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Abstract: Obtaining system availability in an engineering design is trickish and chal-
lenging, especially when there is a reduction in capacity; however, it supports system
maintainability. In this paper, a mathematical model for finding the availability under
the reduced capacity has been proposed using the Chapman Kolmogorov approach with
the help of transition diagrams associated with various possible combinations of prob-
abilities. The paper observes the most critical subsystem by selecting variable failure
and repair rates from different subsystems. It deals with the sensitivity analysis of a
complex repairable threshing combined machine comprising subsystems in a series con-
figuration and the threshing machine consisting of 21 subsystems. The device works in
total capacity when the threshing drum and feeding Hooper work in the complete state,
and the concave subsystem and blower work with reduced power. This study dealt with
uncertain data and was analyzed analytically using a complex repairable system. The
availability of the entire machine has been investigated analytically, and various availabil-
ity indices such as subsystems extruder have been computed and reported. The study
discovered that subsystem extruder has the most impact on some subsystems’ overall
system availability.

Keywords: Availability, supplementary variable technique, mean time to failure, mean

time between failure, maintainability, mathematical modeling, reliability.

MSC: 90B85, 90C26.

1. INTRODUCTION

Every farmer in the agriculture field wants to maximize profit by making the
machine without failure by adopting proper maintenance and planning. Nowa-
days, sole operating machines and multi-operating machines exist, e.g., harvest-
ing, threshing and reaping, combined in one machine, i.e., combined harvester.
This agricultural implement comprises approximately 21 parts, including header,
belts, layers, sieves, rotating blades, reel, cutter bar, grain tank, augers, convey-
ors, unloading pipe, etc. It could extract, winnow, and swain crops such as rice,
sunflower, pulses, corn, wheat, barley, flax, soybeans, etc. Reliability techniques
are used to judge the availability and maintainability of a system. This paper aims
to evaluate faults in subsystems and suggest ways to improve the tests to mini-
mize the weakness. Firstly, Cox [1] established systematic solutions of reliability
analysis using the supplementary variable technique.

Shakuntla et al.[2] discussed poly tube availability analysis using the supple-
mentary variable technique. Also, reducing the risk of hazards for optimum relia-
bility was studied by Yang et al. [3]. The availability of banking services with a
standby system has been evaluated in [4]. Aggarwal et al.[5] used a genetic algo-
rithm (GA) to offer mathematical modelling for availability optimization within
butter oil manufacturing. Ram and Nagiya [6] investigated the total system de-
pendability of such a gas power plant using mathematical models and the Laplace
transform. Kumar et al. [7] used Regenerative Point Graphical Technique (RPGT)
to explore the edible oil refinery business. The authors used RPGT to understand
the performance of a paper mill’s cleaning unit. Similarly, RPGT has been used to
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analyze the behaviour and profit of a thresher plant in agriculture under steady-
state assuming a single server [8].

The sensitivity analysis of the 3:4:G system was analyzed by [9]. Later, Kumar
et al. [10] examined the behaviour of a bread-making system composed of five
unique subsystems and assessed system characteristics beneficial to management
using RPGT within steady-state conditions. Savolainen et al. [11] studied a system
configuration with three demand-dependent unit functionality. A non-markovian
mechanism has been investigated using extra variables (Shakuntla et al., 2019).
Sharma and Ailawalia [12] studied the reliability, availability and maintainability
(RAM) of a threshing machine in agriculture and considered good, reduced and
failed as states of the device. The problem is modelled using the supplementary
variable technique and solved with the Lagrangian method. Shelare et al. [13]
formulated a mathematical model for Deshelled Nut quantity in the Charoli Nut
Deshelling machine for improving processing efficiency and waste reductions.

Malik and Tewari [14] studied the formability of a thermal power soil’s coal
system application. Modibbo et al. [15] proposed two different approaches to
reliability function estimation for both system and subsystem components. The
study emplored the maximum likelihood estimator (MLE) and uniformly mini-
mum unbiased estimator (UMUVE) approaches to derive the new methodology
for estimating systems’ parts. It further hybridized an optimization procedure to
minimize the cost of purchasing failed components and applied it to a real-life
engineering firm. Several types of research have been conducted in different fields
using different approaches to optimize the process. Several applications of opti-
mization and reliability calculations can be found in [16, 17, 14]. However, this
paper proposes a model that can select various subsystems’ variable failure and
repair rates in the most critical subsystem. The authors further studied system
availability comparing four different approaches and concluded POS outperformed
others [18]. Khan et al. [19] have studied a selective maintenace allocation problem
in the reliability theory, and formulated the problem as bilevel nonlinear optimiza-
tion.

2. SYSTEM DESCRIPTION

The system under consideration comprises four prominent parts-threshing drums,
feeding hopper, concave and blower. As defined, explained and shown in Figure 1.

1. The threshing Drum (A) rotates at high speed (500rpm). Its shape is
cylindrical.

2. The feeding hopper (B) is located upon that threshing pneumatic cylin-
der tip.

3. Concave (C): It can work in a reduced state. It separates the grain from
the crop

4. Blower (D): Blower can also work in a reduced state. It cleans and sepa-
rates the straw from the grain.
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Figure 1: The Vidhataa multi-functional thresher

2.1. Terminology

Every machine has specific terms used to describe its parts and functionality
for clear understanding and to avoid unnecessary errors from the operators. Table
1 presents and explains the terminology of the Vidhataa multi-functional thresher
machine briefly under study.

Table 1: Machine Terminology and explanation.
Terminology Explanation

A, B, C, D: These terms depict the whole working state of the subsystems
C̄, D̄: This shows that C and D work in a reduced capacity.

a, b, c, d: This shows the complete failed states of A, B, C, and D.
λ1(v), λ2(v) : Failure Rate of subsystem C and D.
α1(v), α2(v) : The transition rate of subsystem Aand B.

Φ(u), ψ(u), µ(u), σ(u) : Depicts the repair rate of the subsystems A,B, C,

PTi(u, v, t) :
The likelihood that the system seems to be in State I during time t
must have an elapsed breakdown (i = 1, . . . , 20) time v and then

an elapsed recovery time u.

2.2. System Assumptions

The following assumptions are expected to hold regarding the system.

i. The subsystem of the machine can work with reduced capacity.

ii. The repair process starts as soon as possible.

iii. The failure rate is constant, and the repair rate of the subsystems is variable.

iv. Failure and repair events are all statistically independent.

v. The repair subsystem is as good as a new one
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2.3. Conceptual Model

For evaluating the system performance under actual operating conditions, it
is essential to draw a conceptional model for the system/subsystem known as the
transition diagram.

Figure 2: Transition diagram of Combine Threshing Machine

2.4. Mathematical Model

The equations of the combined machine when two subsystems concave and
blower fail simultaneously by using the Chapman Kolgmrogrov rule are given as
follows:

2.4.1. Transitory state with variable failure and repair rates

[d/dt+ ST0]PT0(t) =MT0(t) (1)

[δ/δt+ δ/δu+ δ/δv + ST1(u, v)]PT1(u, v, t) =MT1(u, v, t) (2)

[δ/δt+ δ/δu+ δ/δv + ST2(u, v)]PT2(u, v, t) =MT2(u, v, t) (3)

[δ/δt+ δ/δu+ δ/δv + ST3(1)(u, v)]PT3(1)(u, v, t) =MT3(u, v, t) (4)

[δ/δt+ δ/δu+ δ/δv + ST3(2)(u, v)]PT4(2)(u, v, t) =MT4(u, v, t) (5)

[δ/δt+ δ/δu+ δ/δv + Φ(u)]PT5(u, v, t) = α1(v)PT0(t) (6)
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[δ/δt+ δ/δu+ δ/δv + ψ(u)]PT6(u, v, t) = α2(v)PT0(t) (7)

[δ/δt+ δ/δu+ δ/δv + Φ(u)]PT7(u, v, t) = α1(v)PT1(u, v, t) (8)

[δ/δt+ δ/δu+ δ/δv + ψ(u)]PT8(u, v, t) = α2(v)PT1(u, v, t) (9)

[δ/δt+ δ/δu+ δ/δv + µ(u)]PT9(u, v, t) = α3(v)PT1(u, v, t) (10)

[δ/δt+ δ/δu+ δ/δv + Φ(u)]PT10(u, v, t) = α1(v)PT2(u, v, t) (11)

[δ/δt+ δ/δu+ δ/δv + ψ(u)]PT11(u, v, t) = α2(v)PT2(u, v, t) (12)

[δ/δt+ δ/δu+ δ/δv + σ(u)]PT12(u, v, t) = α4(v)PT2(u, v, t) (13)

[δ/δt+ δ/δu+ δ/δv + Φ(u)]PT13(u, v, t) = α1(v)PT4(2)(u, v, t) (14)

[δ/δt+ δ/δu+ δ/δv + ψ(u)]PT14(u, v, t) = α2(v)PT4(2)(u, v, t) (15)

[δ/δt+ δ/δu+ δ/δv + µ(u)]PT15(u, v, t) = α3(v)PT4(2)(u, v, t) (16)

[δ/δt+ δ/δu+ δ/δv + σ(u)]PT16(u, v, t) = α4(v)PT4(2)(u, v, t) (17)

[δ/δt+ δ/δu+ δ/δv + Φ(u)]PT17(u, v, t) = α1(v)PT3(1)(u, v, t) (18)

[δ/δt+ δ/δu+ δ/δv + ψ(u)]PT18(u, v, t) = α1(v)PT3(1)(u, v, t) (19)

[δ/δt+ δ/δu+ δ/δv + µ(u)]PT19(u, v, t) = α1(v)PT3(1)(u, v, t) (20)

[δ/δt+ δ/δu+ δ/δv + σ(u)]PT20(u, v, t) = α1(v)PT3(1)(u, v, t) (21)

Where

ST0 =
∑2
i=1 αi(u) +

∑2
i=1 λi

ST1(u, v) =
∑4
i=1 αi(v) + µ(u)

ST2(u, v) =
∑4
i=1 αi + σ(u)

ST3(1)(u, v) =
∑4
i=1 αi(v) + σ(u)

ST4(2)(u, v) =
∑4
i=1 αi(v) + µ(u)

MT0(t) =
∫
PT5(u, v, t)Φ(u)dudv +

∫
PT6(u, v, t)ψ(u)dudv +

∫
PT2(u, v, t)σ(u)dudv

+
∫
PT1(u, v, t)µ(u)dudv

MT1(u, v, t) = λ1(v)PT0(t) + PT7(u, v, t)Φ(u) + PT8(u, v, t)ψ(u) + PT3(1)(u, v, t)σ(u) + PT9(u, v, t)µ(u)

MT2(u, v, t) = λ2(v)PT0(t) + PT10(u, v, t)Φ(u) + PT11(u, v, t)ψ(u) + PT12(u, v, t)σ(u) + PT4(2)(u, v, t)µ(u)

MT3(u, v, t) = α4(v)PT1(t) + PT17(u, v, t)Φ(u) + PT18(u, v, t)ψ(u) + PT19(u, v, t)µ(u) + PT20(u, v, t)σ(u)
MT4(u, v, t) = α3(v)PT2(t) + PT13(u, v, t)Φ(u) + PT14(u, v, t)ψ(u) + PT15(u, v, t)µ(u) + PT16(u, v, t)σ(u)

2.4.2. The Extremity Conditions

PT1(0, v, t) = λ1(v)PT0(t) (22)

PT2(0, v, t) = λ2(v)PT0(t) (23)

PT3(1)(0, v, t) =

∫
α4(v)PT1(u, v, t)du (24)

PT4(2)(0, v, t) =

∫
α2(v)PT2(u, v, t)du (25)

PT5(0, v, t) = α1(v)PT0(t) (26)

PT6(0, v, t) = α2(v)PT0(t) (27)
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PT7(0, v, t) =

∫
α1(v)PT1(u, v, t)du (28)

PT8(0, v, t) =

∫
α2(v)PT1(u, v, t)du (29)

PT9(0, v, t) =

∫
α3(v)PT1(u, v, t)du (30)

PT10(0, v, t) =

∫
α1(v)PT2(u, v, t)du (31)

PT11(0, v, t) =

∫
α2(v)PT2(u, v, t)du (32)

PT12(0, v, t) =

∫
α1(v)PT2(u, v, t)du (33)

PT13(0, v, t) =

∫
α1(v)PT4(2)(u, v, t)du (34)

PT14(0, v, t) =

∫
α2(v)PT4(2)(u, v, t)du (35)

PT15(0, v, t) =

∫
α3(v)PT4(2)(u, v, t)du (36)

PT16(0, y, t) =

∫
α4(v)PT4(2)(u, v, t)du (37)

PT17(0, y, t) =

∫
α1(v)PT3(1)(u, v, t)du (38)

PT18(0, y, t) =

∫
α2(v)PT3(1)(u, v, t)du (39)

PT19(0, y, t) =

∫
α3(v)PT3(1)(u, v, t)du (40)

PT20(0, y, t) =

∫
α4(v)PT3(1)(s, t)du (41)

2.4.3. Baseline Conditions

PTi(u, v, 0) = 0, (i = 1, 2, . . . , 20) (42)

PT0(0) = 0 (43)



432 S. Singla, et al. / Mathematical Model for Analysing Threshing Combine Machine

2.4.4. For Long Run Availability

A decision-maker wants a machine to operate with optimal performance (less
failure rate) in the agricultural field. Therefore, t −→ ∞ is taken, consequently
d/dt −→ 0, δ/δt −→ 0, δ/δu −→ 0, and δ/δv −→ 0. Then, the ordinary differ-
ential equation with constant transition rates moderates the system under defined
linear algebraic equations (Eqn. 44-64).

[α1 + α2 + λ1 + λ2]PT0 = ΦPT5 + ψPT6 + σPT1 + µPT2 (44)

[α1 + α2 + α3 + α4 + µ]PT1 = λ1PT0 + σPT3(1) + µPT9 +ψPT8 +ΦPT7 (45)

[α1 + α2 + α3 + α4 + σ]PT2 = λ2PT0+ΦPT10+ψPT11+σPT12+µPT4(2) (46)

[α1 + α2 + α3 + α4 + σ]PT3(1) = α4PT1+σPT20+µPT19+ψPT18+ΦPT17 (47)

[α1 + α2 + α3 + α4 + µ]PT4(2) = α3PT2+ΦPT13+ψPT14+σPT16+µPT15 (48)

ΦPT5 = α1PT0 (49)

ψPT6 = α2PT0 (50)

ϕPT7 = α1PT1 (51)

ψPT8 = α2PT1 (52)

µPT9 = α3PT1 (53)

ΦPT10 = α1PT1 (54)

ψPT11 = α2PT2 (55)

σPT12 = α4PT2 (56)

ΦPT13 = α1PT4(2) (57)

ψPT14 = α2PT4(2) (58)

µPT15 = α3PT4(2) (59)

σPT16 = α4PT4(2) (60)

ϕPT17 = α1PT3(1) (61)

ψPT18 = α2PT3(1) (62)

µPT19 = α3PT3(1) (63)

σPT20 = α4PT3(1) (64)
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2.4.5. Elucidation

The linear differential equation (1) is a first-order ordinary differential equation,
and the remaining Eqns. (2-21) are defined as partial differential equations (PDE)
of the first order. Calculating the machine availability, Eqns. (1-21) along with
the extremities Eqns. (22-41) and baseline conditions Eqns. (42-43) are evaluated
by applying Lagrange’s method as well as probabilities PTi(t)(i = 1, . . . , 20) for
each state are as follows:

PT0(t) = e
−

∫
ST0(t)dt

[
1 +

∫
MT0(t)e

∫
ST0(t)dt

dt

]
(65)

PT1(u, v, t) = e
−

∫
ST1(u,v)dx

[
λ1(v − u)PT0(t − u) +

∫
MT1(u, v, t)e

∫
ST1(u,v)du

du

]
(66)

PT2(u, v, t) = e
−

∫
ST2(u,v)dx

[
λ2(v − u)PT0(t − u) +

∫
MT2(u, v, t)e

∫
ST2(u,v)du

du

]
(67)

PT3(1)(u, v, t) = e
−

∫
ST3(1)(u,v)dx

[∫
α4(v − u)PT1(u, v − u, t − u)dv +

∫
MT3(u, v, t)e

∫
ST3(1)(u,v)dudu

]
(68)

PT4(2)(u, v, t) = e
−

∫
ST4(2)(u,v)dx

[∫
α3(v − u)PT2(u, v − u, t − u)dv +

∫
MT4(u, v, t)e

∫
ST4(2)(u,v)dudu

]
(69)

PT5(u, v, t) = e
−

∫
Φ(u)du

[
α1(v − u)PT0(t − u) +

∫
α1(v)PT0(t)e

∫
Φ(u)du

du

]
(70)

PT6(u, v, t) = e
−

∫
ψ(u)du

[
α2(v − u)PT0(t − u) +

∫
α2(v)PT0(t)e

∫
ψ(u)du

du

]
(71)

PT7(u, v, t) = e
−

∫
Φ(u)du

[∫
α1(v − u)PT1(u, v − u, t − u)du +

∫
α1(v)PT1(u, v, t)e

∫
Φ(u)du

du

]
(72)

PT8(u, v, t) = e
−

∫
ψ(u)du

[∫
α2(v − u)PT1(u, v − u, t − u)du +

∫
α2(v)PT1(u, v, t)e

∫
ψ(u)du

du

]
(73)

PT9(u, v, t) = e
−

∫
µ(u)du

[∫
α3(v − u)PT1(u, v − u, t − u)du +

∫
α3(v)PT1(u, v, t)e

∫
µ(u)du

du

]
(74)

PT10(u, v, t) = e
−

∫
Φ(u)du

[∫
α1(v − u)PT2(u, v − u, t − u)du +

∫
α1(v)PT2(u, v, t)e

∫
Φ(u)du

du

]
(75)

PT11(u, v, t) = e
−

∫
ψ(u)du

[∫
α2(v − u)PT2(u, v − u, t − u)du +

∫
α2(v)PT2(u, v, t)e

∫
ψ(u)du

du

]
(76)

PT12(u, v, t) = e
−

∫
σ(u)du

[∫
α4(v − u)PT2(u, v − u, t − u)du +

∫
α4(v)PT2(u, v, t)e

∫
σ(u)du

du

]
(77)

PT13(u, v, t) = e
−

∫
Φ(u)du

[∫
α1(v − u)PT4(2)(u, v − u, t − u)du +

∫
α1(v)PT4(2)(u, v, t)e

∫
Φ(u)du

du

]
(78)

PT14(u, v, t) = e
−

∫
ψ(u)du

[∫
α2(v − u)PT4(2)(u, v − u, t − u)du +

∫
α2(v)PT4(2)(u, v, t)e

∫
ψ(u)du

du

]
(79)

PT15(u, v, t) = e
−

∫
µ(u)du

[∫
α3(v − u)PT4(2)(u, v − u, t − u)du +

∫
α3(v)PT4(2)(u, v, t)e

∫
µ(u)du

du

]
(80)

PT16(u, v, t) = e
−

∫
σ(u)du

[∫
α4(v − u)PT4(2)(u, v − u, t − u)du +

∫
α4(v)PT4(2)(u, v, t)e

∫
σ(u)du

du

]
(81)

PT17(u, v, t) = e
−

∫
Φ(u)du

[∫
α1(v − u)PT3(1)(u, v − u, t − u)du +

∫
α1(v)PT3(1)(u, v, t)e

∫
Φ(u)du

du

]
(82)

PT18(u, v, t) = e
−

∫
ψ(u)du

[∫
α2(v)PT3(1)(u, v − u, t − u)du +

∫
α2(v)PT3(1)(u, v, t)e

∫
ψ(u)du

du

]
(83)

PT19(u, v, t) = e
−

∫
µ(u)du

[∫
α3(v)PT3(1)(u, v − u, t − u)du +

∫
α3(v)PT3(1)(u, v, t)e

∫
µ(u)du

du

]
(84)

PT20(u, v, t) = e
−

∫
σ(u)du

[∫
α2(v)PT3(1)(u, v − u, t − u)du +

∫
α2(v)PT3(1)(u, v, t)e

∫
σ(u)du

du

]
(85)
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Thus, probabilities for all the states have been obtained in terms of PT0(t) using
Eqn. (1). Therefore time-dependent availability (ATv) is given by

ATv = PT0(t)+

∫ 2∑
i=1

PTi(u, v, t)dudv+

∫
PT4(2)(u, v, t)dudv+

∫
PT3(1)(u, v, t)dudv

(86)

Further, the linear Eqns. (44-64) have been solved recursively to determine the
steady-state availability. All the probabilities of the different states are obtained
in terms of PT0 and are given below:

PT1 = R1PT0 (87)

PT2 = R2PT0 (88)

PT3(1) =M1PT0 (89)

PT4(2) =M2PT0 (90)

Where

M1 =
λ1α4

σµ
, M2 =

λ2α3

σµ
, R1 =

λ1
µ
, R2 =

λ2
σ

Now using normalizing conditions
∑20
i=1 PTi = 1, we get

PT0 =
[
1 + α1

Φ + α2

ψ +
(
1 + α1

Φ + α2

ψ + α3

µ + α4

σ

)
M1 +

(
1 + α1

Φ + α2

ψ + α4

σ + α3

µ

)
M2

]−1

+
[(

1 + α1

Φ + α4

σ + α3

µ

)
R1 +

(
1 + α1

Φ + α2

ψ + α4

σ

)
R2

]−1

Consequently, the long-run availability ATv will be calculated as:

ATv = [1 +M1 +M2 + T1 + T2]P0 (91)

Table 2: Effect of failure α1) and repair (Φ) rate of the subsystem Threshing Drum (A) on
availability.

α1 −→
Φ ↓ 0.0057 0.0059 0.0061 0.0063

0.5 0.9769 0.9732 0.9694 0.9656
0.7 0.9802 0.9775 0.9748 0.9721
0.9 0.9821 0.9796 0.9770 0.9757
1.1 0.9832 0.9815 0.9797 0.9780
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Table 3: Effect of failure α2) and repair (ψ) rates of the subsystem Feeding Hooper (B) on
availability.

α2 −→
ψ ↓ 0.007 0.009 0.011 0.013

2 0.9769 0.9660 0.9651 0.9541
4 0.9886 0.9881 0.9877 0.9872
6 0.9892 0.9889 0.9885 0.9882
8 0.9895 0.9892 0.9890 0.9886

Table 4: Effect of failure α3) and repair (µ) rates of the subsystem concave (C) on availability.

α1 −→
µ ↓ 0.01 0.02 0.03 0.04

0.33 0.9769 0.9762 0.9760 0.9757
0.53 0.9770 0.9767 0.9464 0.9763
0.73 0.9789 0.9775 0.9772 0.9770
0.93 0.9790 0.9789 0.9780 0.9779

3. RESULT AND DISCUSSION

The decision-maker (farmer) always prefers a combined threshing machine to
operate as long as possible in an optimal fashion without unnecessary failures.
Machine availability has to be determined to achieve the long-time operating goal.
Therefore, the proposed model (Eqn. 91) can help calculate the availability of
threshing machines with different values of failure and repair rates. Machines’
availability increases with the repair rates and decreases with the failure rates.
We then evaluate the impact of various characteristics on the system’s long-term
availability. Using Eqn. (91), several subsystem repair rates have been calculated
with varying configurations. However, the study did not analyze all possible pair-
ings of subsystems, but only the unique subsystem combinations were evaluated.
Tables 2-5 presents the long-run availability of threshing combine machine. The
analysis was carried out by altering failure as well as repair rates of such mixtures
α1 = 0.0057, 0.0059, 0.0061, 0.0063, Φ = 0.5, 0.7, 0.9, 1.1 and by taking other pa-
rameters as fixed: α2 = 0.007, α3 = 0.01, α4 = 0.015, ψ = 2, µ = 0.33, σ = 0.02. As
given in Table 2, the calculated result implies that a rise in the mixture’s failure
rate (α1) reduces long-run availability by roughly 0.12 per cent. In contrast, a
rise in the repair rate (Φ) increases availability by approximately 0.26 per cent.
Table 3 demonstrates that the rise in the failure rate (α2) of extruders reduces
the system’s long-run availability from 0.3 per cent to 0.07 per cent. When we
raise the repair rate (Φ) of the extruder from 2.0 to 8.0, availability improves by
0.6 per cent to 0.85 per cent. It is then estimated the system’s long-term avail-
ability by altering failure and repair rates. The results obtained as employed in
this study are: α1 = 0.0057, α2 = 0.007, α4 = 0.015, Φ = 0.5, ψ = 2.0,= 2. Four
values of α3(= 0.01, 0.02, 0.03, 0.04)andµ(= 0.33, 0.53, 0.73, 0.93) have been taken



436 S. Singla, et al. / Mathematical Model for Analysing Threshing Combine Machine

into account while studying the influence of failure and repair rates of subsys-
tem die. Table 4 displays the outcomes acquired as a consequence of this pro-
cedure. Failure as well as repair rates for all subsystems except that of cutter
are as follows: α1 = 0.0057, α2 = 0.007, α3 = 0.33, Φ = 0.5, ψ = 0.04, µ = 0.02.
The failure as well as repair rates of cutter were calculated as follows: α4 =
0.015, 0.030, 0.045, 0.060, σ = 2.0, 4.0, 6.0, 8.0. Table 5 displays the results of the
long-run availability calculation.

4. CONCLUSION

Reliability, maintainability, and replacement of system components are im-
portant aspects of industrial advancement. Agriculture requires complex farm
implements for its viability, productivity and sustainability. This study investi-
gates the sensitivity analysis of complex repairable threshing combined machine
comprising subsystems in a series configuration and the threshing machine con-
sisting of 21 subsystems. A mathematical model under different conditions is
proposed to analyze the system’s availability. The device works in total capacity
when the threshing drum and feeding Hooper work in the entire state, and the
concave subsystem and blower work with reduced power. The analysis results are
compared under different variables and presented in Tables 2–5. It demonstrates
that subsystem extruder has the most impact on some subsystems’ overall system
availability. Those specific subsystems have almost no effect on the availability
of polytube manufacturing facilities. As a result, we conclude that management
should prioritize subsystem extruder maintenance to increase overall system avail-
ability. This study is helpful for researchers and policymakers in the agricultural
sector and other related engineering fields. In future, the analysis can explore the
variables under fuzzy, intuitionistic and Neutrosophic environments.
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