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Abstract: The difference and differential equations have played an eminent part in
nonlinear dynamics systems, but in the last two decades one-dimensional difference maps
are considered in the forefront of nonlinear systems and the optimization of transportation
problems. In the nineteenth century, the nonlinear systems have paved a significant role in
analyzing nonlinear phenomena using discrete and continuous time interval. Therefore, it
is used in every branch of science such as physics, chemistry, biology, computer science,
mathematics, neural networks, traffic control models, etc. This paper deals with the
maximum Lyapunov exponent property of the nonlinear dynamical systems using Euler’s
numerical algorithm. The presents experimental as well as numerical analysis using
time-series diagrams and Lyapunov functional plots. Moreover, due to the strongest
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property of Lyapunov exponent in nonlinear system it may have some application in the
optimization of transportation models.
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1. INTRODUCTION

The dynamical system is collection of possible states in which one may apply
any function and can determine novel states using the older states. That means,
a dynamical system is described by a method that portrays what will be the next
result of future behavior for the current situation of the system. The logistic map
rx(1−x), is assumed as one of the most important one-dimensional difference maps
described by V. F. Verhulst (1845 and 1847). Poincare [1], was a great physicist
who first examined the irregularity in the dynamical systems which depends on the
initial situation of the system. Further, it was noticed that there is major relation
between the Lyapunov exponent and the dynamics of a nonlinear system because
it depends on the initial conditions of nonlinear system. Due to its sensitive de-
pendency on initial conditions, it is used in various real-life applications. Further,
it is measured as the strongest property like Fork-width scaling, bifurcation scaling
and period-3 window. Furthermore, the researcher may read in detail about the
Lyapunov exponent property from the following articles: Holmgren [2], Devaney
([3], [4]), Alligood et al. [5], Ausloos and Dirickx [6], Robinson [7], Andrecut [8],
etc.

Due to its important role in the nonlinear dynamical systems, it is used in
various applications of science and engineering. In 2010, H. Kocak and K. J.
Palmer [9] described the Lyapunov exponent and its dependency on initial condi-
tions. They found that such type of property exists away from the critical point
of the dynamical system and is shown for some restricted group of difference and
differential maps in which the positive value stands for the chaotic behavior the
dynamical system and the negative value denotes the stability in fixed and periodic
states of the system. In 2004, C. Abraham et. al. [10] examined the maximum
Lyapunov exponent and determines its sensitive behavior. They also determined
some boundary conditions for the sensitivity constant. H. Shao and Y. Shi [11]
studied the relationship between stability, Lyapunov exponent and the sensitivity
for non-autonomous type discrete difference systems. They described some new
terminologies like strongest sensitive independency for a point and a set, stability
measurement using Lyapunov exponent, and asymptotical stability. In 2001, B.
Demir and S. Kocak [12] provided two examples, in the first example they proved
positivity of Lyapunov exponent at a point which does not depends on the initial
conditions and in the second example they examined negative Lyapunov exponent
at a point which depends on the initial conditions. But the maximum Lyapunov
property is used in various applications of science. M. A. Abdul et. al. [13] studied
the Lyapunov exponent in Duffing maps which depends on the initial conditions.
They determined the region for the positive Lyapunov exponent as well as negative
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Lyapunov exponent. They produced the time series Lyapunov plot in program-
ming software, “Matlab”. Further, for more study on the Lyapunov exponent and
its various applications one may refer to: J. Urais [14], M. Opstal [15], etc.

In 2018, Ashish et. al. [16] studied the dynamics the nonlinear one-dimensional
logistic map using superior feedback iterative method and examined some dynam-
ical properties such as fixed and periodic states, period-3 window and maximum
Lyapunov exponent. They found that Lyapunov exponent property plays a vital
role to increase the stability in chaos using superior feedback iterative technique.
Further, they presented an advanced chaos-based transportation problem using
Lyapunov exponent. Further, in 2021 Ashish et al. [17] established the discrete
chaotification behavior in generalized logistic map. Lyapunov exponent property
was measured analytically as well as experimentally followed by Lyapunov time
series plots. For more recent study one may also refer to Ashish et. al. ([18], [19],
[20], [21], [22]).

This paper is divided in two four sections. Section one gives the introduction
and literature review about the Lyapunov exponent and its application in science
and engineering. Section 2 presents the numerical analysis and the derivation of the
Lyapunov exponent method followed by some time-series diagrams and Examples.
In Section 3, we give the experimental analysis of the Lyapunov exponent value
followed by some Lyapunov plot and the bifurcation plot. Finally, the paper is
summarized in the Section 4.

2. LYAPUNOV EXPONENT IN EULER’S ALGORITHM

In this section we deal with the Lyapunov exponent behavior versus time-
series representation of the logistic map using Euler’s numerical algorithm. For
this, let us take some particular values of the Euler’s parameter h and the growth
rate parameter r. It is described that for the negative value of the Lyapunov
exponent the iterative orbit approaches to stable fixed and periodic states while in
case of positive Lyapunov exponent the iterative orbit diverges from each other.
Therefore, this section starts with following Euler Numerical algorithm system:

Eh(s, r) = s+ hfr(s), (1)

where r and h are greater than zero. Then, putting the standard one-dimensional
logistic map fr(x) = rx(1−x) in (1) and solving, we get the following Euler’s type
logistic relation

Eh(s, r) = (1 + hr)s(1− s), (2)

where s belongs to the closed interval [0, 1] and the relation (2) is called as Euler’s
type novel logistic system. Now, to derive the Lyapunov exponent formula, let us
start with the two initiators s and s + ϵ, where 0 < ϵ < 1. Then, we obtain the
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divergence µ between the two iterative orbits, that is,

En
h (s+ ϵ, r)− En

h (s, r) = µ,

En
h (s+ ϵ, r)− En

h (s, r) = ϵenδ,

En
h (s+ ϵ, r)− En

h (s, r)

ϵ
= enδ

Since the value of the difference depends on the initial difference ϵ between two
orbits, therefore, taking ϵ → 0, we get

lim
ϵ→∞

En
h (s+ ϵ, r)− En

h (s, r)

ϵ
= enδ,

that is, lim
ϵ→∞

(En
h )

′(s, r) = enδ.

thus, ∆ =
1

n
log|(En

h )
′(s, r)|, (3)

where (En
h )

′(s, r), denotes the first derivative of the nth degree difference map. The
derivative of system is determined using Devaney’s chain rule method of derivative,
that is, for an iterative orbit s1, s2 = En(s1, r), s3 = En(s2, r).... and so on, we
obtain

(En
h )

′(s1, r) = E′
h(sn, r).E

′
h(sn−1, r).....E

′
h(s1, r) (4)

Then, from (3) and (4) we have

∆ =
1

n
log|E′

h(sn, r).E
′
h(sn−1, r).....E

′
h(s1, r)|,

∆ =
1

n
[log|E′

h(sn, r)|+ log|E′
h(sn−1, r)|+ .....+ log|E′

h(s1, r)|,

∆ =
1

n

n∑
i=1

log|E′
h(si, r)|. (5)

Which is the required Lyapunov exponent formula. When we take periodic
orbit of order p, then the Lyapunov exponent is as follows:

∆ =
1

p

p∑
i=1

log|E′
h(si, r)|. (6)

Further, it is noticed that in case of irregular iterative orbits other than periodic
or fixed the full length of the orbit is impossible to use, therefore, a finite length
of the orbit is used in case of irregular orbits.

Example 1. Let Eh(s, r) = (1+ hr)s(1− s) be the one-dimensional logistic map,
where s ∈ [0, 1]. Then, determine the maximum Lyapunov exponent value when
h = 0.1 and r = 15.
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Solution: It is trivial from the dynamics of a Euler’s logistic map for h = 0.1 and
r = 15, there exists a stable fixed point hr

1+hr in the system, that is, hr
1+hr = 0.6.

Therefore, to determine the maximum Lyapunov exponent we solve the given
equation (5). For this, first of all let us consider the Euler’s system Eh(s, r) =
(1 + hr)s(1− s), then, we have

E′
h(s, r) = (1 + hr)− 2(1 + hr)s.

Then, substituting the h = 0.1, r = 15 and s = 0.6, we determine

E′
0.1(0.6, r) = (1 + 0.1× 15)− 2× (1 + 0.1× 15)× 0.6,

E′
0.1(0.6, r) = 2.5− 2× 2.5× 0.6,

E′
0.1(0.6, r) = −0.5. (7)

Then, putting the value of (7) in (5), we obtain the required Lyapunov exponent

∆ = ln| − 0.5| = −0.6931.

Thus, at h = 0.1 and r = 15, we get the required Lyapunov exponent value
−0.3010. It is clear that for the fixed point hr

1+hr = 0.6 the maximum Lyapunov ex-
ponent is negative and hence by the definition of the Lyapunov exponent, negative
value denotes stability of the orbit as well as fixed point.

Example 2. Let Eh(s, r) = (1+ hr)s(1− s) be the one-dimensional logistic map,
where s ∈ [0, 1]. Then, determine the maximum Lyapunov exponent value when
h = 0.1 and r = 22.

Solution: It is trivial from the dynamics of a Euler’s logistic map for h = 0.1 and
r = 22, there exists two periodic points s1 = 0.5130 and s2 = 0.7995. Therefore,
to determine the maximum Lyapunov exponent we solve the given equation (5).
For this, first of all let us consider the Euler’s system Eh(s, r) = (1 + hr)s(1− s),
then, we have

E′
h(s, r) = (1 + hr)− 2(1 + hr)s.

Then, substituting the h = 0.1, r = 22 and s1 = 0.5130 and s2 = 0.7995, we
determine

E′
0.1(0.5130, r) = (1 + 0.1× 22)− 2× (1 + 0.1× 22)× 0.5130,

E′
0.1(0.5130, r) = −0.0832, (8)

E′
0.1(0.7995, r) = (1 + 0.1× 22)− 2× (1 + 0.1× 22)× 0.7995,

E′
0.1(0.7995, r) = −1.9168. (9)

Then, putting the value of (8) and (9) in (5), we obtain

∆ =
1

2
[ln| − 0.0832|+ ln| − 1.9168|] = −0.7973.
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Thus, at h = 0.1 and r = 22, we get the required Lyapunov exponent value
-0.7973. Hence by the definition of the Lyapunov exponent, negative value denotes
stability of the orbit as well as periodic points of order 2. Figure 1-4 shows the
maximum Lyapunov exponent behavior for the particular values of fixed point,
periodic point and chaotic regime. When h = 0.1 and r = 4.5, 5, 5.5 the Lyapunov
trajectory approaches to a fixed negative Lyapunov value as shown in Figure 1 and
Figure 2 shows that at r = 21, 22, and 23 the Lyapunov trajectory for periodic
regime also approaches to a negative maximum Lyapunov exponent value. Further,
for the chaotic regime all the trajectories at r = 26, 28 and 29 always approaches
to positive maximum Lyapunov exponent as shown in Figure 3. Similarly, Figure
4 shows the Lyapunov exponent trajectories at h = 0.4. From the diagram it is
clear that for fixed point and periodic points the trajectories approach to negative
Lyapunov value and for chaotic regime it approaches to positive Lyapunov expo-
nent. Thus, proceeding in this way the maximum Lyapunov exponent values for
some particular values of r and h also may be determined.
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3. LYAPUNOV EXPONENT: AN EXPERIMENTAL STUDY

In the above section, we have described the Lyapunov exponent method for
logistic map using Euler’s Numerical Algorithm. Also, the time-series representa-
tion of maximum Lyapunov exponent for a particular value of fixed point, periodic
point and chaotic regime is also determined using computational method in Mat-
lab. Figure 1 and 2 describes the maximum value of Lyapunov exponent for a
fixed value of Euler’s parameter h and growth rate parameter r while the Figure 3
examines the chaotic regime. Nowadays, Lyapunov exponent is assumed another
eminent property in nonlinear dynamical systems. Therefore, the section deals
with the maximum range of the Lyapunov exponent for complete fixed, periodic
and chaotic orbit of a one-dimensional system and a measure of sensitive depen-
dence is measured. For the sake of simplicity, three cases for h = 0.1, 0.4 and 0.7
are taken in to consideration for the analysis.

Case 1: Maximum Lyapunov Exponent: when h = 0.1, and 0 ≤ r ≤ 30

It is trivial that at h = 0.1 the one-dimensional Euler’s logistic map shows
complete dynamical behavior for the growth rate parameter range 0 ≤ r ≤ 30.
Also, it is true that for the parameter 0 ≤ r ≤ 20 it gives fixed-point nature and
system always remains in the fixed state and for the parameter 20 < r ≤ 25.6996
the system becomes periodic and always remains in the periodic states of order
2, 4, 8, 16, 32, . . . and so on. Further, as the growth rate parameter r increases from
25.6996 the system approaches to chaotic regime. In Figure 5 and 6, the graphical
plotting of maximum Lyapunov exponent △ versus the Euler’s parameter h and
growth rate parameter r is drawn. In the diagram the positive islands for the
chaotic nature and the negative islands shows for no irregular activity, that is,
no chaos. Taking the initiator s0 ∈ [0, 1], and h = 0.1 the system (1 + hr)s(1 −
s) is iterated and a sequence of Lyapunov exponent values is generated for the
prescribed range of parameter r, that is, 0 ≤ r ≤ 30. The complete Lyapunov
sequence is drawn on the graph as shown in Figure 5. The magnified version of
the figure is shown in Figure 6 which describes the chaotic islands for the chaotic
nature. Finally, the Lyapunov spectrum approaches to a maximum Lyapunov
exponent value 0.6934. Moreover, Figure 7 shows the complete bifurcation plot
and Figure 8 give the comparative analysis of Bifurcation plot versus Lyapunov
exponent.

Case 2: Maximum Lyapunov Exponent: when h = 0.4, and 0 ≤ r ≤ 7.5

At h = 0.4 the one-dimensional Euler’s logistic map shows complete dynamical
behavior for the growth rate parameter range 0 ≤ r ≤ 7.5. For 0 ≤ r ≤ 5 it
gives fixed-point nature and system always remains in the fixed state and for the
parameter 5 < r ≤ 6.4299 the system becomes periodic and always remains in the
periodic states of order 2, 4, 8, 16, 32, . . . and so on. Further, as the growth rate
parameter r increases from 6.4299 the system approaches to chaotic regime. In
Figure 9 and 10, the graphical plotting of maximum Lyapunov exponent △ versus
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Figure 6: Magnified Chaotic Lya-
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the Euler’s parameter h and growth rate parameter r is drawn. In the diagram
the positive islands for the chaotic nature and the negative islands shows for no
irregular activity, that is, no chaos. Taking the initiator s0 ∈ [0, 1], and h = 0.4
the system (1+hr)s(1−s) is iterated and a sequence of Lyapunov exponent values
is generated for the prescribed range of parameter r, that is, 0 ≤ r ≤ 7.5. The
complete Lyapunov sequence is drawn on the graph as shown in Figure 9. The
magnified version of the figure is shown in Figure 10 which describes the chaotic
islands for the chaotic nature. Figure 11 shows the complete bifurcation plot
and Figure 12 give the comparative analysis of Bifurcation plot versus Lyapunov
exponent. Finally, the Lyapunov spectrum approaches to a maximum Lyapunov
exponent value 0.6934.

Case 3: Maximum Lyapunov Exponent: for h = 0.7, and 0 ≤ r ≤ 4.25

In this case, we present the Lyapunov exponent behavior of the Euler’s type lo-
gistic map when h = 0.7 and the growth rate parameter approaches from 0 to 4.25.
In the dynamics of Euler’s logistic map, the system exhibits fixed point nature for
the parameter 0 ≤ r ≤ 2.8339 and the system admits periodic behavior of order
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Figure 10: Magnified Chaotic Lya-
punov regime for the map Eh(x, r)
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Figure 12: Lyapunov versus Bifur-
cation plot for the map Eh(x, r) for
h = 0.4

2, 4, 8, 16, 32, . . . and so on when the parameter r approaches from 2.8339 to 3.6696.
But as the value of parameter r approaches through 3.6696 the system becomes
fully chaotic. Here, in this case we determine the maximum Lyapunov exponent
for the complete dynamics of the Euler’s type logistic system, experimentally. The
Figures 13 and 14 are plotted in which the Lyapunov exponent approaches to its
maximum value for the growth rate parameter r. Figure 13 shows that as r ap-
proaches from 0 to 2.8339 the Lyapunov spectrum always remains in the negative
cycle similarly as r approaches from 3.6696 the spectrum again admits negative
regime on the graph, that means, in case of fixed and periodic states the maximum
Lyapunov always remains in negative regime. Further, the positive regime of the
Lyapunov spectrum is zoomed in the Figure 14. While the Figure 15 shows the
complete bifurcation plot and Figure 16 give the comparative analysis of Bifur-
cation plot versus Lyapunov exponent. It is examined that as the range of the
parameter r approaches through 3.6696 the Lyapunov exponent spectrum starts
to approach in the positive quadrant. Finally, the maximum Lyapunov exponent
for the Euler’s type logistic map approaches to 0.6187.



512 Ashish et. al. / Lyapunov Exponent using Euler’s Algorithm

0.5 1 1.5 2 2.5 3 3.5 4
−8

−6

−4

−2

0

2

Parameter r

L
y
a
p

u
n

o
v
 E

x
p

o
n

e
n

t 
(∆

)

LE > 0

LE < 0

For h = 0.7

Figure 13: Lyapunov Exponent plot
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Figure 14: Magnified Chaotic Lya-
punov regime for the map Eh(x, r)
for h = 0.7

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

Parameter r

x
n
∈

[0
, 
1
]

z
*
 = hr/1+hr

For h = 0.7
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Figure 16: Lyapunov versus Bifur-
cation plot for the map Eh(x, r) for
h = 0.7

4. CONCLUSION

This article deals with the maximum Lyapunov exponent value of the logistic
map using Euler’s numerical algorithm system. In section 2, the Lyapunov expo-
nent method is derived using logistic map as well as Euler’s numerical algorithm
followed by some examples which determines the maximum Lyapunov exponent
for a particular value of fixed and periodic points. Further, in section 3 an experi-
mental study to determine the Lyapunov exponent of Euler’s type logistic map is
carried out. Section is divided into three cases. In case-1 the maximum Lyapunov
exponent for h = 0.1 and 0 ≤ r ≤ 30 is shown in which the negative Lyapunov ex-
ponent shows the stability in fixed and periodic states and the negative Lyapunov
exponent regime give the chaotic nature of the system. Similarly, in case 2 and 3
the maximum Lyapunov exponent is shown for the Euler’s parameter h = 0.4 and
0.7, respectively followed by Lyapunov plot. Due to its higher stability range and
higher chaotic regime the Euler’s type logistic system may have various applica-
tions in Science and Engineering such as transportation problems, cryptography,
in optimization, secure communication, etc.
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