are tested for their efficiency then Ef , NDf and ϕopt are updated. This procedure is
repeated when generating an extension according to O2 (algorithm 3).

Algorithm 3 Procedure test nondominated(NDf , Ef , ϕinf , s
n)

dom := false
if sn4 ≤ ϕinf
dom := true

else
ℓ := 1
while ℓ ≤ |NDf | and dom = false

if sℓ∆sn
dom := true

ℓ := ℓ+ 1
if dom = false

solve (PΨ)
Let x∗ the optimal solution of (PΨ)
if Θ = 0
NDf := NDf ∪ {(sn1 , sn2 )}, Ef := Ef ∪ {x∗}, ϕinf := sn4

else
if ϕ(x∗) > ϕinf
NDf := NDf ∪ {(Z1(x

∗) Z2(x
∗))}, Ef := Ef ∪ {x∗}, ϕinf := ϕ(x∗)

Finally, we apply relations Zkb and Φkb as follow: For each state sk of Ck, we cal-
culate its associated upper bound on both two criteria u = (u1, u2). If there exists a
nondominated solution s in NDf such that (s1, s2) > (u1, u2) thus sk is removed, else
we compute uϕ its upper bound on main objective, the sk is removed if ϕinf ≥ uϕ (algo-
rithm 4).
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Algorithm 4 Procedure removing states(Ck, NDf , ϕinf )

i := 1
while i ≤ |Ck|

Calculate (u1, u2) an upper bound of (sk(i)1 , s
k(i)
2 )

j := 1, remove := false
while j ≤ |NDf | and not(remove)

if (s(j)1 , s
(j)
2 )∆(u1, u2)

remove := true, Ck := Ck \ {sk(i)}
else
j := j + 1

if remove := false

calculate uϕ an upper bound of sk(i)4

if ϕinf ≥ uϕ
Ck := Ck \ {sk(i)}

i := i+ 1

The algorithm terminates at a step n when all the objects are considered or at a step
m ≤ n, when all states of the previous step are omitted (Cm−1 is empty and we can not
generate states).
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3.5. Algorithm

Algorithm 5 Optimizing over the (BOKP) efficient set
Input:
↓ p1(1×n), p

2
(1×n): criteria vectors

↓ w(1×n): vector of weights
↓W : Knapsack capacity
↓ d(1×n): main criterion vector
Output:
↑ xopt: optimal solution of the problem (PE)
↑ ϕopt: optimal value of the main criterion ϕ
Initialisation:
C0 := {s0} = (0, 0, 0, 0), k := 1
Calculate ϕinf a lower bound of ϕ, let x1, x2 the extreme efficient solutions
Ef := {x1, x2}, NDf := {Z(x1), Z(x2)}
while k ≤ n and |Ck−1| > 0
generate&trim(Ck−1)
if k = n

for j = 1 to |Mk|
test nondominated(NDf , Ef , ϕinf , s

k(j))
else

for i = 1 to 2
reorder items k + 1, . . . , n according to Oi
for j = 1 to |Mk|
sn := mk(j)

for ℓ = k + 1 to n
if sn3 + wj ≤W
sn := (sn1 + p1ℓ , s

n
2 + p2ℓ , s

n
3 + wℓ, s

n
4 + dℓ)

test nondominated(NDf , Ef , ϕinf , s
n)

removing states(Ck, NDf , ϕinf )
k = k + 1

ϕopt := ϕinf

DIDACTIC EXAMPLE

Consider the following example

(BOKP )


max Z1(x) = 15x1 + 16x2 + 8x3 + 12x4 + 6x5 + 14x6
max Z2(x) = 3x1 + 10x2 + 12x3 + 6x4 + 11x5 + 7x6

s.t.
{

8x1 + 3x2 + 9x3 + 5x4 + 6x5 + 8x6 ≤ 19
xj ∈ {0, 1}, j ∈ {1, 2, . . . , 6}.

Let the main problem be

(PE)

{
max ϕ(x) = 2x1 + 5x2 + 9x3 + 6x4 + 4x5 + 7x6
s.t. x ∈ E.
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• Initialization:

• C0 := {s0} = {(0, 0, 0, 0)}.
• Finding a lower bound of the main objective ϕ:

The two extreme efficient solutions are: x1 = (1 1 0 0 0 1)′, x2 = (0 1 1 0 1 0)′,
ϕinf=max{ϕ(x1), ϕ(x2)}=max{14, 18} = 18, xopt = x2 = (0 1 1 0 1 0)′,
Z(x1) = (45, 20), Z(x2) = (30, 33), Ef = {(1 1 0 0 0 1)′, (0 1 1 0 1 0)′},
NDf = {(45, 20), (30, 33)}.

• Step 1.
k = 1, C1 = ∅, M1 = ∅.

1. Generate and trim states:

First we test if states of C0 can be included in C1. s0 = (0, 0, 0, 0),
6∑
j=1

wj =

39 > W , then s0 can be included in C1.
We generate s1 from s0, s1 = (0, 0, 0, 0) + (15, 3, 8, 2) = (15, 3, 8, 2).
C1 := {(0, 0, 0, 0), (15, 3, 8, 2)}, M1 := {(15, 3, 8, 2)}.

2. Generate extensions: the order of items 2, 3, . . . , 6 according toO1 is: 2, 4, 6, 5, 3.
Thus sn = (15, 3, 8, 2) + (16 + 12, 10 + 6, 3 + 5, 5 + 6) = (43, 19, 16, 13),
sn4 < ϕinf . s

n does not improve ϕinf .
The order of items 2, 3, . . . , 6 according to O2 is: 2, 5, 3, 4, 6.
sn = (15, 3, 8, 2) + (16 + 6, 10 + 11, 3 + 6, 5 + 4) = (37, 24, 17, 11).
sn4 < ϕinf .

3. Removing states:
- Calculate upper bounds of states of C1:

State s0: (u1, u2) = (49, 34), it is not dominated by any solution in
NDf , uϕ = 22 > ϕinf , thus s0 can not be removed from C1.
State s1: (u1, u2) = (46, 30), it is not dominated by any solution in
NDf , uϕ = 15 < ϕinf , s1 can be omitted from C1,
C1 := C1 \ {s1} = {(0, 0, 0, 0)}.

• Step 2.
k = 2, C2 = ∅, M2 = ∅.

1. Generate and trim states:

C1 = {s0} = {(0, 0, 0, 0)},
6∑
j=2

wj = 31 > W then s0 can be included in

C2.
We generate s2 from s0, s2 = (0, 0, 0, 0) + (16, 10, 3, 5) = (16, 10, 3, 5).
C2 := {s0, s2} = {(0, 0, 0, 0), (16, 10, 3, 5)},Mk := {s2} = {(16, 10, 3, 5)}

2. Generate extensions: the order of items 3, 4, . . . , 6 according toO1 is: 4, 6, 5, 3.
Thus sn = (16, 10, 3, 5) + (12 + 14, 6 + 7, 5 + 8, 6 + 7) = (42, 23, 16, 18).
sn is not dominated by any solution in NDf but
sn4 = 18 = ϕinf , it does not improve ϕinf , it is therefore not worth to test its
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efficiency.
The order of items 3, 4, . . . , 6 according to O2 is: 5, 3, 4, 6.
sn = (16, 10, 3, 5) + (6 + 8, 11 + 12, 6 + 9, 4 + 9) = (30, 33, 18, 18).
sn4 = 18 = ϕinf .

3. Removing states:

- Calculate upper bounds of states of C2:
State s0: (u1, u2) = (32, 29), it is not dominated. uϕ = 19 > ϕinf , so
s0 can not be eliminated from C2.
State s2: (u1, u2) = (44, 34), it is not dominated by any solution in
NDf , uϕ = 22 > ϕinf , the state s2 is maintained in C2.

• Step 3.
k = 3, C3 = ∅, M3 = ∅.

1. Generate and trim states:
C2 = {s0, s2} = {(0, 0, 0, 0), (16, 10, 3, 5)}. s0 and s2 can be included in

C3 since s03 +
6∑
j=3

wj = 28 > W and s23 +
6∑
j=3

wj = 31 > W .

We generate s3(1) from s0, s3(1) = (0, 0, 0, 0) + (8, 12, 9, 9) = (8, 12, 9, 9).
C3 := {(0, 0, 0, 0), (8, 12, 9, 9)}, Mk := {(8, 12, 9, 9)}.
We generate s3(2) from s2, s3(2) = (16, 10, 3, 5)+(8, 12, 9, 9) = (24, 22, 12, 14).
C3 := C3∪{s2, s3(2)} = {(0, 0, 0, 0), (16, 10, 3, 5), (8, 12, 9, 9), (24, 22, 12, 14)}.
M3 :=M3 \ {(s(1)} ∪ {s3(2)} = {(24, 22, 12, 14)}.

2. Generate extensions:
State s3(2): the order of items 4, 5, 6 according to O1 is: 4, 6, 5.
sn = (24, 22, 12, 14) + (12, 6, 5, 6) = (38, 28, 17, 20). sn4 > ϕinf , then we
test the efficiency of sn by solving the problem:

(PΨ)


max V = ψ1 + ψ2

15x1 + 16x2 + 8x3 + 12x4 + 6x5 + 14x6 = ψ1 + 38
3x1 + 10x2 + 12x3 + 6x4 + 11x5 + 7x6 = ψ2 + 28
8x1 + 3x2 + 9x3 + 5x4 + 6x5 + 8x6 ≤ 19
xj ∈ {0, 1}, j = 1, 2, . . . , 6; ψ1, ψ2 are real non negative.

Let x∗ the optimal solution of (Pψ), V = 0, so the state sn is efficient, thus
x∗ is efficient, xopt := (0 1 1 1 0 0)′, ϕinf = sn4 = 20.
Ef := Ef ∪ {x∗} = {(1 1 0 0 0 1)′, (0 1 1 0 1 0)′, (0 1 1 1 0 0)′}, NDf :=
NDf ∪ {(sn1 , sn2 )} = {(45, 20), (30, 33), (36, 28)}.
The order of items 4, 5, 6 according toO2 is: 5, 4, 6. Thus sn = (24, 22, 12, 14)+
(6, 11, 6, 4) = (30, 33, 18, 18), sn4 < ϕinf .

3. Removing states:
- Calculate upper bounds of states in C3:

State s0: (u1, u2) = (32, 24) which is dominated by (36, 28), so C3 :=
C3 \ {s0}.
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State s1: (u1, u2) = (48, 34), it is not dominated so we calculate uϕ,
uϕ = 22 > ϕinf , state s1 is maintained in C3.
State s3(1): (u1, u2) = (26, 29), it is dominated by (30, 33) thus it is
eliminated.
C3 := C3 \ {s3(1)}.
State s3(2): (u1, u2) = (38, 33), it is not dominated, uϕ = 21 < ϕinf ,
state s3(2) is maintained in C3.

All the steps are summarized in table 1.

Table 1: The obtained results at each step

Step Ck Mk Removed states xopt ϕopt

1 {(0, 0, 0, 0), (15, 3, 8, 2)} {(15, 3, 8, 2)} {(15, 3, 8, 2)} (0 1 1 0 1 0)′ 18

2 {(0, 0, 0, 0), (16, 10, 3, 5)} {(16, 10, 3, 5)} {} (0 1 1 0 1 0)′ 18

3
{(0, 0, 0, 0), (16, 10, 3, 5),
(8, 12, 9, 9), (24, 22, 12, 14)} {(24, 22, 12, 14)} {(0,0,0,0),(8,12,9,9)} (0 1 1 1 0 0)′ 20

4
{(16, 10, 3, 5), (28, 16, 8, 11),
(24, 22, 12, 14), (36, 28, 17, 20)} {(36, 28, 17, 20)} {(16, 10, 3, 5), (24, 22, 12, 14)} (0 1 1 1 0 0)′ 20

5
{(28, 16, 8, 11), (34, 27, 14, 15),
(36, 28, 17, 20)} {(36, 28, 17, 20)} {(28, 16, 8, 11), (34, 27, 14, 15)} (0 1 1 1 0 0)′ 20

6 {(36, 28, 17, 20)} {(36, 28, 17, 20)} {} (0 1 1 1 0 0)′ 20

The algorithm terminates with: xopt = (0 1 1 1 0 0)′, ϕopt = 20,
Ef = {(1 1 0 0 0 1)′, (0 1 1 0 1 0)′, (0 1 1 1 0 0)′}, NDf = {(45, 20), (30, 33), (36, 28)}.
The set of all efficient solutions of this BOKP problem is:
E = {(1 1 0 0 0 1)′, (0 1 0 1 0 1)′, (1 1 0 0 1 0)′, (0 1 0 0 1 1)′, (0 1 1 1 0 0)′, (0 1 1 0 1 0)′},
with ND = {(45, 20), (42, 23), (37, 24), (36, 28), (30, 33)}

4. EXPERIMENTAL STUDY

In this section we describe the experiments implemented to asses the performance
of the algorithm described above. However, in order to do so, we compare it against
the algorithm proposed by Jorge [19]. This algorithm was developed for optimizing a
linear function over the efficient set of a multiobjective integer program which can be
adapted to the problem (2). In this study we are mainly interested on the percentage
of nondominated solutions computed before reaching an optimal solution, on the total
number of nondominated solutions of an instance and cpu time spent by each algorithm.
The following notations are adopted:

• |ND|: number of nondominated criterion vectors of an instance.

• |NDf |: number of nondominated criterion vectors browsed before reaching an
optimal solution.
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• time: computational time.

• %NDf : percentage of nondominated criterion vectors browsed.
%NDf =

|NDf |
|ND| × 100.

4.1. Jorge’s algorithm
For solving the problem (PE) according to Jorge [19] we adapt the following steps:

• Step 0. Initialisation
Let ϕl = −∞, ϕu = +∞ a lower and an upper bound of ϕ respectively,NDf = ∅,
l = 1 the number of iterations.
Solve R ≡ max{ϕ(x)/x ∈ X}, if R is infeasible ⇒ STOP, (PE) is infeasible.
Otherwise, let xl be an optimal solution of R.

• Step 1. If xl ∈ E ⇒ STOP. NDf ← NDf ∪ {Z1(x
l) Z2(x

l)}, xopt = xl is an
optimal solution of (PE). Otherwise, set ϕu = ϕ(xl) and go to Step 2.

• Step 2. Find x̂l ∈ E such that x̂l∆xl and let x̄l an optimal solution of the problem:
Tl ≡ max{ϕ(x)/Zi(x) = Zi(x̂

l), i = 1, 2, x ∈ X}. If ϕ(x̄l) > ϕl set ϕl = ϕ(x̄l)
and xopt = x̄l. NDf ← NDf ∪ {Z1(x̄

l) Z2(x̄
l)}, if ϕu = ϕl ⇒ STOP. xopt is an

optimal solution of (PE).

• Step 3. LetRl ≡ max{ϕ(x)/x ∈ X−
⋃l
h=1 Lh}, whereLh = {x ∈ {0, 1}n/Zi(x̄h) ≥

Zi(x), i = 1, 2 with at least one strict inequality}.
If Rl is infeasible ⇒ STOP. xopt is an optimal solution of (PE). Otherwise, let
xl+1 be an optimal solution of Rl. If ϕ(xl+1) ≤ ϕl ⇒ STOP. xopt is an optimal
solution of (PE). Otherwise, set l = l + 1 and go to step 1.

4.2. Computational results
The experiments were performed on an Intel(R) Core I5, 2.30 GHz with 4Go of RAM.

Our algorithm as well as Jorge’s algorithm have been implemented in MATLAB R2017a
under 64-bit Windows 10. We used the Cplex 12.9 library (academic version) for solving
integer programming problems. A set of instances named 1B with large number of non-
dominated solutions collected in MOCOlib library
http://xgandibleux.free.fr/MOCOlib/MOKP.html is considered. The set 1B contains 40
instances divided on four classes 1B/A, 1B/B, 1B/C and 1B/D.
Class 1B/A The weights and the profits are uniformly generated in [1, 100].
Class 1B/B Created from 1B/A by replacing the second vector of profits by the first one
in reverse order.
Class 1B/C The vector of profits is uniformly generated in [1, 100] with plateaus of values
of length l ∈ [1, 0.1 × n]. The weights are generated independently following a uniform
distribution in [1, 100], it is an instance with repeated profits.
Class 1B/D Created from the previous class by replacing the second vector of profits by
the first one in reverse order.

The main criterion ϕ is generated randomly according to a uniform distribution in
[1, 100] for each instance.
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The results of the experimental study are summarised in the following table.

Table 2: Computational results of the algorithms on set 1B of instances

Class Instance |ND| Jorge’s algorithm Proposed algorithm
|NDf | time(s) %NDf (%) |NDf | time(s) %NDf (%)

A

2kp50 34 15 3.21 44.12 5 0.69 14.71
2kp100 172 52 27.12 30.23 10 19.20 5.82
2kp150 244 116 128.40 47.54 7 91.33 2.87
2kp200 439 165 401.82 37.59 10 229.01 2.28
2kp250 629 224 571.94 35.61 12 687.11 1.91
2kp300 713 247 999.87 34.64 13 998.52 1.83
2kp350 871 332 3100.78 38.12 11 2294.24 1.26
2kp400 1000 421 4555.64 42.10 8 4280.01 0.80
2kp450 1450 596 5984.29 41.10 14 5907.08 0.97
2kp500 1451 630 9990.68 43.42 13 9368.45 0.90

B

2kp50 52 17 2.29 38.60 3 0.08 5.77
2kp100 174 50 29.87 28.74 10 18.04 5.75
2kp150 348 129 180.00 37.07 11 105.88 3.16
2kp200 398 164 599.22 41.21 9 391.80 2.27
2kp250 629 271 1111.58 43.08 14 761.01 2.23
2kp300 617 233 1205.30 37.76 11 1047.98 1.79
2kp350 955 414 1999.54 43.35 10 2398.01 1.05
2kp400 1109 506 5094.68 45.63 12 4918.33 1.09
2kp450 1626 759 11029.83 46.68 15 8446.18 0.93
2kp500 1669 800 13036.48 47.93 20 9987.39 1.20

C

2kp50 66 20 2.98 30.30 3 0.67 4.55
2kp100 64 23 17.55 35.94 8 11.81 12.50
2kp150 166 67 91.81 40.36 7 60.18 4.22
2kp200 328 134 403.47 40.85 11 248.68 3.36
2kp250 528 247 800.39 46.78 16 542.98 3.03
2kp300 400 246 960.11 61.50 12 733.39 3.00
2kp350 845 375 2924.58 44.38 10 1299.30 1.19
2kp400 946 436 3900.51 46.02 12 3125.97 1.27
2kp450 655 276 3694.58 42.14 12 5210.00 1.83
2kp500 522 349 6986.35 66.68 10 8889.16 1.92

D

2kp50 69 16 2.50 23.19 6 0.99 8.70
2kp100 76 26 11.09 34.21 4 9.07 5.26
2kp150 132 41 17.00 31.06 5 16.98 3.79
2kp200 361 152 370.91 42.11 14 244.80 3.88
2kp250 424 187 673.35 44.10 13 671.08 3.07
2kp300 214 114 501.37 53.27 9 793.55 4.21
2kp350 472 223 930.22 47.25 18 1005.28 3.82
2kp400 1670 661 9205.70 39.58 21 8947.24 1.26
2kp450 398 215 3651.25 54.02 7 4877.36 1.76
2kp500 654 330 7000.27 50.46 9 9262.01 1.38

Table 3: Mean time on set 1B of instances
n 50 100 150 200 250 300 350 400 450 500
Mean time(s) 0.60 14.53 68.59 278.57 665.54 893.36 1749.20 5317.88 6110.15 9376.75

The results of Table 2 show that our algorithm generates only between 0.8% and
14.71% of nondominated solutions before reaching an efficient solution that optimizes
the main criterion. Jorge’s algorithm generates between 23.19% and 66.68%. For all
instance classes, our algorithm computes fewer number of nondominated solutions, as
shown in the figures 1, 2, 3 and 4. Considering cpu time, we can observe that, out of
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the 40 instances tested, Jorge’s algorithm performs better than our method on only 8 of
them. However, our approach is better on either 32 instances. We can also see that our
algorithm consistently outperforms Jorge’s one for large nondominated sets, as indicated
by instances with up to 1000 nondominated solutions.

Figure 1: Percentage of nondominated solu-
tions computed by the methods (Class A)

Figure 2: Percentage of nondominated solu-
tions computed by the methods (Class B)

Figure 3: Percentage of nondominated solu-
tions computed by the methods (Class C)

Figure 4: Percentage of nondominated solu-
tions computed by the methods (Class D)

We analyse in figure 5, the computational time of our method, it increases with the
dimension of the instance for the four classes. In addition, when the number of efficient
solutions becomes much larger, the execution time grows significantly (instance 1B/D
2kp400).

Figure 5: Computational time of our algo-
rithm on set 1B

Figure 6: Complexity estimation of our al-
gorithm
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The proposed method’s runtime complexity can be estimated as a polynomial func-
tion C(n) = P(n) for the tested instances. We obtain P(n) = 0.0001n3 − 0.0209n2 −
0.6050n + 143.3234 by performing a polynomial regression in MATLAB between the
problem size (n = 50, 100, . . . , 500) and the mean cpu time of each size on the four
classes (see table 3). The mean time of our method and the function C(n) are plotted in
figure 6. Because they appear to be somewhat similar, we can conclude that the complex-
ity of our method on the instances under consideration is polynomial.

5. CONCLUSION

In this work, we have developed a new exact algorithm specifically designed to opti-
mize a linear function over the efficient set of a BOKP problem.

It is based on dynamic programming, the use of different relations to compare between
states helps to remove early states that can not produce nondominated solutions improving
the main criterion. An experimental study was carried out on several instances with large
dimensions, and considerable cardinal of nondominated set. Reading the results of our
experimentation shows that the proposed method outperforms in terms of cpu time 80
percent the algorithm of Jorge on the studied instances. Another advantage resides in
the fact that our method can be easily extended to other multiobjective combinatorial
optimization problems, particularly with quadratic objective functions.

Performing an item order before solving the problem and including other comparison
relations to improve both quality and cpu time together are the main subject of our future
research.

Funding. This research received no external funding.
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