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1. FUZZY SETS AND NORMS

The real world problems may not seem practically real when it comes to as-
signing mathematical values to events. The application part of the mathematical
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analysis usually in compliance with classical boolean logic works on the concept
of “yes or 1” and “no or 0” . One such example can be considered as the set of all
buildings that lie in Mumbai for which the mathematical value 1 can be assigned
if the buildings lie within and 0 can be assigned if they lie outside. Formally
the stated explanation can be defined in terms of a function commonly known as
characteristic function by

fA : X → {0, 1} such that fA(x) =

{
1, if x ∈ A,
0, otherwise,

where A and X denote the set of all buildings in Mumbai and India respectively.
If we relax the condition from buildings lying exactly in Mumbai to the buildings
that lie in the vicinity of Mumbai, the problem arises to know the extent to which a
building lies near the city; then the concept of assigning numbers just 0 or 1 to the
buildings become a little tedious because of the reason that some buildings might
lie within the city, some may lie on the boundary where as some will be at the
outskirts of the city. Therefore while defining the set of these buildings we cannot
neglect the ones that lie on the boundary or outside the boundary. Therefore we
need a generalized form of this characterisitc function whose range is not limited
to just 0 or 1.

To overcome problems of these sort, L.A. Zadeh in 1965 [1] came up with
the concept of fuzzy set. According to his theory, in this case the characteristic
function should take values between 0 and 1 along with {0, 1}, which he termed as
membership function denoted by µA, as a generalisation of characteristic function
fA. Formally he defined the fuzzy set as the pair A = (X , µA) = {(x, µA(x)) : x ∈
X}, where X is the space of objects and µA : X → [0, 1] is the membership function
such that for each element x ∈ X , µA(x) denotes the “grade of membership” of x
in A, which can be interpreted as the extent to which an element may lie in the
set. In the above defined fuzzy set, X is also termed as universe of discourse. A
fuzzy set can be characterised in terms of its membership function.

In the fuzzy set A = (X , µA), if µA(x) = 0, µA(x) = 1 or 0 < µA(x) < 1,
we say that x is not a member, full member or a partial member of the fuzzy
set respectively. If for some x ∈ X µA(x) = 1, then A is known as a normalized
fuzzy set. A classical or a crisp set can be seen as a specific case of the fuzzy set.
Following is an example of a real world problem to give an insight into how a fuzzy
set looks like.

Example 1. Let X be the set of varying temperatures between -50 and 70 in degree
celcius and A be the set of high temperatures. Since the set A does not specify
precisely how “high” is considered high, therefore the values of the membership
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function µA : X → [0, 1] which can be defined as follows, takes different values.

µA(x) =



0 if− 50 < x ≤ 12,

0.1 if 12 < x ≤ 20,

0.3 if 20 < x ≤ 24,

0.5 if 24 < x ≤ 30,

0.7 if 30 < x ≤ 40,

0.8 if 40 < x ≤ 55,

1 if 55 < x ≤ 70.

Correspondingly the fuzzy set A can be defined as the ordered pair A = (X , µA) =
{(−50 < x ≤ 12, 0), (12 < x ≤ 20, 0.1), (20 < x ≤ 24, 0.3), (24 < x ≤ 30, 0.5), (30 <
x ≤ 40, 0.7), (40 < x ≤ 55, 0.8), (55 < x ≤ 70, 1)}.

The natural instinct of defining operations can be thought of in fuzzy settings just
as there are well defined set operations in the classical set theory. The standard
notions of union, intersection, containment, complement, emptiness and equality
used for the crisp sets are associated with fuzzy sets in terms of membership
function that are defined as follows :

� Two fuzzy sets A and B of X are identical ⇐⇒ µA(x) = µB(x), ∀ x ∈ X .

� A fuzzy set A is said to be empty ⇐⇒ µA(X ) = 0, ∀ x ∈ X .

� A fuzzy set B contains the fuzzy set A i.e., A ⊆ B ⇐⇒ µA(x) ≤ µB(x),
∀ x ∈ X .

� The complement of a fuzzy set A is symbolised by Ā and interpreted as
µĀ = 1− µA.

� Union of two fuzzy sets A and B is a fuzzy set C denoted by C = A ∪ B
interpreted by µC(x) = max{µA(x), µB(x)}, ∀ x ∈ X .

� Intersection of two fuzzy sets A and B is a fuzzy set D denoted by D = A∩B
interpreted by membership function as µD(x) = min{µA(x), µB(x)}, ∀ x ∈
X .

For more details on fuzzy sets and operations defined on them, we refer to [1].

We present the following geometrical interpretations of intersection, union and
complement of fuzzy sets. Consider two fuzzy sets A,B and universe of discourse
R as shown in figure 1.
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Figure 1: Membership functions of A and B, µA=blue line, µB= red line
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Figure 2: A ∩ B
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Figure 3: A ∪ B

1.1. Fuzzy Metric

Motivation

In 1906, M. Frechet [2] introduced the notion of distance between two points
of an abstract space, which he defined formally for any nonempty crisp set X as
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the function δ : X × X → R satisfying

(i) δ(a,b) > 0 for a 6= b (positivity),

(ii) δ(a,b) = 0 ⇐⇒ a = b (identification),

(iii) δ(a,b) = δ(b,a) (commutativity),

(iv) δ(a,b) + δ(b, c) ≥ δ(a, c) (triangle inequality),

known as a metric , which denotes the distance between two points a and b of X
and is a single real number and the pair (X , δ) is known as metric space. If from
the above conditions of the metric, we remove the condition of triangle inequality
then the distance funtion δ is said to be a semi–metric and the pair (X , δ) is a
semi–metric space.

The concept of associating a single number to distance between two points
may not always be realistically true because of the fact that several discrepancies
arise while measuring it multiple times. To avoid such problem we usually take
the average of all the measurements which might also be quite tedious. Therefore
one can see the metric function as “statistical” rather than a determinate, that
is to say for x > 0 one can associate a distribution function Fab for a and b
which is interpreted as the probability that the distance between the points is less
than x. This concept introduced by K. Menger in 1942 [3] can be fairly seen as a
generalization of the usual metric, known as statistical metric.
Following are the notions of certain terms that are required to define the statistical
metric.

Definition 2. Random variable: A random variable usually denoted by X, is a
variable in statistics whose possible values depend on the consequence of a certain
random occurence.
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Definition 3. Distribution function: Let X be a random variable, the distribution
function of F is a function FX : R→ [0, 1] such that FX(x) = P (X ≤ x), ∀ x ∈ R,
where P (X ≤ x) can be interpreted as the probability that X ≤ x.

The distribution function F satisfies the following properties:

(i) It is non–decreasing,

(ii) It is left continuous and

(iii) FX(x)→ 0 when x→ −∞ and FX(x)→ 1 when x→∞.

One such distribution function H : R→ {0, 1} defined as

H(x) =

{
1, if x > 0,

0, if x ≤ 0,
(1)

will be used to relate the ordinary metric with the statistical metric.

According to K. Menger, a non–empty set X is called a statistical semi metric
space if for any a and b ∈ X , a real function F : X × X × R → R satisfies the
following properties:

(i) F (a,b;x) = 0 for x ≤ 0 and F (a,b;x)→ 1 when x→∞,

(ii) F (a,b;) : R→ R is a non–decreasing function of x and left continuous,

(iii) F (a,b;x) = F (b,a;x) and

(iv) F (a,a;x) = 1 for x > 0,

where the associated real number F (a,b;x) can be treated as a probability distri-
bution function of the distance between a and b i.e., it denotes the probability that
the distance between a and b is less than x. Another common notion to denote
this probability distribution function, which we will use throughout the chapter is
Fab(x).

Following are the explanations of the above mentioned properties:

� For x = 0 or x < 0, the distance between any two points a,b of X cannot
be less than x, therefore the probability that the distance between a and b
less than x must be 0 i.e. F (a,b;x) = 0 for x ≤ 0.
If the real number x tends to ∞, then for any two points a and b of X , the
distance between them is always less than x, therefore the probability that
the distance between a and b less than x must be 1 i.e., lim

x→∞
F (a,b;x) = 1,

� Suppose x1,x2 ∈ R satisfies x1 ≤ x2. Fix a,b ∈ X , the probability that the
distance between a and b less than x1 is always less than probability that
the distance between a and b less than x2 that is, F (a,b; x1) ≤ F (a,b; x2)
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whenever x1 ≤ x2. Let x0 and x ∈ R such that x→ x0 from the left and fix
a,b ∈ X . Clearly lim

x→x0

F (a,b;x) ≤ F (a,b; x0) i.e. F (a,b;.) is left continuous

in x.

� Since δ(a,b) = δ(b,a), therefore P (δ(a,b) < x) = P (δ(b,a) < x).

� Since δ(a,a) = 0 for any a ∈ X , the probability that the δ(a,a) < x for any
x > 0 is always 1.

It is clearly evident that the conditions of the statistical semi–metric (i), (iii)
and (iv) are the generalized form of positivity, commutativity and identification
respectively of the usual metric, hence every semi–metric space is a statistical
semi–metric space. Since the statistical semi–metric lacks the notion of triangle
inequality, therefore one cannot obtain it from the usual metric. Thus there is a
need to generalise the triangle inequality to generalize the statistical semi–metric
and the concept of new metric thus obtained will be known as statistical metric.

Definition 4. Let X be a set such that X 6= φ and F is a function from X × X
into the set of distribution functions i.e., for every pair a,b ∈ X it associates
the distribution function F(a,b) = Fab. Then the pair (X ,F) is called statisitcal
metric space if for every any a,b,c of X and real argument x and y, the function
Fab satisfies the following conditions:

(i) Fab(x) = 1 for all x > 0 iff a = b,

(ii) Fab(x) = 0 for x ≤ 0,

(iii) Fab(x) = Fba(x), ∀ x ∈ R,

(iv) Fab(x) = 1 and Fbc(y) = 1, then Fac(x+y) = 1.

Explanation of the above mentioned properties in (i), (ii) and (iii) have already
been provided in statistical semi–metric. The property mentioned in the last point
is a generalized form of triangle inequality in statistical sense which can interpreted
as; if it is obvious that the probability that the distance between a,b less than x
is 1 and the probability that the distance between b,c less than y is 1, then it is
also obvious that the probability that the distance between a, c less than x+y is
1.

The very natural instinct that comes into the mind while studying metric
spaces is the concept of a neighbourhood which is defined in terms of the metric.
A similar approach can be constructed to define a neighbourhood in the statistical
metric space. Scheweizer and Sklar defined the neighbourhood as the set of all
points in a non-empty set such that the probability of the distance from a fixed
point to the other points less than ε is greater than 1 − t, where ε ∈ (0, 1) and
t > 0. The formal definition was given by them as,
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Definition 5. [4] Let (X ,F) be a statistical metric space and a ∈ X . For ε ∈
(0, 1),x > 0, the ε,x neighbourhod of a is the collection of all b ∈ X such that
Fab(x) > 1− ε and is denoted as Na(x, ε) = {b : Fab(x) > 1− ε}.

Here Na(x, ε) is the neighbourhood with center at a, radius x > 0 with probability
parameter ε.

We are well aware with the notion of convergence of a sequence in a metric
space being initiated with the help of neighbourhood. Moving on similar lines one
can draw parallel and generalize the idea of convergence in a statistical metric
space, see [4].

Definition 6. A sequence {an} of points in a statistical metric space (X ,F) con-
verges to some a ∈ X if and only if, for each ε > 0 and x > 0, ∃ an integer Kx,ε,
such that ∀ n > Kx,ε, an ∈ Na(x, ε) i.e., Faan(x) > 1− ε.

Remark 7. On a non–empty set X , every usual metric space is a statistical metric
space defined by relation Fab(x) = H(x− δ(a,b)), for every a, b ∈ X .

Proof. Suppose δ is a usual metric on X , ∀ a,b,c ∈ X ,

� If δ(a,b) = 0 ⇐⇒ a = b. Then Fab(x) = H(x) =

{
0, if x ≤ 0,

1, if x > 0,
.

Therefore for x > 0, Fab = 1 ⇐⇒ a = b.

� For x ≤ 0, from the equation (1) it follows that Fab(x) = 0.

� Let δ(a,b) ≥ 0, now Fab(x) =

{
1, if x > δ(a,b),

0, if x ≤ δ(a,b).

Since δ(a,b) ≥ 0, taking x > δ(a,b) ≥ 0, we have Fab(x) = 1.

� Let δ(a,b) = δ(b,a), then

Fab(x) =

{
1, if x > δ(a,b),

0, if x ≤ δ(a,b),

=

{
1, if x > δ(b,a),

0, if x ≤ δ(b,a), ∀ x

= Fba(x)

� Fab(x) = 1 implies P (δ(a,b) < x) = 1 and Fbc(y) = 1 implies P (δ(b,c) <
y) = 1, since by triangle inequality of usual metric δ we have δ(a,c) ≤
δ(a,b) + δ(b,c), this implies P (δ(a,c) < x+y) = 1. Hence Fac(x+y) = 1.

Note 1. In statistical metric space, Fab(x) = 1 does not imply a = b
for a real argument x in general.
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The above mentioned triangle inequality defined by Menger does not include values
of the distribution function which are less than 1, thus rendering it to be a weak
condition i.e., to say that the triangle inequality becomes a null condition when
Fab(x) < 1. Thus to overcome the restriction imposed on Fab, we need a stronger
triangle inequality that does not restrict its value to just 1. This generalized version
of the inequality was defined by Menger [3] wherein he stated the existence of a
function TF defined as

TF (t1, t2) = inf{Fab(x+y) : Fac(x) ≥ t1, Fbc(y) ≥ t2} (2)

where TF : [0, 1]× [0, 1]→ [0, 1] satisfy the following conditions:

� TF (t1, t2) ≤ TF (s1, s2) for t1 ≤ s1, t2 ≤ s2,

� TF (t1, t2) = TF (t2, t1),

� TF (1, 1) = 1 and

� TF (Fac(t1), Fbc(t2)) ≤ Fab(t1 + t2).

The above mentioned postulates helped Menger come up with the notion of
Menger space which incorporates the concept of a function named t–norm whose
properties are derived from those of boolean logic and fuzzy logic which are for-
mally defined as follows.

1.2. Boolean logic & Fuzzy logic

A form of algebra involving operations based on the truth values of the variables
yes and no, denoted by 1 and 0, respectively, is known as boolean logic. The
primary operations concerning boolean logic are mainly conjunction, disjunction
and negation.
Let A be a proposition and P be the collection of statements that may or may not
satisfy A, then the truth value T : P → {0, 1} is a function defined by

T (p) =

{
1, if p satisfies A ,

0, otherwise .
(3)

The basic operations of Boolean logic are as follows:

� Conjunction (AND), denoted by the symbol ∧, is given by T (p1 ∧ p2) =
min{T (p1), T (p2)}.

� Disjunction (OR), denoted by the symbol ∨, is given by T (p1 ∨ p2) =
max{T (p1), T (p2)}.

� Negation (NOT), denoted by the symbol ¬ , is given by ¬T (p1) = 1− p1.
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where p1 and p2 are two statements whose truth values are T (p1) and T (p2)
respectively. Following is the truth table of statements p1, p2, conjunction, dis-
junction and their negations.

T (p1) T (p2) T (p1 ∧
p2)

T (p1 ∨
p2)

T (¬p1) T (¬p2)

1 1 1 1 0 0
0 1 0 1 1 0
1 0 0 1 0 1
0 0 0 0 1 1

Properties of Boolean logic
The following are the basic properties of boolean operators ∧,∨ and ¬

� Commutativity of ∧ and ∨ :
p1 ∧ p2= p2 ∧ p1 and p1 ∨ p2= p2 ∨ p1.

� Associativity of ∧ and ∨:
p1 ∧ (p2 ∧ p3) = (p1 ∧ p2) ∧ p3 and p1 ∨ (p2 ∨ p3) = (p1 ∨ p2) ∨ p3.

� Distributivity of ∧ over ∨:
p1 ∧ (p2 ∨ p3) = (p1 ∧ p2) ∨ (p1 ∧ p3).

� Distributivity of ∨ over ∧:
p1 ∨ (p2 ∧ p3) = (p1 ∨ p2) ∧ (p1 ∨ p3).

� Identity of ∧ and ∨:
p1 ∧ 1 = p1 and p1 ∨ 0 = p1.

� Annhilator of ∧ and ∨:
p1 ∧ 0 = 0 and p1 ∨ 1 = 1.

� Idempotence of ∧ and ∨:
p1 ∧ p1 = p1 and p1 ∨ p1 = p1.

� Absorption of ∧ and ∨:
p1 ∧ (p1 ∨ p2) = p1 and p1 ∨ (p1 ∧ p2) = p1.

� Complementation of ∧ and ∨:
p1 ∧ ¬p1 = 0 and p1 ∧ ¬p1 = 1.

� De Morgan’s Law:
¬p1 ∧ ¬p2 = ¬(p1 ∨ p2) and ¬p1 ∨ ¬p2 = ¬(p1 ∧ p2).

Fuzzy logic
As observed in crisp logic, any statement is either true or false with their truth
values 1 and 0 respectively whereas fuzzy logic demands the statements to be
maybe partially true, therefore fuzzy logic is a form of multi-valued logic in which
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the truth value of variables may be any real number in [0, 1].
Then the truth values µA, a generalization of characteristic function T , is identified
by the fuzzy set in terms of its membership function, µA : P → [0, 1].

The basic operations of Fuzzy logic are as follows:

� Conjunction (AND), denoted by the symbol ∧, is given by µA(p1)∧µA(p2) =
min{µA(p1), µA(p2)}.

� Disjunction (OR), denoted by the symbol ∨, is given by µA(p1) ∨ µA(p2) =
max{µA(p1), µA(p2)}.

� Negation (NOT), denoted by the symbol ¬ , is given by ¬µA = 1− µA.

These operations can be defined in terms of function as follows:

Definition 8. An operation C : [0, 1]× [0, 1]→ [0, 1] is said to be a fuzzy conjunc-
tion if C(1, 1) = 1, C(0, 0) = C(0, 1) = C(1, 0) = 0, C(x,y) ≤ C(x, z) if y ≤ z and
C(u,v) ≤ C(w,v) if u ≤ w.

The zero element for the fuzzy conjunction is 0.

Definition 9. An operation D : [0, 1]× [0, 1]→ [0, 1] is said to be a fuzzy disjunc-
tion if D(0, 0) = 0,D(1, 1) = D(0, 1) = D(1, 0) = 1, D(x,y) ≤ D(x, z) if y ≤ z
and D(u,v) ≤ D(w,v) if u ≤ w.

The zero element for the fuzzy disjunction is 1.

To generalize the triangle inequality from the statistical metric space to Menger
space, we define the following concepts.

Definition 10. [4] Let ∗ : [0, 1]× [0, 1] −→ [0, 1] be a binary operation. Then ∗ is
known as a t-norm if for each 0 ≤ a,b, c,d ≤ 1,
(i) a ∗ b = b ∗ a and a ∗ (b ∗ c) = (a ∗ b) ∗ c,
(ii) a ∗ 1 = a ,
(iii) If a ≤ c and b ≤ d then a ∗ b ≤ c ∗ d.

A t-norm is known as a continuous t-norm if it satisfies contintuity as a function.
The idempotents of a t-norm are those a ∈ [0, 1] satisfying a ∗ a = a.

Definition 11. [4] Let � : [0, 1]× [0, 1] −→ [0, 1] be a binary operation. Then � is
known as a t-conorm if for each 0 ≤ a,b, c,d ≤ 1,
(i) a � b = b � a and a � (b � c) = (a � b) � c,
(ii) a � 0 = a,
(iii) If a ≤ c and b ≤ d then a � b ≤ c � d.

A t-conorm is called a continuous t-conorm if it satisfies contintuity as a function.
The idempotents of a t-conorm are those a ∈ [0, 1] satisfying a � a = a.
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Triangular norms and conorms are operations which extend the ideas of the two
valued logical conjunction and logical disjunction to fuzzy logic. The monotonicity
property of the t-norm and t-conorm ensures that the degree of truth of conjunction
and disjunction does not decrease when the truth values of the conjuncts and the
disjuncts increase respectively. Their repective identities 1 and 0 corresponds to
the explication as that of truth and false. The continuity of t-norm and t-conorm
suggests that minor changes in truth values of conjuncts and disjuncts changes the
truth values of conjunction and disjunction microscopically. They can be seen as
dual notions of each other.
t-norm and t-conorm are employed to construct the intersection and union of fuzzy
sets or as a basis for fuzzy set operations.

Example 12. For 0 ≤ a,b ≤ 1, a ∗ b = min{a,b},a ∗ b = a.b and their duals
a � b = max{a,b},a � b = a + b − ab are examples of continous t-norm and
t-conorm respectively.

Example 13.

a ∗ b =


a if b = 1 ,

b if a = 1 ,

0 if a 6= 1,b 6= 1

and its dual

a � b =


a if b = 0 ,

b if a = 0 ,

1 if a 6= 0,b 6= 0

is an example of a right continuous t-norm and t-conorm.

Example 14.

a ∗ b =

{
min{a,b} if 1 < a + b ,

0 if 1 ≥ a + b

and its dual

a � b =

{
max{a,b} if 1 < a + b ,

1 if 1 ≥ a + b

is an example of a left continuous t-norm and t-conorm.

Now using t-norm, the generalized concept of statistical metric space is described
as below:
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Definition 15. Let X 6= φ and F : X × X → F where F is the set of distribu-
tion functions i.e. for every pair a,b ∈ X it associates the distribution function
F(a,b) = Fab. Then the pair (X ,F) is called Menger metric space if for every
any a,b, c of X and real arguments x and y, the function Fab complies with the
following conditions:

(i) Fab(x) = 1 for all x > 0 iff a = b,

(ii) Fab(x) = 0 for x ≤ 0,

(iii) Fab(x) = Fba(x) ∀ x ∈ R,

(iv) Fab(t1 + t2) ≥ Fac(t1) ∗ Fbc(t2).

We have seen earlier in this chapter how the concept of associating a single
number to the distance between two points in usual metric space was generalized
to statistical metric space in terms of distribution function. An another approach
was defined to measure this distance in the settings of fuzzy notion which incor-
porated the idea of assigning values from [0, 1] to multiple statements proclaiming
something concerning the distance. The idea lies behind the concept of finding
the degree of truth for which the underlying distance is smaller than a given real
number.

By lemma 2 page number 340 [5], any metric δ on a set X 6= φ, is uniquely deter-
mined by relation defined by Rδ ⊂ X × X × R so that ∀ x,y ∈ X and t ∈ R, the
relation Rδ(x,y, t) is valid iff δ(x,y) < t.

In [5], the authors came forward with the notion of fuzzy metric space to which
George and Veeramani made a slight modification [6] and defined it as following:

Definition 16. Let X be set such that X 6= φ, ∗ is a continuous t–norm and M is
a fuzzy set on X ×X × [0,∞) , then the 3–tuple (X ,M, ∗) is called a fuzzy metric
space if for all x,y, z ∈ X and t, s ∈ [0,∞), if M fulfils the following requirements:

(i) M(x,y, t) > 0 and M(x,y, 0) = 0,

(ii) M(x,y, t) = 1, ∀ t > 0 ⇐⇒ x = y ,

(iii) M(x,y, t) = M(y,x, t),

(iv) M(x, z, t + s) ≥M(x,y, t) ∗M(y, z, s),

(v) M(x,y, .) is continuous .

Here M is known as a fuzzy metric in the fuzzy metric space (X ,M, ∗). The fuzzy
metric space is known as Menger fuzzy metric space if M(x,y, t)→ 1 when t→∞
where M(x,y, t) becomes Fxy(t) ∀ x,y ∈ X and t > 0. In the sequel we will use
the notion of Menger fuzzy metric space.

It is quite evident that the properties mentioned in (i), (ii) and (iii) are gen-
eralised forms of non–negativity, identity and symmetry respectively of usual
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metric. These generalisations do not suggest the properties to be fuzzy but in-
stead focuses on the fuzziness of the distance parameter (t). The fuzzy metric
transforms into a fuzzy pseudo–metric when the condition in (ii) is replaced by
M(x,x, t) = 1 ∀ x ∈ X and t > 0. Condition (iv) is a generalization of the
triangle inequality which can be interpreted as, if the degree of our belief that the
distance between x and y less than t is certain and simultaneously the degree of
our belief that the distance between y and z less than s is certain, then we are
certain that the degree of our belief that the distance between x and z will be less
than t + s. We know that a function is continuous if and only if it is both right
and left continuous. Left continuity can be thought of as degree of belief of the
distance between x and y strictly less than t and right continuity can be thought
of as degree of belief of the distance between x and y strictly less than or equal to
t. It is obvious that metric space implies fuzzy metric space.
The condition where the distance parameter t tends to infinity, ensures the finite-
ness of the distance. If we understand the real function M(x,y, t) as a degree
of certainity that the distance δ(x,y) is less than t, it is obvious that for any
s ≥ t, the inequality M(x,y, s) ≥ M(x,y, t) holds. Therefore it can be stated
that M(x,y, .) is a non–decreasing function of t.

Example 17. Let (X , δ) be a metric space and a ∗ b = min{a,b} ∀ a,b ∈ [0, 1].
Define M(x,y, t) = t

t+δ(x,y) . Then (X ,M, ∗) is a fuzzy metric space which is also

known as standard fuzzy metric space induced by δ.

Proof. For all x,y, z ∈ X and s, t > 0 we have,

� Since δ(x,y) ≥ 0 therefore M(x,y, t) > 0 and for t = 0 we have M(x,y, t) =
0.

� Let x = y and t > 0 =⇒ δ(x,y) = 0, therefore M(x,y, t) = 1. Conversely
suppose M(x,y, t) = 1 for t > 0 thus t

t+δ(x,y,) = 1 =⇒ δ(x,y) = 0.

� Since δ(x,y) = δ(y,x), therefore M(x,y, t) = M(y,x, t).

� Let min{M(x,y, t),M(y, z, s)} = M(x,y, t) i.e.,

M(x,y, t) ≤M(y, z, s) =⇒ t

t + δ(x,y)
≤ s

s + δ(y, z)
=⇒ δ(y, z)

s
≤ δ(x,y)

t
.

(4)

Now if x = z we have t ≤ s. Thus for x 6= z, we have

2
δ(x,y)

t
≥ δ(x,y)

t
+
δ(y, z)

s

≥ 2

t + s
(δ(x,y) + δ(y, z))

≥ 2
δ(x, z)

t + s
.
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=⇒ tδ(x, z) ≤ (t + s)δ(x,y) =⇒ 1 + δ(x,y)
t ≥ 1 + δ(x,z)

t+s . Therefore
t

t+δ(x,y) ≤
t+s

(t+s)+δ(x,z) which implies M(x,y, t) ≤M(x, z, t + s). The state-

ment can be verified on similar grounds if the above mentioned minimum is
M(y, z, s).

� It is evident that M(x,y, .) is continuous in t.

Example 18. Let (X , δ) be a metric space and a ∗ b = ab ∀ a,b ∈ [0, 1]. Define

M(x,y, t) =

[
exp

(
δ(x,y)

t

)]−1

∀ x,y ∈ X and t > 0. Then (X ,M, ∗) is a fuzzy

metric space.

Just as we mentioned the concepts of open ball and convergence in statistical
metric space prior in the chapter; we move forward and define same concepts on
fuzzy metric space which was defined by George and Veeramani.

Definition 19. [6] An open ball B(x, r, ε) with center x ∈ X , r > 0 with respect
to parameter of fuzziness 0 < ε < 1 in a fuzzy metric space (X ,M, ∗) is defined as
B(x, r, ε) = {z ∈ X : M(x, z, r) > 1− ε}.

Definition 20. [6] Consider the fuzzy metric space (X ,M, ∗). A sequence {xn} ∈
X converges to some x ∈ X if for all 0 < ε < 1 and t > 0, M(xn,x, t) > 1− ε.

We suggest the readers to further look into the topological properties of fuzzy
metric space defined by George and Veeramani in [6].

2. FUZZY NORM

The primary motivation to develop the norm was to measure the length of a
vector in a vector space X . It can be thought of as a function on the vector space
formally defined as f : X → R satisfying some standard properties. To be precise
in order to visualise the concept, one can imagine it to be as the distance of a
vector from the origin.

Definition 21. Let X be a linear space over K. A functional ||.|| : X → K is
called a norm if ∀ x,y ∈ X and λ ∈ K, it fulfils the following requirements:

� ||x|| ≥ 0,

� ||x + y|| ≤ ||x||+ ||y||,

� ||λx|| = |λ|||x||,

� ||x|| = 0 iff x = 0.

Consequently the pair (X , ||.||) is called a normed space.
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A natural generalization of the classical norm can be defined on parallel lines in
fuzzy setting, keeping in mind the original properties of the norm are intact. The
key difference is that in the classical sense, the norm is a non–negative real valued
function which defines the length of a vector whereas fuzzy norm denotes the de-
gree of truth of the length of a vector or the degree of truth that the distance of
a vector from origin which lies in [0, 1].

Primarily introduced by Katsaras [7] ; fuzzy normed spaces(FNS) was then
studied by various authors with Felbin [9] being the one to introduce the concept
of fuzzy norm on a vector space by associating an element of the underlying vector
space with a fuzzy real number. In 2003, Bag and Samanta [8] established the
base of an even general fuzzy norm. To generalise this concept of fuzzy norm ,
Saadati and Vaezpour brought forward the definition of fuzzy normed space.

Definition 22. [10] Let X be a linear space over K(R or C) and ∗ is a continuous
t-norm, then a fuzzy subset, N : X × [0,∞)→ [0, 1] is said to be a fuzzy norm on
the space X if for all x,y ∈ X and s, t ∈ [0,∞), the following conditions hold;

(i) N(x, t) > 0 and N(x,, 0) = 0,

(ii) N(x, t) = 1, ∀ t > 0 ⇐⇒ x = 0 ,

(iii) N(λx, t) = N
(
x, t
|λ|
)
∀ λ > 0,

(iv) N(x, t) ∗N(y, s) ≤ N(x + y, t + s),

(v) N(x, .) : [0,∞)→ [0, 1] is left continuous and

(vi) N(x, t)→ 1 when t→∞.

The three tuple (X , N, ∗) is said to be fuzzy normed space.
Condition (iii) can be interpreted as; for α > 0, N(αx, t) denotes the degree of
truth that ||αx|| < t. Now, ||αx|| < t =⇒ ||x|| < t

|α| . Therefore for α > 0,

N(αx, t) can also be stated as the degree of truth that length of vector x is less
than t

|α| .

Remark 23. Clearly every normed space is a fuzzy normed space.

Every fuzzy normN on X induces a fuzzy metricM given by the relationM(x,y, t) =
N(x− y, t) for all x,y,∈ X .

Example 24. Suppose (X , ||.||) be a normed space. Define a ∗ b = a.b, ∀ 0 ≤
a,b ≤ 1 and

N(x, t) =
ktn

ktn + m||x||
for any k,m,n ∈ N.

Clearly (X , N, ∗) is a fuzzy normed space.
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Example 25. Consider the normed space (X , ||.||). Define a ∗ b = a.b, ∀ 0 ≤
a,b ≤ 1 and

N(x, t) =
1(

exp ||x||t

)∀ x ∈ X and t > 0.

Clearly (X , N, ∗) defines a fuzzy normed space.

Proof. We only verify the triangle inequality since the other conditions follow eas-
ily.
Let x,y ∈ X and t > 0, then

N(x, t) ∗N(y, s) =

(
exp
||x||
t

)−1

.

(
exp
||y||

s

)−1

=

(
exp
||x||
t

+
||y||

s

)−1

.

Since
||x||
t

+
||y||

s
≥ ||x||

t + s
+
||y||
t + s

≥ ||x + y||
t + s

.

Therefore

(
exp ||x||t

)−1

.

(
exp ||y||s

)−1

≤
(

exp ||x+y||
t+s

)−1

, which implies N(x, t)∗

N(y, s) ≤ N(x + y, t + s).

Definition 26. [8] An open ball in the fuzzy normed space (X , N, ∗) of radius
r > 0, centered at x ∈ X with respect to parameter of fuzziness 0 < ε < 1 is
depicted by B(x, r, ε) = {z ∈ X : N(x− z, r) > 1− ε}.

Definition 27. [8] A sequence {xn} in the fuzzy normed space (X , N, ∗) is con-
vergent to a point x ∈ X , if N(xn − x, t) > 1 − ε, ∀ 0 < ε < 1 and t > 0,
.

3. MOTIVATION OF INTUITIONISTIC FUZZY SET

The example defined earlier in this chapter discusses about the “belonging-
ness” of elements in a set but when it comes to real life, the problems aren’t as
seamless. One can expand the idea of “vicinity” used in case of fuzzy set in terms
of its membership function. For instance, one can consider the buildings that lie
within the area of radius 200 km with center at Mumbai to be near the city and
those that lie outside the area of radius 250 km of Mumbai to be far from the
city. Here a little confusion arsises as to what should be done regarding the build-
ings that lie between the 200 km and 250 km belt. i.e., there exists a confusion
about the buildings’ nearness or farness. This develops the base of construction
of Intuitionistic fuzzy theory which was introduced by Atanassov [11]. In view
of our example, his theory suggests to define a function of degree of nearness for
buildings within 200 km as membership function, a function of degree of farness
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for buildings that lie outside the radius of 250 km as a non-membership function
and hesitation function for those which lie between the areas of radii 200 km and
250 km.
The generalization of fuzzy to intuitionistic fuzzy brings in numerous real life
applications to existence because of its correspondence with belonginess, non-
belongingness and hesitation. These two sets may not be a complement of each
other in general. The notion of intuitionistic fuzzy set is therefore an even more
meaningful set which comprises of membership function, non-membership function
and hesitation function. For readers intrested in learning more about these sets,
we direct to [12, 13, 14].

Definition 28. Let X be a non-empty set. An intuitionistic fuzzy set A in X is a
set of the form A = {< x, µA(x), νA(x) >: x ∈ X}, where µA, νA, πA : X → [0, 1],
denote the membership, non-membership and hesitation function respectively such
that νA(x) + µA(x) ∈ [0, 1] for every x ∈ X and πA(x) = 1− µA(x)− νA(x).

Here µA(x) can be interpreted as the degree that x belongs to A, νA(x) as the
degree that x does not belong to A and πA(x) as the hesitation function of x in
A, which suggests the confusion as to whether the element x belongs to A or not.
If πA(x) = 0 ∀ x ∈ A, then the intuitionistic fuzzy set reduces to fuzzy set i.e.
every fuzzy set is an intuitionisitic fuzzy set but converse may not be true.

Example 29. Consider the set of non-negative real numbers R+. Define the set
A = {< x, µA(x), νA(x) > |x ∈ R+} where µA(x) = 1

1+x , νA(x) = x
2(1+x) and the

hesitation function as πA(x) = x
2(1+x) . One can see that conditions required by the

membership, non-membership and hesitation functions for A to be an intuitionistic
fuzzy set are met i.e. νA(x) + µA(x) ∈ [0, 1] for every x ∈ R+ and πA(x) =
1− µA(x)− νA(x). Thus A is an intuitionistic fuzzy set.

In fuzzy metric space, the metric defines the degree of nearness between two
points. A natural generalization of this metric can be seen as the one which incor-
porates the degree of non-nearness betwixt two points less than a real number(with
the aid of continuous t-conorm) along with the degree of nearness. Post the in-
troduction of fuzzy metric space by George and Veeramani in terms of continuous
t-norm [6], J.H Park [15] put forward a generalization of the fuzzy metric in in-
tuitionistic fuzzy sets aided by continuous t-norm and t-conorm, which he termed
as intuitionistic fuzzy metric.

Definition 30. [15] Let X be a non-empty abstract set. ∗ and � be continuous
t-norm and t-conorm respectively and if the fuzzy sets M,N : X 2 × [0,∞)→ [0, 1]
meet the following prerequisites ∀ x,y, z ∈ X and ∀ s, t > 0 :
(i) N(x,y, t) +M(x,y, t) ≤ 1,
(ii) M(x,y, t) > 0,
(iii) M(x,y, t) = 1, ∀ t > 0 ⇐⇒ x = y,
(iv) M(x,y, t) = M(y,x, t),
(v) M(y, z, s) ∗M(x,y, t) ≤M(x, z, t + s),
(vi) M(x, .) is continuous and non-decreasing in t ∈ [0,∞),
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(vii) N(x,y, t) > 0,
(viii) N(x,y, t) < 1,
(ix) N(x,y, t) = 0, ∀ t > 0 ⇐⇒ x = y,
(x) N(x,y, t) = N(y,x, t)
(xi) N(y, z, s) �N(x,y, t) ≥ N(x, z, t + s),
(xii) N(x, .) is continuous and non-increasing in t ∈ [0,∞),
(xiii) lim

t→∞
M(x,y, t) = 1 and lim

t→∞
N(x,y, t) = 0.

Then the tuple (M,N) is known as intuitionistic fuzzy metric and (X ,M,N, ∗, �)
is known as an intuitionistic fuzzy metric space. In this space M(x,y, t) indicates
the degree of nearness and N(x,y, t), degree of non-nearness between two points
x,y of X relative to t. From the definition it is clear that every fuzzy metric space
(X ,M, ∗) induces intuitionistic fuzzy metric space (X ,M, 1−M, ∗, �) where ∗ and
� satisfy x � y = 1− ((1− x) ∗ (1− y)) ∀ x,y ∈ X .

Example 31. Consider the ordinary metric space (X , δ) and denote a ∗ b = a.b,
a �b = min{a + b, 1} ∀ a,b ∈ [0, 1]. Define fuzzy sets M,N : X 2× [0,∞)→ [0, 1]

as, M(x,y, t) = kt
kt+mδ(x,y) and N(x,y, t) = δ(x,y)

kt+δ(x,y) ∀ k,m ∈ R+. It can be

shown easily that (X ,M,N, ∗, �) is an intuitionistic fuzzy metric space.

In the example provided above, the intuitionistic fuzzy metrics M,N are induced
by the ordinary metric δ. The statement however is not true in general for all
t–norm and t–conorm. For more details we refer to [15].

Definition 32. [15] Consider the intuitionistic fuzzy metric space (X ,M,N, ∗, �).
Then for x ∈ X , the open ball centered at x, radius r > 0 with respect to pa-
rameter of fuzziness ε ∈ (0, 1), is the set B(x, r, ε) = {z ∈ X : M(x, z, r) >
1− ε,N(x, z, r) < ε}.

Definition 33. [15] Let (X ,M,N, ∗, �) be an intuitionistic fuzzy metric space.
Then a sequence {xn} of points in X converges to a point x0 ∈ X , if for all
ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that ∀ n ≥ n0, M(xn,x0, t) > 1− ε
and N(xn,x0, t) < ε.

A fairly natural extension of the fuzzy norm to intuitionistic fuzzy norm was
introduced by Saadati and Park in [16], which he defined as follows.

Definition 34. [16] Let X be a linear space, ∗ and � are continuous t–norm and
t–conorm and µ, ν : X × [0,∞)→ [0, 1] are fuzzy sets. Then (X , µ, ν, ∗, �) is called
an intuitionistic fuzzy normed space (IFNS) if for every x,y ∈ X and s, t > 0 the
following requirements are met:
(i) ν(x, t) + µ(x, t) ≤ 1,
(ii) µ(x, t) > 0,
(iii) µ(x, t) = 1 ⇐⇒ x = 0,
(iv) µ(λx, t) = µ

(
x, t
|λ|
)

, λ 6= 0,

(v) µ(x + y, t + s) ≥ µ(x, t) ∗ µ(y, s),
(vi) µ(x, .) : (0,∞)→ [0, 1] is continuous ,
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(vii) µ(x, t)→ 1 when t→∞, and µ(x, t)→ 0, when t→ 0,
(viii) ν(x, t) < 1,
(ix) ν(x, t) = 0 ⇐⇒ x = 0,
(x) ν(λx, t) = ν

(
x, t
|λ|
)
, λ 6= 0,

(xi) ν(x + y, t + s) ≤ ν(x, t) � ν(y, s),
(xii) ν(x, .) : (0,∞)→ [0, 1] is continuous,
(xiii) ν(x, t)→ 0 when t→∞ and ν(x, t)→ 1 when t→ 0.

Here (µ, ν) is called intuitionistic fuzzy norm. From the definition it is clear
that every fuzzy normed space (X , N, ∗) is an IFNS (X , N, 1−N, ∗, �) where ∗ and
� satisfy x � y = 1 − ((1 − x) ∗ (1 − y)) ∀ x,y ∈ X . Every IFNS (X , µ, ν, ∗, �)
induces an intuitionistic fuzzy metric space where M(x,y, t) = µ(x− y, t) and
N(x,y, t) = ν(x− y, t) ∀ x,y ∈ X and t > 0.

Example 35. Consider the ordinary normed space (X , ||.||p) and denote a ∗ b =
min{a,b}, a � b = max{a,b} ∀ a,b ∈ [0, 1] . Now define fuzzy sets µ, ν : X ×
[0,∞) → [0, 1] such that, µ(x, t) = kt

kt+m||x||p and ν(x, t)) =
||x||p

kt+||x||p for all

k,m ∈ R+. It can be shown easily that the tuple (X , µ, ν, ∗, �) is an IFNS.

In the example provided above, the intuitionistic fuzzy norms µ, ν are induced
by the ordinary norm ||.||p and therefore the space (X , µ, ν, ∗, �) is called induced
intuitionistic fuzzy normed.

Definition 36. [16] Let (X , µ, ν, ∗, �) be an IFNS . Then for x ∈ X , the open ball
centered at x, radius r > 0 appropos parameter of fuzziness ε ∈ (0, 1), is the set
B(x, r, ε) = {z ∈ X : µ(x− z, r) > 1− ε, ν(x− z, r) < ε}.

Definition 37. [16] Let (X , µ, ν, ∗, �) be an IFNS. Then a sequence {xn} of points
in X converges to a point x0 ∈ X , if ∀ ε ∈ (0, 1), t > 0, ∃ n0 ∈ N such that
∀ n ≥ n0, µ(xn − x0, t) > 1− ε and ν(xn − x0, t) < ε.

4. MOTIVATION OF NEUTROSOPHIC SET

Even though the concept of intuitionistic fuzzy theory is a generalized ver-
sion of fuzzy theory and thus overcomes a real life situation by incorporating a
non–membership function, it is still limited within the boundaries of deficient in-
formation and fails to process the indeterminate and inconsistent information. In
other words, the membership and non–membership functions in the intuitionistic
fuzzy sets are dependent on each other i.e. if one of them increases, the other one
decreases which may not be the case in practical world problems.
These intuitionistic fuzzy sets however may fail to function in real life, for in-
stance, if we consider the number of people who are willing to get vaccinated,
not get vaccinated and unsure are 70, 20 and 10 out of 100 respectively then the
concept goes beyond the reach of intuitionistic fuzzy set since all the scenarios in
the given example occur simultaneously yet independently. Keeping this in mind,
a neutral approach to solving these problems was introduced by Smarandache
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[19], which he termed as neutrosophic. The name neutrosophic actually comes
from two words, “ neutro ” meaning neutral and “ sophic ” meaning knowledge
or information. The actual definition of the neutrosophic sets was given based on
the independency of membership, non–membership and hesitation function. The
above mentioned example can be written in terms of neutrosophic notation as
x(0.7, 0.2, 0.1).

Definition 38. [19] Let X be a non–empty set. A neutrosophic set A in X is
a set A = {(x, µA(x), νA(x), πA(x)) : x ∈ X}, where µA, νA, πA : X → [0, 1],
denote the membership, non-membership and hesitation function respectively such
that 0 ≤ νA(x) + µA(x) + πA(x) ≤ 3 for every x ∈ X .
This condition ensures that the neutrsophic components νA, µA and πA are inde-
pendent of each other.

Example 39. Let X = R+. Define A = {(x, µA(x), νA(x), πA(x))|x ∈ R+} as
µA(x) = 1

1+x ,

νA(x) = 1
(1+x)2 and the hesitation function as πA(x) = 1

(1+x)3 . One can see that

conditions required by the membership, non-membership and hesitation functions
for A to be a neutrosophic set are met i.e., 0 ≤ µA(x) + νA(x) + πA(x) ≤ 3 for
every x ∈ R+. Thus A is a neutrosophic set.

Definition 40. [18] Let X is an arbitrary space and M = {(x, µ(x), ν(x), π(x)) :
x ∈ X} be a neutrosophic set such that M : X 2 × R+ → [0, 1]. Let ∗ and � be
the continuous t–norm and t–conorm respectively. The four-tuple (X ,M, ∗, �)
is known as Neutrosophic metric space (NMS) if these requirements are met
∀ x,y,w ∈ X and s, t ∈ R+:

(i) 0 ≤ µ(x,y, t) ≤ 1, 0 ≤ ν(x,y, t) ≤ 1, 0 ≤ π(x,y, t) ≤ 1,

(ii) µ(x,y, t) + ν(x,y, t) + π(x,y, t) ≤ 3,

(iii) µ(x,y, t) = 1 for t > 0 ⇐⇒ x = y,

(iv) µ(x,y, t) = µ(y,x, t),

(v) µ(x,w, t + s) ≥ µ(x,y, t) ∗ µ(y,w, s),

(vi) µ(x,y, .) : (0,∞)→ [0, 1] is continuous ,

(vii) µ(x,y, t)→ 1 when t→∞

(viii) ν(x,y, t) = 0 ∀ t > 0 ⇐⇒ x = y,
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(ix) ν(x,y, t) = ν(y,x, t),

(x) µ(x,w, t + s) ≤ µ(x,y, t) � µ(y,w, s),

(xi) ν(x,y, .) : (0,∞)→ [0, 1] is continuous ,

(xii) ν(x,y, t)→ 0 when t→∞,

(xiii) π(x,y, t) = 0 ∀ t > 0 iff x = y,

(xiv) π(x,y, t) = π(y,x, t),

(xv) π(x,w, t + s) ≤ π(x,y, t) � π(y,w, s),

(xvi) π(x,y, .) : (0,∞)→ [0, 1] is continuous ,

(xvii) π(x,y, t)→ 0 when t→∞,

(xviii) If 0 ≥ t, then µ(x,y, t) = 0, ν(x,y, t) = 1, π(x,y, t) = 1.

The functions µ(x,y, t), ν(x,y, t) and π(x,y, t) denote the degree of near-
ness, non-nearness and neutralness between x,y relative to t respectively and
(X ,M, ∗, �) is called NMS.

Example 41. Consider the ordinary metric space (X , δ) and denote a ∗ b =
min{a,b}, a �b = max{a,b} for all 0 ≤ a,b ≤ 1 . Define, µ(x,y, t) = kt

kt+δ(x,y) ,

ν(x,y, t) = δ(x,y)
kt+δ(x,y) and π(x,y, t) = δ(x,y)

kt , ∀ x,y ∈ X and k, t > 0. It can be

so that (X ,M, ∗, �) is NMS induced by the metric δ.

Definition 42. Let (X ,M, ∗, �) is a NMS. Then for x ∈ X , the open ball cen-
tered at x, radius r > 0 apropos parameter of fuzziness 0 < ε < 1, is the set
B(x, r, ε) = {z ∈ X : µ(x, z, r) > 1− ε, ν(x, z, r) < ε, π(x, z, r) < ε}.

Definition 43. Let (X ,M, ∗, �) is a NMS. A sequence {xn} of points in X
converges to x0 ∈ X , if ∀ ε ∈ (0, 1), t > 0, there exists n0 ∈ N such that ∀ n ≥ n0,
µ(xn,x0, t) > 1− ε, ν(xn,x0, t) < ε and π(xn,x0, t) < ε.

For more details refer to [18]. Now we introduce the concept of length of a
vector in vector space in the neutrosophic setting which was defined in [17].
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Definition 44. [17] Let X be a linear space; N = {(x, µ(x), ν(x), π(x)) : x ∈
X} be a neutrosophic set such that N : X × R+ → [0, 1]. Let ∗ and � be the
continuous t–norm and t–conorm respectively. The four-tuple (X ,N , ∗, �) is said
to be Neutrosophic normed space (NNS) if the following requirements are met for
all x,y ∈ X and s, t ∈ R+

(i) 0 ≤ µ(x, t), ν(x, t), π(x, t) ≤ 1,

(ii) ν(x, t) + µ(x, t) + π(x, t) ≤ 3,

(iii) µ(x, t) = 1, for all t > 0 ⇐⇒ x = 0,

(iv) µ(λx, t) = µ

(
x, t
|λ|

)
, ∀ non–zero λ

(v) µ(x + y, t + s) ≥ µ(x, t) ∗ µ(y, s),

(vi) µ(x, .) : (0,∞)→ [0, 1] is continuous,

(vii) µ(x, t)→ 1, when t→∞

(viii) ν(x, t) = 0 , for all t > 0 ⇐⇒ x = 0,

(ix) ν(λx, t) = ν

(
x, t
|λ|

)
, ∀ non–zero λ

(x) ν(x + y, t + s) ≤ ν(x, t) � ν(y, s),

(xi) µ(x, .) : (0,∞)→ [0, 1] is continuous,

(xii) ν(x, t)→ 0, when t→∞

(xiii) π(x, t) = 0, for all t > 0 ⇐⇒ x = 0,

(xiv) π(λx, t) = π

(
x, t
|λ|

)
, ∀ non–zero λ

(xv) π(x + y, t + s) ≤ π(x, t) � π(y, s),

(xvi) µ(x, .) : (0,∞)→ [0, 1] is continuous,

(xvii) π(x, t)→ 0, when t→∞,

(xviii) If 0 ≥ t, then µ(x, t) = 0, ν(x, t) = 1, π(x, t) = 1

(X ,N , ∗, �) is known as neutrosophic normed space. Clearly every neutrosophic
normed space (X ,N , ∗, �) is a neutrsophic metric space (X ,M, ∗, �).
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Example 45. Consider the ordinary normed space (X , ||.||) and denote a ∗ b =
min{a,b}, a � b = max{a,b} for all 0 ≤ a,b ≤ 1 . Define N : X × R+ → [0, 1]

such that, µ(x, t) = kt
kt+||x|| , ν(x, t) = ||x||

kt+||x|| and π(x, t) = ||x||
kt ∀ x ∈ X and

k, t > 0. It can be shown easily that the four tuple (X ,N , ∗, �) is a NNS induced
by the norm ||.||.

Definition 46. [17] Let (X ,N , ∗, �) is a NNS. Then for x ∈ X , the open ball
centered at x, radius r > 0 apropos parameter of fuzziness 0 < ε < 1, is the set
B(x, r, ε) = {z ∈ X : µ(x− z, r) > 1− ε, ν(x− z, r) < ε, π(x− z, r) < ε}.

Definition 47. [17] Let (X ,N , ∗, �) is a NNS. A sequence {xn} of points in X
converges to x0 ∈ X , if ∀ ε ∈ (0, 1), t > 0, there exists n0 ∈ N such that ∀ n ≥ n0,
µ(xn − x0, t) > 1− ε, ν(xn − x0, t) < ε and π(xn − x0, t) < ε.

CONCLUSION

The article explores the motivations behind the aforementioned topics and
gives an insight into how one can perceive the notions of fuzzy, intuitionistic fuzzy
and neutrosophic sets, metrics and norms. It intends to explain in detail how
one can construct a new definition based on a logical idea and then establish
relation between them. The chapter thoroughly discusses the motivations of fuzzy
sets, fuzzy metric, fuzzy norm, intuitionistic fuzzy set, intuitionistic fuzzy metric,
intuitionistic fuzzy norm, neutrosophic set, neutrosophic metric and neutrosophic
norm.
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