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Abstract: In this paper we consider a best proximity point problem whose purpose
is to determine the minimum distance between two sets. It is a global optimization
problem by its very nature which is solved by converting it into a problem of finding an
optimal approximate solution of a fixed point inclusion for a coupled setvalued mapping.
Two solutions are obtained simultaneously through an iteration. We introduce certain
definitions which are used in our theorems. We investigate the data dependence property
of the proximity point sets and establish a weak stability result for the proximity point
sets. There are some illustrative examples. The broad area of the present study is
setvalued optimization.
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1. INTRODUCTION AND MATHEMATICAL PRELIMINARIES

The problem which is considered in this paper is that of determining the mini-
mum distance between two given sets. Such problems for different types of objects
arise in various branches of mathematics for which different approaches are avail-
able in the literatures. An instance of it is the study of geodesics in geometry which
is obtained by optimizing the path length between two points. Our candidates here
are two sets, more specifically two closed subsets of a metric space. The approach
to the problem is analytic. It is solved here by constructing a coupled setvalued
function and then by globally solving the corresponding coupled setvalued fixed
point problem for its optimal approximate solution although an exact solution does
not in general exist. The approach which we adopt towards the problem has been
discussed in a good number of papers appearing in recent literatures. It is known
under the formal name of proximity point problem. The corresponding theorems
in this study being optimality results are different from best approximation theo-
rems like those in [21, 30]. One early result in this domain is the work of Eldered
et al. [20] in the year 2006 in which a nonself singlevalued contraction was utilized
of the above purpose. Coupled mappings have been utilized in these problems in
works like [14, 24, 28, 34]. The special feature of these utilizations is that the
optimal value is realized simultaneously through two different pairs of points. Set-
valued mappings have also been considered in this category of problems in works
like [2, 10, 22, 33]. In this paper we combine the above two approaches, that is, we
consider setvalued coupled mapping for the above purpose. Some other important
references from this line of research are [1, 4, 5, 8, 12, 19, 23, 27, 29, 35]. Most of
the above mentioned works are in metric spaces. Some works have also appeared
in generalized and extended metric structures. In our study, we introduce the cou-
pled proximal α-dominating mapping which is a extended version of admissibility
condition which is quite extensively used in fixed point theory now-a-days. It was
introduced in the work of Samet et al. [32] and was further elaborated through
works like [3, 16, 17].

We establish a data dependence result corresponding to our problem. In the
present context, data dependence problem is to estimate the distance between the
proximity point sets of the two mappings. Our problem of data dependence is with
coupled mappings and their coupled proximity point sets. Several research papers
on data dependence of fixed point sets have been published in recent literatures
which we mention a few in references [7, 16, 25, 31]. Such problems for coupled
fixed point sets have already appeared in work of Chifu et al [6].

Also we establish a weak stability theorem for the set of solutions of the problem
which, in the present case is the set of proximity points of the corresponding
coupled mappings. Convergence of fixed point sets of a sequence of mappings,
known as the stability of fixed points, has also been widely studied in various
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settings [9, 16, 18]. Here we define the weak stability of proximity point sets of
a sequence of multivalued mappings and establish the weak stability of proximity
point sets of that sequence of mappings.

In the following we describe the technical background of the work.
Let (X, d) be a metric space. Then X × X is also a metric space under the

metric ρ defined by ρ((x, y), (u, v)) = max {d(x, u), d(y, v)}, for all (x, y) and
(u, v) ∈ X ×X.

Let N(X) denote the collection of all nonempty subsets of X, B(X) denote the
collection of all nonempty and bounded subsets of X, CL(X) denote the collection
of all nonempty closed subsets of X, CB(X) denote the collection of all nonempty
closed and bounded subsets of X and K(X) denote the collection of all nonempty
compact subsets of X. We use following notations and definitions :

D(x,B) = inf {d(x, y) : y ∈ B}, where x ∈ X and B ∈ CB(X),

D(A,B) = inf {d(a, b) : a ∈ A, b ∈ B}, where A,B ∈ CB(X),

H(A,B) = max {sup
x∈A

D(x,B), sup
y∈B

D(y,A)}, where A,B ∈ CB(X).

H is known as the Hausdorff metric on CB(X) [26]. Further, if (X, d) is
complete then (CB(X), H) is also complete and so is (X ×X, ρ). Let Hρ be the
Hausdorff metric induced by ρ.

For any two subsets A,B of a metric space (X, d), we write the distance
between A and B as

d(A, B) = inf{d(x, y) : x ∈ A, y ∈ B}.

We use the two sets described below.

A0 = {a ∈ A : d(a, b) = d(A, B), for some b ∈ B},

B0 = {b ∈ B : d(a, b) = d(A, B), for some a ∈ A}.

Lemma 1 ([15]). Let (X, d) be a metric space and B ∈ K(X). Then for every
x ∈ X there exists y ∈ B such that d(x, y) = D(x, B).

Best proximity point and coupled best proximity point results are related to
the problem of finding minimum distances which is by itself a classical problem
considered in many areas of mathematics. In our case the objects are subsets of
metric spaces. Here the minimum distance between pairs of subsets is realized
by utilizing best proximity points or coupled best proximity points of nonself
mappings. Let A and B be two nonintersecting subsets of a metric space (X, d).
An element x ∈ A is said to be a best proximity point of the mapping S : X → X
with respect to the pair (A, B) if d(x, Sx) = d(A, B), Sx ∈ B. An element
(x, y) ∈ A×B is called a coupled best proximity point of the mapping F : X×X →
X with respect to the pair (A, B) if F (x, y) ∈ B, F (y, x) ∈ A, d(x, F (x, y)) =
d(A, B) and d(y, F (y, x)) = d(A, B).
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Definition 2 ([11]). Let (X, d) be a metric space and (A, B) be a pair of
nonempty subsets of X. Let F : X → CL(X) be a multivalued mapping. Then a
point x ∈ A is said to be a best proximity point of the mapping F with respect to
the pair (A, B) if Fx ⊂ B, D(x, Fx) = d(A, B).

Definition 3 ([13]). Let (X, d) be a metric space and (A, B) be a pair of
nonempty subsets of X. Let F : X × X → CL(X) be a multivalued mapping.
Then a point (x, y) ∈ A × B is said to be a coupled best proximity point of
the mapping F with respect to the pair (A, B) if F (x, y) ⊂ B, F (y, x) ⊂ A,
D(x, F (x, y)) = d(A, B) and D(y, F (y, x)) = d(A, B).

We denote the collection all coupled best proximity points of F by P (F ).

Definition 4 ([35]). Let A and B be two nonempty subsets of a metric, space
(X, d) with A0 6= ∅, B0 6= ∅. We say that (A, B) satisfies the P -property if for
x1, x2 ∈ A0 and y1, y2 ∈ B0,

d(x1, y1) = d(x2, y2) = d(A, B)⇒ d(x1, x2) = d(y1, y2).

We propose the following definitions of stability and weak stability of coupled
best proximity points.

Definition 5. Let (X, d) be a metric space and (A, B) be a pair of nonempty
subsets of X. Let {Fn : X×X → CL(X)} be a sequence of multivalued mappings
and F : X ×X → CL(X) such that F = lim

n→∞
Fn. Suppose that {P (Fn)} is the

sequence of coupled best proximity point sets of the sequence {Fn} and P (F ) is
the coupled best proximity points set of F and P (Fn), P (F ) ∈ CB(X). Then we
say that

(i) the best proximity point sets of {Fn} are stable if lim
n→∞

Hρ(P (Fn), P (F )) = 0;

(ii) the best proximity point sets of {Fn} are weakly stable if there exists R > 0
such that lim sup

n→∞
Hρ(P (Fn), P (F )) ≤ R.

The above definition is a modification of the similar concepts which can be
found in [9, 16].

Definition 6 ([32]). Let (X, d) be a metric space and α : X×X → [0,∞). Then
X is said to have α-regular property if for every sequence {xn} inX, α(xn, xn+1) ≥
1, for all n and xn → x as n→∞ imply α(xn, x) ≥ 1, for all n.

We now introduce the following definitions of coupled proximal α-dominating
mapping and generalized coupled proximal contraction in case of single and mul-
tivalued mappings.

Definition 7. Let A and B be two nonempty subsets of a metric space (X, d) and
α : X×X → [0, ∞). A mapping F : X×X → X is said to be a coupled proximal
α-dominating with respect to the pair (A, B) if for (x, y), (u, v) ∈ A×B,

d(u, F (x, y)) = d(v, F (y, x)) = d(A,B)⇒ α(x, u) ≥ 1 and α(y, v) ≥ 1.
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Definition 8. Let A and B be two nonempty subsets of a metric space (X, d)
and α : X × X → [0, ∞). A multivalued mapping F : X × X → CL(X) is
said to be a coupled proximal α-dominating with respect to the pair (A, B) if for
(x, y), (u, v) ∈ A×B,

D(u, F (x, y)) = D(v, F (y, x)) = d(A,B)⇒ α(x, u) ≥ 1 and α(y, v) ≥ 1.

Let Ψ be the collection of all functions ψ : [0, ∞)6 → [0, ∞) such that

(i) ψ is continuous and nondecreasing in each coordinate;

(ii)
∑∞
n=1 θ

n(t) <∞, where θ(t) = ψ(t, t, t, t, t, t);

(iii) ψ(0, 0, 0, 0, 0, 0) = 0.

Definition 9. Let A and B be two nonempty subsets of a metric space (X, d).
Let α : X × X → [0, ∞) and ψ ∈ Ψ. A mapping F : X × X → X is called
generalized coupled proximal contraction with respect to the pair (A, B) if for
(x, y), (u, v) ∈ (A×B) ∪ (B ×A) with α(x, u) ≥ 1 and α(y, v) ≥ 1,

d(F (x, y), F (u, v)) ≤ N(x, y, u, v), (1)

where

N(x, y, u, v) = ψ
(
d(x, u), d(y, v), d(x, F (x, y))− d(A, B),

d(u, F (x, y))− d(A,B), d(y, F (y, x))− d(A,B),

d(v, F (y, x))− d(A,B)
)
.

Definition 10. Let A and B be two nonempty subsets of a metric space (X, d).
Let α : X×X → [0, ∞) and ψ ∈ Ψ. A multivalued mapping F : X×X → CL(X)
is called generalized coupled proximal contraction with respect to the pair (A, B)
if for (x, y), (u, v) ∈ (A×B) ∪ (B ×A) with α(x, u) ≥ 1 and α(y, v) ≥ 1,

H(F (x, y), F (u, v)) ≤M(x, y, u, v), (2)

where

M(x, y, u, v) = ψ
(
d(x, u), d(y, v), D(x, F (x, y))− d(A, B),

D(u, F (x, y))− d(A,B), D(y, F (y, x))− d(A,B),

D(v, F (y, x))− d(A,B)
)
.

The above definitions are modifications of our concepts introduced in [16].
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2. MAIN RESULT

Theorem 11. Let (X, d) be a complete metric space having α-regular property,
where α : X ×X → [0, ∞), and (A,B) be a pair of nonempty closed subsets of
X having P -property with A0, B0 6= ∅. Let F : X ×X → K(X) be a multivalued
mapping such that

(i) F (x, y) ⊆ B0 and F (y, x) ⊆ A0, for all (x, y) ∈ A×B;

(ii) F is coupled proximal α-dominating with respect to the pair (A,B);

(iii) there exists ψ ∈ Ψ for which F is a generalized coupled proximal contraction
with respect to the pair (A,B).

Then the coupled best proximity point set of F , that is, P (F ) is nonempty.

Proof. Let (x0, y0) ∈ A × B with u0 ∈ F (x0, y0) and v0 ∈ F (y0, x0). By the
assumption (i) and the definitions of A0, B0, there exist x1 ∈ A0 and y1 ∈ B0

such that
d(x1, u0) = d(A,B) and d(y1, v0) = d(A,B).

Now,
d(A, B) ≤ D(x1, F (x0, y0)) ≤ d(x1, u0) = d(A, B)

and
d(A, B) ≤ D(y1, F (y0, x0)) ≤ d(y1, v0) = d(A, B).

Then we have

D(x1, F (x0, y0)) = d(A,B) and D(y1, F (y0, x0)) = d(A,B).

By the assumption (ii), we have

α(x0, x1) ≥ 1 and α(y0, y1) ≥ 1.

By Lemma 1, there exist u1 ∈ F (x1, y1) and v1 ∈ F (y1, x1) such that

d(u0, u1) = D(u0, F (x1, y1)) and d(v0, v1) = D(v0, F (y1, x1)).

As u1 ∈ F (x1, y1) ⊆ B0 and v1 ∈ F (y1, x1) ⊆ A0, by the definitions of A0, B0,
there exist x2 ∈ A0 and y2 ∈ B0 such that

d(x2, u1) = d(A, B) and d(y2, v1) = d(A, B).

Now,
d(A, B) ≤ D(x2, F (x1, y1)) ≤ d(x2, u1) = d(A, B)

and
d(A, B) ≤ D(y2, F (y1, x1)) ≤ d(y2, v1) = d(A, B).
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Then we have

D(x2, F (x1, y1)) = d(A, B) and D(y2, F (y1, x1)) = d(A, B).

By the assumption (ii), we have

α(x1, x2) ≥ 1 and α(y1, y2) ≥ 1.

By Lemma 1, there exist u2 ∈ F (x2, y2) and v2 ∈ F (y2, x2) such that

d(u1, u2) = D(u1, F (x2, y2)) and d(v1, v2) = D(v1, F (y2, x2)).

From the above discussion we have x1, x2, v0, v1 ∈ A0 and y1, y2, u0, u1 ∈ B0 with
d(x1, u0) = d(A,B); d(x2, u1) = d(A,B) and d(y1, v0) = d(A,B); d(y2, v1) =
d(A,B). Using the P -property, we have

d(x1, x2) = d(u0, u1) and d(y1, y2) = d(v0, v1).

As u2 ∈ F (x2, y2) ⊆ B0 and v2 ∈ F (y2, x2) ⊆ A0, by the definitions of A0, B0,
there exist x3 ∈ A0 and y3 ∈ B0 such that

d(x3, u2) = d(A, B) and d(y3, v2) = d(A, B).

Now,
d(A, B) ≤ D(x3, F (x2, y2)) ≤ d(x3, u2) = d(A, B)

and
d(A, B) ≤ D(y3, F (y2, x2)) ≤ d(y3, v2) = d(A, B).

Then we have

D(x3, F (x2, y2)) = d(A, B) and D(y3, F (y2, x2)) = d(A, B).

By the assumption (ii), we have

α(x2, x3) ≥ 1 and α(y2, y3) ≥ 1.

Again x2, x3, v1, v2 ∈ A0 and y2, y3, u1, u2 ∈ B0 with d(x2, u1) = d(A, B) ;
d(x3, u2) = d(A, B) and d(y2, v1) = d(A,B) ; d(y3, v2) = d(A,B). Using the
P -property, we have

d(x2, x3) = d(u1, u2) and d(y2, y3) = d(v1, v2).

Continuing in this way, we obtain four sequences {xn}, {vn} in A0 and {yn}, {un}
in B0 such that for all n ≥ 0,

un ∈ F (xn, yn) ⊆ B0 and vn ∈ F (yn, xn) ⊆ A0, (3)

d(xn+1, un) = d(A, B) and d(yn+1, vn) = d(A, B), (4)
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α(xn, xn+1) ≥ 1 and α(yn, yn+1) ≥ 1, (5)

d(xn+1, xn+2) = d(un, un+1) and d(yn+1, yn+2) = d(vn, vn+1) (6)

and

d(un, un+1) = D(un, F (xn+1, yn+1)) and d(vn, vn+1) = D(vn, F (yn+1, xn+1)).
(7)

Let

rn = max {d(xn, xn+1), d(yn, yn+1)}, for all n ≥ 0. (8)

Since (xn, yn), (xn+1, yn+1) ∈ A×B with α(xn, xn+1) ≥ 1 and α(yn, yn+1) ≥ 1,
using the assumption (iii), (3) - (8) and a property of ψ, we have

d(xn+1, xn+2) = d(un, un+1) = D(un, F (xn+1, yn+1))

≤ H(F (xn, yn), F (xn+1, yn+1)) ≤M(xn, yn, xn+1, yn+1)

≤ ψ
(
d(xn, xn+1), d(yn, yn+1), D(xn, F (xn, yn))− d(A,B),

D(xn+1, F (xn, yn))− d(A,B), D(yn, F (yn, xn))− d(A,B),

D(yn+1, F (yn, xn))− d(A,B)
)

≤ ψ
(
d(xn, xn+1), d(yn, yn+1), d(xn, un)− d(A, B),

d(xn+1, un)− d(A, B), d(yn, vn)− d(A, B),

d(yn+1, vn)− d(A, B)
)

≤ ψ
(
d(xn, xn+1), d(yn, yn+1), d(xn, xn+1) + d(xn+1, un)− d(A,B),

d(A,B)− d(A,B), d(yn, yn+1) + d(yn+1, vn)− d(A,B),

d(A,B)− d(A,B)
)

= ψ
(
d(xn, xn+1), d(yn, yn+1), d(xn, xn+1) + d(A,B)− d(A,B),

0, d(yn, yn+1) + d(A,B)− d(A,B), 0
)

= ψ(d(xn, xn+1), d(yn, yn+1), d(xn, xn+1), 0, d(yn, yn+1), 0)

≤ ψ(rn, rn, rn, rn, rn, rn) = θ(rn). (9)
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Also,

d(yn+1, yn+2) = d(vn, vn+1) = D(vn, F (yn+1, xn+1))

≤ H(F (yn, xn), F (yn+1, xn+1)) ≤M(yn, xn, yn+1, xn+1)

≤ ψ
(
d(yn, yn+1), d(xn, xn+1), D(yn, F (yn, xn))− d(A,B),

D(yn+1, F (yn, xn))− d(A,B), D(xn, F (xn, yn))− d(A,B),

D(xn+1, F (xn, yn))− d(A,B)
)

≤ ψ
(
d(yn, yn+1), d(xn, xn+1), d(yn, vn)− d(A,B),

d(yn+1, vn)− d(A,B), d(xn, un)− d(A, B),

d(xn+1, un)− d(A, B)
)

≤ ψ
(
d(yn, yn+1), d(xn, xn+1), d(yn, yn+1) + d(yn+1, vn)− d(A,B),

d(A,B)− d(A,B), d(xn, xn+1) + d(xn+1, un)− d(A,B),

d(A,B)− d(A,B)
)

≤ ψ
(
d(yn, yn+1), d(xn, xn+1), d(yn, yn+1) + d(A,B)− d(A,B),

0, d(xn, xn+1) + d(A,B)− d(A,B), 0
)

= ψ(d(yn, yn+1), d(xn, xn+1), d(yn, yn+1), 0, d(xn, xn+1), 0)

≤ ψ(rn, rn, rn, rn, rn, rn) = θ(rn). (10)

Combining (9) and (10), we have

rn+1 = max {d(xn+1, xn+2), d(yn+1, yn+2)} ≤ θ(rn). (11)

By repeated application of (11), we have

rn ≤ θ(rn−1) ≤ θ2(rn−2) ≤ ... ≤ θn(r0). (12)

Using (11), (12) and a property of ψ, we have

∞∑
n=1

d(xn, xn+1) ≤
∞∑
n=1

rn ≤
∞∑
n=1

θn(r0) <∞

and
∞∑
n=1

d(yn, yn+1) ≤
∞∑
n=1

rn ≤
∞∑
n=1

θn(r0) <∞,

which imply that both {xn} and {yn} are Cauchy sequences in A and B respec-
tively. Since d(xn+1, xn+2) = d(un, un+1) and d(yn+1, yn+2) = d(vn, vn+1), we
have

∞∑
n=1

d(un, un+1) <∞ and

∞∑
n=1

d(vn, vn+1) <∞,
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which imply that both {un} and {vn} are also Cauchy sequences in B and A
respectively.

As A and B are closed in X, there exist x, v ∈ A and y, u ∈ B such that

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

un = u and lim
n→∞

vn = v. (13)

Taking limit as n→∞ in (4) and using (13), we have

d(x, u) = d(A, B) and d(y, v) = d(A, B). (14)

By (5), (13) and the regularity assumption of the space, we have α(xn, x) ≥ 1 and
α(yn, y) ≥ 1, for all n. Using the assumption (iii) and the properties of ψ, we have

D(un, F (x, y)) ≤ H(F (xn, yn), F (x, y)) ≤M(xn, yn, x, y)

≤ ψ
(
d(xn, x), d(yn, y), D(xn, F (xn, yn))− d(A, B),

D(x, F (xn, yn))− d(A,B), D(yn, F (yn, xn))− d(A,B),

D(y, F (yn, xn))− d(A,B)
)

≤ ψ
(
d(xn, x), d(yn, y), d(xn, un)− d(A,B), d(x, un)− d(A,B),

d(yn, vn)− d(A,B), d(y, vn)− d(A,B)
)
. (15)

Taking limit as n → ∞ in (15) and using (13), (14) and the properties of ψ, we
have

D(u, F (x, y)) ≤ ψ
(

0, 0, d(A, B)− d(A, B), d(A, B)− d(A, B),

d(A, B)− d(A, B), d(A, B)− d(A, B)
)

= ψ(0, 0, 0, 0, 0, 0) = 0,

which implies that D(u, F (x, y)) = 0. Since F (x, y) is compact, it is closed. Now,
D(u, F (x, y)) = 0 implies that u ∈ F (x, y) = F (x, y), where F (x, y) is the closure
of F (x, y). Using (14), we have

d(A, B) ≤ D(x, F (x, y)) ≤ d(x, u) = d(A,B),

which implies that

D(x, F (x, y)) = d(A,B). (16)

By (5), (13) and the regularity assumption of the space, we have α(yn, y) ≥ 1 and



B. S. Choudhury, et al. / Existence and Stability of Solutions 367

α(xn, x) ≥ 1. Using the assumption (iii) and the properties of ψ, we have

D(vn, F (y, x)) ≤ H(F (yn, xn), F (y, x)) ≤M(yn, xn, y, x)

≤ ψ
(
d(yn, y), d(xn, x), D(yn, F (yn, xn))− d(A, B),

D(y, F (yn, xn))− d(A,B), D(xn, F (xn, yn))− d(A,B),

D(x, F (xn, yn))− d(A,B)
)

≤ ψ
(
d(yn, y), d(xn, x), d(yn, vn)− d(A,B), d(y, vn)− d(A,B),

d(xn, un)− d(A,B), d(x, un)− d(A,B)
)
. (17)

Taking limit as n → ∞ in (17) and using (13), (14) and the properties of ψ, we
have

D(v, F (y, x)) ≤ ψ
(

0, 0, d(A, B)− d(A, B), d(A, B)− d(A, B),

d(A,B)− d(A,B), d(A,B)− d(A,B)
)

= ψ(0, 0, 0, 0, 0, 0) = 0,

which implies that D(v, F (y, x)) = 0. Since F (y, x) is compact, it is closed. Now,
D(v, F (y, x)) = 0 implies that v ∈ F (y, x) = F (y, x), where F (y, x) is the closure
of F (y, x). Using (14), we get

d(A, B) ≤ D(y, F (y, x)) ≤ d(y, v) = d(A, B),

which implies that

D(y, F (y, x)) = d(A, B). (18)

From (16) and (18), we have (x, y) is a coupled best proximity point of F . Hence
the coupled best proximity point set of F , that is, P (F ) is nonempty.

Example 12. Let X = R2 (R denotes the set of real numbers) and d be a metric
on X defined as d(x, y) = max {| x1 − x2 |, | y1 − y2 |}, for x = (x1, y1), y =
(x2, y2) ∈ X. Let

A = {(t, 0) : 0 ≤ t ≤ 1} ∪ {(0, t) : −∞ ≤ t ≤ −5}

and

B = {(t, 1

32
) : 0 ≤ t ≤ 1} ∪ {(0, t) : 5 ≤ t ≤ ∞}.

Then A0 = {(t, 0) : 0 ≤ t ≤ 1} and B0 = {(t, 1
32 ) : 0 ≤ t ≤ 1}.

Let F : X × X → K(X), ψ : [0, ∞)6 → [0, ∞) and α : X × X → [0, ∞) be
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respectively defined as follows:

F (a, b) =


[0, x+u

128 ]× { 1
32}, if a = (x, 0) ∈ A0 and b = (u, 1

32 ) ∈ B0,
[0, x+u

128 ]× {0}, if a = (x, 1
32 ) ∈ B0 and b = (u, 0) ∈ A0,

{(0, 1
32 )}, if (a, b) ∈ (A×B)− (A0 ×B0),

{(0, 0)}, if (a, b) ∈ (B ×A)− (B0 ×A0),
{( 1

128 ,
1
32 )}, otherwise,

ψ(t1, t2, t3, t4, t5, t6) =
5

16
(t1 + t2 + t3)

and

α(x, y) =

{
1, if (x, y) ∈ (A0 ×A0) ∪ (B0 ×B0),
0, otherwise.

Here all of the conditions of Theorem 11 are satisfied and ((0, 0), (0, 1
32 )) is a

coupled best proximity point of F .

The following theorem can be obtained from Theorem 11 if one treats T :
X ×X → X as a multivalued mapping, that is, T (x, y) is a singleton set for every
(x, y) ∈ X ×X.

Theorem 13. Let (X, d) be a complete metric space having α-regular property,
where α : X ×X → [0, ∞), and (A,B) be a pair of nonempty closed subsets of X
having P -property with A0, B0 6= ∅. Let T : X ×X → X be a mapping such that

(i) T (x, y) ∈ B0 and T (y, x) ∈ A0, for all (x, y) ∈ A×B;

(ii) T is coupled proximal α-dominating with respect to the pair (A,B);

(iii) there exists ψ ∈ Ψ for which T is a generalized coupled proximal contraction
with respect to the pair (A,B).

Then the coupled best proximity point set of T , that is, P (T ) is nonempty.

Proof. Define a multivalued mapping S : X ×X → K(X) as S(x, y) = {T (x, y)}
for (x, y) ∈ X ×X.

Let (a, b) ∈ A × B. By assumption (i) of the theorem, T (a, b) ∈ B0 and
T (b, a) ∈ A0, which imply that S(a, b) ⊆ B0 and S(b, a) ⊆ A0, for (a, b) ∈ A×B.
Since (a, b) ∈ A × B is arbitrary, it follows that S(x, y) ⊆ B0 and S(y, x) ⊆ A0,
for all (x, y) ∈ A×B. So, S satisfies the assumption (i) of Theorem 11.

Let (x, y), (u, v) ∈ A × B and D(u, S(x, y)) = D(v, S(y, x)) = d(A,B). Then
d(u, T (x, y)) = d(v, T (y, x)) = d(A,B). As T is coupled proximal α-dominating
with respect to the pair (A,B), we have α(x, u) ≥ 1 and α(y, v) ≥ 1, which imply
that S is coupled proximal α-dominating with respect to the pair (A,B). So, the
assumption (ii) of the theorem reduces to the assumption (ii) of Theorem 11 for
the mapping S.
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Let (x, y), (u, v) ∈ A× B ∪ B × A with α(x, u) ≥ 1 and α(y, v) ≥ 1. As T
is a generalized coupled proximal contraction with respect to the pair (A, B), we
have

H(S(x, y), S(u, v)) = d(T (x, y), T (u, v)) ≤ N(x, y, u, v)

≤ ψ
(
d(x, u), d(y, v), d(x, T (x, y))− d(A,B), d(u, T (x, y))− d(A,B),

d(y, T (y, x))− d(A,B), d(v, T (y, x))− d(A,B)
)
,

= ψ
(
d(x, u), d(y, v), D(x, S(x, y))− d(A,B), D(u, S(x, y))− d(A,B),

D(y, S(x, y))− d(A,B), D(v, S(x, y))− d(A,B)
)

= M(x, y, u, v),

which implies that S is a generalized coupled proximal contraction with respect
to the pair (A,B), that is, S satisfies the assumption (iii) of Theorem 11.

Therefore, S satisfies all the assumptions of Theorem 11. Hence by appli-
cation of Theorem 11, S has a coupled proximity point, that is there exists
(x, y) ∈ A × B such that D(x, S(x, y)) = D(y, S(y, x)) = d(A,B), which im-
plies that d(x, T (x, y)) = d(y, T (y, x)) = d(A,B). Therefore, (x, y) is a coupled
best proximity point of T , that is, P (T ) is nonempty.

Now we present a few special cases illustrating the applicability of Theorem 11
and Theorem 13.

Remark 14. Taking different suitable functions α and ψ in Theorem 11 and
Theorem 13, we have different corollaries. For examples, we respectively mention
some of the corollaries by taking α(x, y) = 1, for all (x, y) ∈ X×X and choosing
ψ as

(i) ψ(t1, t2, t3, t4, t5, t6) = k max {t1, t2};

(ii) ψ(t1, t2, t3, t4, t5, t6) = k max {t3, t5};

(iii) ψ(t1, t2, t3, t4, t5, t6) = k max {t4, t6};

(iv) ψ(t1, t2, t3, t4, t5, t6) = k max {t1, t2, t3, t4, t5, t6};

where 0 ≤ k < 1.

Corollary 15. Let (X, d) be a complete metric space and (A, B) be a pair of
nonempty closed subsets of X having P -property with A0, B0 6= ∅. Let F : X ×
X → K(X) be a multivalued mapping such that F (x, y) ⊆ B0 and F (y, x) ⊆ A0,
for all (x, y) ∈ A × B. Then the coupled best proximity point set of F , that is,
P (F ) is nonempty if for (x, y), (u, v) ∈ X × X one of the following inequalities
holds:
(i) H(F (x, y), F (u, v)) ≤ k max {d(x, u), d(y, v)};
(ii) H(F (x, y), F (u, v)) ≤ k max{D(x, F (x, y))−d(A,B), D(y, F (y, x))−d(A,B)};
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(iii)H(F (x, y), F (u, v)) ≤ kmax {D(u, F (x, y))−d(A,B), D(v, F (y, x))−d(A,B)};
(iv) H(F (x, y), F (u, v)) ≤ k max {d(x, u), d(y, v), D(x, F (x, y))− d(A,B),

D(u, F (x, y))− d(A,B), D(y, F (y, x))− d(A,B), D(v, F (y, x))− d(A,B)};
where k ∈ [0, 1).

Corollary 16. Let (X, d) be a complete metric space and (A,B) be a pair of
nonempty closed subsets of X having P -property with A0, B0 6= ∅. Let T : X ×
X → X be a mapping such that T (x, y) ∈ B0 and T (y, x) ∈ A0, for all (x, y) ∈
A×B. Then the coupled best proximity point set of T , that is, P (T ) is nonempty
if for (x, y), (u, v) ∈ X ×X one of the inequalities holds:
(i) d(T (x, y), T (u, v)) ≤ k max {d(x, u), d(y, v)};
(ii) d(T (x, y), T (u, v)) ≤ k max {d(x, T (x, y))−d(A,B), d(y, T (y, x))−d(A,B)};
(iii) d(T (x, y), T (u, v)) ≤ k max {d(u, T (x, y))−d(A,B), d(v, T (y, x))−d(A,B)};
(iv) d(T (x, y), T (u, v)) ≤ k max {d(x, u), d(y, v), d(x, T (x, y))− d(A,B)

d(u, T (x, y))− d(A,B), d(y, T (y, x))− d(A,B), d(v, T (y, x))− d(A,B)},
where k ∈ [0, 1).

3. DATA DEPENDENCE RESULT

In this section, we obtain a data dependence result for the proximity point
sets of multivalued coupled mappings consider in the previous section. Result is
utilized to obtain to a weak stability theorem in the following section.

Theorem 17. Let (X, d) be a complete metric space having α-regular property,
where α : X ×X → [0,∞), and (A,B) be a pair of nonempty closed subsets of X
having P -property withA0, B0 6= ∅. Let Fj : X×X → K(X) (j = 1, 2) be two mul-
tivalued mappings such that F2 satisfies the conditions (i), (ii) and (iii) of Theorem
11. Then P (F2) 6= ∅. Moreover, let P (F1) 6= ∅ and there exists M > 0 such that
H(F1(x, y), F2(x, y)) ≤M , for all (x, y) ∈ X×X. Then for every (x∗, y∗) ∈ P (F1)
there exists (x, y) ∈ P (F2) such that max {d(x∗, x), d(y∗, y)} ≤ Φ(M+2d(A,B)).
Moreover, if P (F2) ∈ CB(X × X), then supz∈P (F1)Dρ(z, P (F2)) ≤ Φ(M +

2d(A,B)), where Φ(t) =
∑∞
n=1 θ

n(t).

Proof. By Theorem 11, we have that P (F2) 6= ∅. Suppose that P (F1) 6= ∅. Let
(x∗, y∗) ∈ P (F1). Take (x∗, y∗) = (x0, y0). Then

D(x0, F1(x0, y0)) = d(A,B) and D(y0, F1(y0, x0)) = d(A,B). (19)

By Lemma 1 and (19), there exist p0 ∈ F1(x0, y0) and q0 ∈ F1(y0, x0) such that

d(x0, p0) = D(x0, F1(x0, y0)) = d(A, B)
and

d(y0, q0) = D(y0, F1(y0, x0)) = d(A, B).

 (20)

Also by Lemma 1, there exist u0 ∈ F2(x0, y0) and v0 ∈ F2(y0, x0) such that

d(p0, u0) = D(p0, F2(x0, y0)) and d(q0, v0) = D(q0, F2(y0, x0)). (21)
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From (20) and (21), we have

d(x0, u0) ≤ d(x0, p0) + d(p0, u0) = d(A, B) +D(p0, F2(x0, y0))

≤ d(A, B) +H(F1(x0, y0), F2(x0, y0)) ≤ d(A, B) +M. (22)

Again from (20) and (21), we have

d(y0, v0) ≤ d(y0, q0) + d(q0, v0) = d(A, B) +D(q0, F2(y0, x0))

≤ d(A, B) +H(F1(y0, x0), F2(y0, x0)) ≤ d(A, B) +M. (23)

Arguing similarly as in the proof of Theorem 11, we construct four sequences
{xn}, {vn} in A0 and {yn}, {un} in B0 such that for all n ≥ 0,

un ∈ F2(xn, yn) and vn ∈ F2(yn, xn), (24)

d(un, un+1) = D(un, F2(xn+1, yn+1))
and

d(vn, vn+1) = D(vn, F2(yn+1, xn+1))

 (25)

and also (4)- (6), (8), (11) and (12) are satisfied. Arguing similarly as in the proof
of Theorem 11, we prove {xn}, {vn} and {yn}, {un} are Cauchy sequences in A0

and in B0 respectively and we have (13), that is,

lim
n→∞

xn = x, lim
n→∞

yn = y, lim
n→∞

un = u and lim
n→∞

vn = v.

Similarly as in the proof of Theorem 11, we also have (x, y) is a coupled best
proximity point of F2. Now using (11), (12) and the properties of ψ, we have

d(x0, x) ≤
n∑
k=0

d(xk, xk+1) + d(xn+1, x) ≤
n∑
k=0

rk + d(xn+1, x)

≤
n∑
k=0

θk(r0) + d(xn+1, x). (26)

Taking limit as n → ∞ in (26), using (22), (23) and (4) and property of ψ, we
have

d(x0, x) ≤
∞∑
k=0

θk(r0) = Φ(r0) = Φ(max {d(x0, x1), d(y0, y1)})

≤ Φ(max {d(x0, u0) + d(u0, x1), d(y0, v0) + d(v0, y1)})
≤ Φ(max {M + d(A,B) + d(A,B), M + d(A,B) + d(A,B)})
≤ Φ(M + 2d(A, B)). (27)

Similarly, we have

d(y0, y) ≤ Φ(M + 2d(A, B)). (28)
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Combining (27) and (28), we have

max {d(x0, x), d(y0, y)} ≤ Φ(M + 2d(A, B)).

Therefore, for (x0, y0) ∈ P (F1), there exists (x, y) ∈ P (F2) such that

max {d(x0, x), d(y0, y)} ≤ Φ(M + 2d(A, B)),

which implies that

max {d(x∗, x), d(y∗, y)} ≤ Φ(M + 2d(A, B)).

Let P (F2) ∈ B(X ×X). Then

ρ((x∗, y∗), (x, y)) = max {d(x∗, x), d(y∗, y)} ≤ Φ(M + 2d(A, B)).

For (x∗, y∗) ∈ P (F1) there exists (x, y) ∈ P (F2) such that ρ((x∗, y∗), (x, y)) ≤
Φ(M +2d(A,B)). So, Dρ((x

∗, y∗), P (F2)) ≤ Φ(M +2 d(A,B)). Since (x∗, y∗) ∈
P (F1) is arbitrary, it follows that supz∈P (F1)Dρ(z, P (F2)) ≤ Φ(M + 2 d(A, B)).
Hence the proof of the theorem is completed.

4. STABILITY ANALYSIS

In this section, we perform stability analysis of coupled proximity point sets of
a sequence of multivalued coupled mappings. For this purpose we first prove the
following lemma.

Lemma 18. Let (A,B) be a pair of nonempty subsets of a metric space (X, d) and
α : X×X → [0, ∞). Assume that a sequence of mappings {Fn : X×X → K(X) :
n ∈ N} converges to a mapping F : X ×X → K(X). Suppose there exists ψ ∈ Ψ
such that each Fn, (n ∈ N) is a generalized coupled proximal contraction with
respect to the pair (A, B). Then F is a generalized coupled proximal contraction
with respect to the pair (A, B).

Proof. Let (x, y), (u, v) ∈ (A×B)∪ (B×A) with α(x, u) ≥ 1 and α(y, v) ≥ 1. By
the hypothesis of the lemma, each Fn (n ∈ N) is a generalized coupled proximal
contraction with respect to the pair (A,B), that is,

H(Fn(x, y), Fn(u, v)) ≤M(x, y, u, v)

= ψ
(
d(x, u), d(y, v), D(x, Fn(x, y))− d(A, B),

D(u, Fn(x, y))− d(A,B), D(y, Fn(y, x))− d(A,B),

D(v, Fn(y, x))− d(A,B)
)
.
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As Fn converges to F , taking limit as n → ∞ in above inequality and using the
continuity of ψ, we have

H(F (x, y), F (u, v)) ≤M(x, y, u, v)

= ψ
(
d(x, u), d(y, v), D(x, F (x, y))− d(A, B),

D(u, F (x, y))− d(A, B), D(y, F (y, x))− d(A, B),

D(v, F (y, x))− d(A, B)
)
,

which shows that F is a generalized coupled proximal contraction with respect to
the pair (A, B).

Theorem 19. Let (X, d) be a complete metric space having α-regular property,
where α : X × X → [0, ∞), and (A,B) be a pair of nonempty closed subsets
of X having P -property with A0, B0 6= ∅. Assume that a sequence of mappings
{Fn : X ×X → K(X) : n ∈ N} converges uniformly to a mapping F : X ×X →
K(X) and each Fn (n ∈ N) satisfies the conditions (i), (ii) and (iii) of Theorem
11 and F satisfies the conditions (i) and (ii) of Theorem 11. Then P (Fn) 6= ∅, for
all n ∈ N and P (F ) 6= ∅. Also let (a) Φ is continuous, where Φ(t) =

∑∞
n=1 θ

n(t);
(b) each P (Fn) (n ∈ N) and P (F ) are closed and bounded subsets of X and
(c) Mn = sup(x, y)∈X×X H(F (x, y), Fn(x, y)) exists for each n ∈ N. Then the
coupled best proximity point sets of the sequence of mappings {Fn} are weakly
stable.

Proof. By the hypothesis of the theorem and Lemma 18, F is a generalized coupled
proximal contraction with respect to the pair (A,B). By Theorem 11, P (Fn) 6= ∅,
for all n ∈ N and P (F ) 6= ∅. By Theorem 17, we have for each n ∈ N,

sup
z∈P (Fn)

Dρ(z, P (F )) ≤ Φ(Mn + 2 d(A, B))

and
sup

z∈P (F )

Dρ(z, P (Fn)) ≤ Φ(Mn + 2 d(A, B)),

where Mn = sup(x, y)∈X×X H(F (x, y), Fn(x, y)).
Combining these, we have

Hρ(P (F ), P (Fn)) ≤ Φ(Mn + 2d(A, B)), for all n ∈ N. (29)

As Fn converges to F uniformly, we have

lim
n→∞

Mn = lim
n→∞

sup
(x, y)∈X×X

H(F (x, y), Fn(x, y)) = 0. (30)

Taking limit supremum on both sides of (29) and using (30) and the continuity of
Φ, we have

lim sup
n→∞

Hρ(P (F ), P (Fn)) ≤ Φ(2d(A, B)) = R, where R = Φ(2d(A, B)).
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Hence the coupled best proximity point sets of the sequence of mappings {Fn} are
weakly stable.

Remark 20. It may be noted from the above that in case F is a singlevalued
coupled mapping, that is, F is from X × X to X, then the above weak stability
result reduces to a stability result.

Example 21. We take the metric space (X, d), the sets A, B and the mappings
ψ and α, as taken in Example 12. Let Fn, F : X × X → K(X) be defined as
follows:

Fn(a, b) =


[0, x+u

128+n ]× { 1
32}, if a = (x, 0) ∈ A0 and b = (u, 1

32 ) ∈ B0,

[0, x+u
128+n ]× {0}, if a = (x, 1

32 ) ∈ B0 and b = (u, 0) ∈ A0;

{(0, 1
32 )}, if (a, b) ∈ (A×B)− (A0 ×B0),

{(0, 0)}, if (a, b) ∈ (B ×A)− (B0 ×A0),
{( 1

128 ,
1
32 )}, otherwise

and

F (a, b) =

 {(0,
1
32 )}, if a = (x, 0) ∈ A0 and b = (u, 1

32 ) ∈ B0,
{(0, 0)}, if a = (x, 1

32 ) ∈ B0 and b = (u, 0) ∈ A0,
{( 1

128 ,
1
32 )}, otherwise.

Here all the conditions of Theorem 19 are satisfied and P (Fn) = {(0, 0), (0, 1
32 )},

for every n ∈ N and P (F ) = {(0, 0), (0, 1
32 )}. Hence by an application of theorem

4.1, the coupled best proximity point sets of the sequence of mappings {Fn} are
here weakly stable, precisely stable.

5. CONCLUSIONS

This paper is a contribution to the vast field of setvalued optimization in which
an analytic method is applied. There are further scopes of obtaining results of
similar nature by employing other types of coupled setvalued contractions. The
geometric property, that is the P-property we have used may possibly be weakened
in the contexts of other appropriate coupled mappings. In the study of stability
of the solution sets the relation between stability and weak stability may be an
interesting study. These considerations may provide motivations for future works.

Acknowledgement: The learned reviewers’ suggestions are gratefully acknowl-
edged.
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