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1. INTRODUCTION

Andreani et al. [1], observed that some scalar optimization problems do not
satisfy Karush-Kuhn-Tucker optimality conditions at an optimal point. Therefore,
to resolve the problem, Andreani et al.[1] developed sequential optimality condi-
tions, so-called approximate Karush-Kuhn-Tucker (AKKT) optimality conditions
using mixed penalty method of Fiacco and McCormick [2, Section 4.3]. Although
AKKT conditions are satisfied at that point without any constraint qualifications,
which is an additional benefit of this method, but Andreani et al. [3] present some
examples satisfying AKKT conditions but the founded point is not an optimal so-
lution. As a remedy to this situations Andreani et al. [3] proposed complementary
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approximate Karush-Kuhn-Tucker (CAKKT) optimality conditions using exter-
nal penalty method [2, Section 4.2]. Birgin and Mart́ınez [4, Theorem 6.1] noticed
that constraint qualifications play an important role in implementation of sequen-
tial optimality conditions for stopping criteria of several practical optimization
algorithms. In addition to that, Andreani et al. [5] introduced several constraint
qualifications for various sequential optimality conditions in the support of stop-
ping criteria.

Recently, Giorgi et al. [6] extended the concept of AKKT conditions of scalar
optimization problems to multiobjective optimization problems and obtained nec-
essary and sufficient optimality conditions where multipliers of gradient of objec-
tive functions are in small range and AKKT conditions coincide on KKT (see,
Miettinen [7, Theorem 3.1.5]) conditions under Mangasarian Fromovitz constraint
qualification (see, [8]). On the other hand, Feng and Li [9] established approximate
strong Karush-Kuhn-Tucker (ASKKT) conditions using the techniques of Wendell
and Lee [10], in which multipliers of gradient of objective functions are in wide
range and also extended cone continuity property (CCP) for scalar optimization
problems (see, Andreani et al. [11]) to cone continuity regularity (CCR) condi-
tion for multiobjective optimization problems, which guarantee that the ASKKT
coincide with strong Karush-Kuhn-Tucker (SKKT [15]) conditions.

Motivated by the works of Andreani et al. [5], Feng and Li [9], and Wen-
dell and Lee [10], we establish a new sequential optimality conditions, so-called
strong complementary approximate Karush-Kuhn-Tucker (SCAKKT) conditions
for multiobjective optimization problems using Hybrid approach from Chankong
and Haimes [12, Section 4.6.3], in which domain of multipliers cover that of Giorgi
et al. [6] as well as Feng and Li [9]. Further, we propose SCAKKT-regularity
condition which is a constraint qualification weaker than CCR condition.

The outline of this paper is as follows: In Section 2, we recall some prelimi-
naries. In Section 3, we define strong complementary approximate Karush-Kuhn-
Tucker (SCAKKT) conditions and establish necessary and sufficient optimality
conditions for multiobjective optimization problems. In Section 4, SCAKKT-
regularity condition and related consequences are discussed.

2. PRELIMINARIES

In this section, we recall some notations and definitions which will be used
throughout the paper. Let Rn denotes n-dimensional Euclidean space and open
(closed) ball B(x◦, δ) = {x ∈ Rn; ‖x − x◦‖ < δ}(B̄(x◦, δ) = {x ∈ Rn; ‖x − x◦‖ 5
δ}), centered at x◦ ∈ Rn, radius δ > 0, notation ‖·‖ denotes Euclidean norm in
Rn except otherwise specified. For x = (x1, ..., xn) ∈ Rn, xi(i = 1, ..., n) are
its components. Rn+ denote non-negative orthant of Rn and for c ∈ R, c+ =
max{0, c}, c2+ = (c+)2. Following inequalities for y, z ∈ Rn,

y 5 z ⇐⇒ yi 5 zi, i = 1, ..., n,

y ≤ z ⇐⇒ y 5 z and y 6= z,



J. K. Maurya and S. K. Mishra / SCAKKT in MOP 221

y < z ⇐⇒ yi < zi, i = 1, ..., n.

Consider the multiobjective optimization problem:

(MOP) min
(
f1(x), f2(x), . . . , fp(x)

)
,

subject to x ∈ Ω = {x ∈ Rn : g(x) 5 0, h(x) = 0},
(1)

where f : Rn → Rp, g : Rn → Rm, h : Rn → Rr be continuously differentiable
function. A point x◦ ∈ Ω is an efficient (weak efficient, respectively) solution for
(MOP) if there is no x ∈ Ω such that f(x) ≤ f(x◦) (f(x) < f(x◦), respectively).
A point x◦ ∈ Ω is said to be a local efficient (local weak efficient, respectively)
solution for (MOP) if there exists an open ball B(x◦, δ) around the point x◦ such
that x◦ is an efficient (weak efficient, respectively) solution on Ω ∩ B(x◦, δ). We
will use the following index sets further

I = {1, ..., p}, J(x◦) = {j : gj(x
◦) = 0}, L = {1, ..., r}.

We recall some already existing approximate optimality conditions for multi-
objective optimization problems, where differences can be observed easily.

Definition 1. (AKKT Conditions [6]) We say that AKKT conditions are satisfied
for (MOP) at a feasible point x◦ if and only if there exist sequences (xk) ⊂ Rn
and (λk, µk, τk) ⊂ Rp+ × Rm+ × Rr such that

(C1) xk → x◦,

(C2)

p∑
i=1

λki∇fi(xk) +

m∑
j=1

µkj∇gj(xk) +

r∑
l=1

τkl ∇hl(xk)→ 0,

(C3)

p∑
i=1

λki = 1,

(C4) gj(x
◦) < 0 =⇒ µj = 0 for sufficiently large k, j = 1, ...,m.

Definition 2. (ASKKT Conditions[9]) We say that ASKKT conditions are sat-
isfied for (MOP )

′

(MOP)
′

min
(
f1(x), f2(x), . . . , fp(x)

)
,

subject to x ∈ Ω = {x ∈ Rn : g(x) 5 0},

at a feasible point x◦ if and only if there exist sequences (xk) ⊂ Rn and (λk, µk) ⊂
Rp+ × Rm+ such that

(C1) xk → x◦,

(C2)

p∑
i=1

λki∇fi(xk) +

m∑
j=1

µkj∇gj(xk)→ 0,

(C3) λki = 1, i = 1, ..., p,

(C4) gj(x
◦) < 0 =⇒ µj = 0 for sufficiently large k, j = 1, ...,m.



222 J. K. Maurya and S. K. Mishra / SCAKKT in MOP

3. SCAKKT CONDITIONS FOR MULTIOBJECTIVE
OPTIMIZATION PROBLEMS

In this section, we extend the concept of complementary approximate Karush-
Kuhn-Tucker (CAKKT) necessary conditions for single objective optimization
problems given by Andreani et al. [3] to multiobjective optimization problems
(MOP).

Definition 3. (SCAKKT Conditions) We say that SCAKKT conditions are sat-
isfied for (MOP) at a feasible point x◦ if and only if there exist sequences (xk) ⊂ Rn
and (λk, µk, τk) ⊂ Rp+ × Rm+ × Rr such that

(C1) xk → x◦,

(C2)

p∑
i=1

λki∇fi(xk) +

m∑
j=1

µkj∇gj(xk) +

r∑
l=1

τkl ∇hl(xk)→ 0,

(C3) λki > 0, i = 1, ..., p,

(C4) lim
k→∞

λki (fi(x
k)− fi(x◦)) = 0 ∀i, lim

k→∞
µkj gj(x

k) = 0 ∀j, lim
k→∞

τkl hl(x
k) = 0 ∀l.

Theorem 4. (Necessary conditions) If x◦ ∈ Ω is a local efficient solution of
(MOP), then x◦ satisfies the SCAKKT conditions.

Proof. Since x◦ is a local efficient solution to (MOP). Then, from Miettinen [7,
Theorem 3.3.1] and Chankong and Haimes [12, Section 4.6.3], x◦ is a local solution
to the problem,

min

p∑
i=1

wifi(x) +
1

2
‖x− x◦‖2,

subject to fi(x) 5 fi(x
◦), i = 1, ..., p, x ∈ Ω ∩ B̄(x◦, δ), w ∈ Rp, w > 0.

(2)

We can suppose x◦ is a unique solution of (2). Now, we define an unconstrained
optimization problem corresponding to constrained optimization problem (2), with
the help of penalty function [13, p. 255] as follows:

ϕk(x) =

p∑
i=1

wifi(x) +
1

2
‖x− x◦‖2 +

ρk
2

{ p∑
i=1

(fi(x)− fi(x◦))2
+ +

m∑
j=1

gj(x)2
+

+

r∑
l=1

hl(x)2
}
,

(3)

for all k ∈ N. Let xk be a global solution to the problem

min ϕk(x), subject to ‖x− x◦‖ 5 δ. (4)
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In (4), xk exists corresponding to large enough ρk, because ϕk(x) is continuous
and B̄(x◦, δ) is compact. Let z be a limit point of sequence xk. We may suppose
that xk → z. From (3), we have

p∑
i=1

wifi(x
k) 5 ϕk(xk),

because

ϕk(xk)−
p∑
i=1

wifi(x
k) =

1

2
‖xk − x◦‖2 +

ρk
2

{ p∑
i=1

(fi(x
k)− fi(x◦))2

+

+

m∑
j=1

gj(x
k)2

+ +

r∑
l=1

hl(x
k)2
}
= 0.

Since xk is the solution of (4) and x◦ is a feasible point, then we have

ϕk(xk) 5 ϕk(x◦) =

p∑
i=1

wifi(x
◦). (5)

We claim that z is a feasible point of the problem (4), for this suppose if possible

p∑
i=1

(fi(z)− fi(x◦))2
+ +

m∑
j=1

g2
j (z)+ +

r∑
l=1

h2
l (z) > 0,

for sufficiently large k, then there exists c > 0, such that

p∑
i=1

(fi(x
k)− fi(x◦))2

+ +

m∑
j=1

g2
j (xk)+ +

r∑
l=1

h2
l (x

k) > c.

Therefore, from continuity of all functions and xk → z, we have

p∑
i=1

wifi(x
k) +

1

2
‖xk − x◦‖2 +

ρk
2

{ p∑
i=1

(fi(x
k)− fi(x◦))2

+ +

m∑
j=1

gj(x
k)2

+

+

r∑
l=1

hl(x
k)2
}
>

p∑
i=1

wifi(x
k) +

1

2
ρkc.

Taking the limit ρk −→ ∞, we obtain ϕk(xk) −→ ∞, which contradicts (5).

Consequently,
p∑
i=1

(fi(z)− fi(x◦))2
+ +

m∑
j=1

g2
j (z)+ +

r∑
l=1

h2
l (z) = 0, which implies z is

a feasible point. From (4), we have

ϕk(xk) =

p∑
i=1

wifi(x
k) +

1

2
‖xk − x◦‖2 +

ρk
2

{ p∑
i=1

(fi(x
k)− fi(x◦))2

+

+

m∑
j=1

gj(x
k)2

+ +

r∑
l=1

hl(x
k)2
}
5

p∑
i=1

wifi(x
◦).

(6)
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Since, ρk
2 {

p∑
i=1

(fi(x
k)− fi(x◦))2

+ +
m∑
j=1

gj(x)2
+ +

r∑
l=1

hl(x)2} = 0, then from (6), we

have
p∑
i=1

wifi(x
k) +

1

2
‖xk − x◦‖2 5

p∑
i=1

wifi(x
◦),

taking the limit, we get

p∑
i=1

wifi(z) +
1

2
‖z − x◦‖2 5

p∑
i=1

wifi(x
◦).

As x◦ is the unique solution to the problem (2), we conclude that z = x◦. Then,
xk −→ x◦ and ‖xk − x◦‖ < δ for all k sufficiently large. Since xk is a solution to
problem (3) and it is an interior point of the feasible set for sufficiently large k,
then from optimality conditions ∇ϕk(xk) = 0, that is

p∑
i=1

wi∇fi(xk) + (xk − x◦) +

p∑
i=1

ρk(fi(x
k)− fi(x◦))+∇fi(xk)

+

m∑
j=1

ρkgj(x
k)+∇gj(xk) +

r∑
l=1

ρkhl(x
k)∇hl(xk) = 0.

(7)

If we suppose λki = wi + ρk(fi(x
k) − fi(x◦))+ > 0, i = 1, 2, ..., p, and as µkj =

ρkgj(x
k)+, τ

k
l = ρkhl(x

k), then from (7), we get

p∑
i=1

λki∇fi(xk) +

m∑
j=1

µkj∇gj(xk) +

r∑
l=1

τkl ∇hl(xk) = x◦ − xk → 0,

as xk −→ x◦. Now, from [13, p. 257, Theorem 2.1], we have

p∑
i=1

wifi(x
k) +

1

2
‖xk − x◦‖2 +

ρk
2

{ p∑
i=1

(fi(x
k)− fi(x◦))2

+ +

m∑
j=1

gj(x
k)2

+

+

r∑
l=1

hl(x
k)2
}
5

p∑
i=1

wifi(x
◦),

(8)

taking limit, we get

lim
xk→x◦

[
1

2
‖xk − x◦‖2 +

ρk
2

{ p∑
i=1

(fi(x
k)− fi(x◦))2

+ +

m∑
j=1

gj(x
k)2

+

+

r∑
l=1

hl(x
k)2
}]
5 0.

(9)



J. K. Maurya and S. K. Mishra / SCAKKT in MOP 225

Since λki − wi = ρk(fi(x
k) − fi(x◦))+, µ

k
j = ρkgj(x

k)+ ≥ 0 and τkl = ρkhl(x
k),

then

lim
xk→x◦

[
p∑
i=1

|(λki − wi)(fi(xk)− fi(x◦))+|+
m∑
j=1

|µkj gj(xk)+|+
r∑
l=1

|τkl hl(xk)|

]
= 0.

(10)

Thus, we get

lim
k→∞

λki (fi(x
k)− fi(x◦)) = 0, lim

k→∞
µkj gj(x

k) = 0, and lim
k→∞

τkl hl(x
k) = 0.

Hence the conditions are satisfied.

Remark 5. If we consider a scalar optimization problem, then Theorem 3.1 re-
duces to Theorem 3.3 of Andreani et al. [3]

Remark 6. ASKKT implies SCAKKT, but converse implication may not be
true,

Example 7. Consider the following problem

min (f1(x1, x2), f2(x1, x2)), subject to g(x1, x2) = −x1 5 0,

where f1(x1, x2) = x1, f2(x1, x2) = x2. For x◦ = (0, 0), choose λk1 = 1, λk2 =
1
k , µ

k = 1, xk = (− 1
k ,

1
k )

λk1∇f1(xk) + λk2∇f2(xk) + µk∇g(xk)→ 0, as xk → x◦ = (0, 0).

λki (fi(x
k)− fi(x◦))→ 0, i = 1, 2, µkg(xk)→ 0.

Hence, x◦ is SCAKKT point but can not be ASKKT point. Moreover, x◦ also
AKKT point.

Theorem 8. (Sufficient conditions) Assume that fi(i = 1, ..., p), gj(j = 1, ...,m)
are convex functions and hl(l = 1, ..., r) are affine. If x◦ ∈ Ω satisfies the SCAKKT
conditions with the sequences (xk) ⊂ Rn, (λk, µk, τk) ⊂ Rp+ ×Rm+ ×Rr and λk →
λ◦ > 0. Then, x◦ is an efficient solution of (MOP).

Proof. Suppose that x◦ is not an efficient solution then, there exists x̄ ∈ S such
that

f(x̄) ≤ f(x◦). (11)

Since fi, gj are convex and hl are affine, then for all k we have

fi(x̄) = fi(x
k) + 〈∇fi(xk), x̄− xk〉,∀ i = 1, ..., p. (12)

gj(x̄) = gj(x
k) + 〈∇gj(xk), x̄− xk〉,∀j = 1, ...,m. (13)
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hl(x̄) = hl(x
k) + 〈∇hl(xk), x̄− xk〉,∀l = 1, ..., r. (14)

For x̄ we can write

p∑
i=1

λki fi(x̄) =
p∑
l=1

λki fi(x̄) +

m∑
j=1

µkj gj(x̄) +

r∑
l=1

τkl hl(x̄), (15)

then from (12) to (15), we get

p∑
i=1

λki fi(x̄) =
p∑
i=1

λki fi(x
k) +

m∑
j=1

µkj gj(x
k) +

r∑
l=1

τkl hl(x
k)

+

〈
p∑
i=1

λki∇fi(xk) +
m∑
j=1

µkj∇gj(xk) +
r∑
l=1

τkl ∇hl(xk), x̄− xk
〉
.

(16)

From (C1)− (C4) and (16), we get

p∑
i=1

λ◦i fi(x̄) =
p∑
i=1

λ◦i fi(x
◦),

as xk → x◦, which contradicts (11).

Remark 9. If we take scalar optimization problem, then Theorem 3.2 reduces to
Theorem 4.2 of Andreani et al. [3]

4. SCAKKT-REGULARITY CONDITION

We propose some sets to define SCAKKT-regularity condition, which are given
as: For x◦ ∈ Ω, linearized cone at x◦ is

P(x◦) =
{
d ∈ Rn : 〈∇fi(x◦), d〉 5 0,∀i ∈ I, 〈∇gj(x◦), d〉 5 0,∀j ∈ J(x◦),

〈∇hl(x◦), d〉 = 0,∀l ∈ L
}
, (17)

Q(x, r) =
{ p∑
i=1

λi∇fi(x) +

m∑
j=1

µj∇gi(x) +

r∑
l=1

τl∇hl(x) :

p∑
i=1

|λi(fi(x)−fi(x◦))+|+
m∑
j=1

|µjgi(x)+|+
r∑
l=1

|τlhl(x)| 5 r, λi = 0, µj = 0, τl ∈ R
}
.

(18)
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and

D(x) =
{ p∑
i=1

λi∇fi(x)+

m∑
j=1

µj∇gi(x)+

r∑
l=1

τl∇hl(x) : λi = 0, µj = 0, τl ∈ R
}
.

(19)

From (17) and (19), we have

Q(x◦, 0) = D(x◦).

For basic properties of set-valued mapping, tangent cone TΩ(x◦), normal cone
NΩ(x◦) at x◦ ∈ Ω, and dual cone K◦ of K ⊂ Rn see, Rockafellar and Wets [14].

Definition 10. Feasible point x◦ satisfies the SCAKKT-regularity condition if the
set-valued mapping

(x, r) ∈ Rn × R+ ⇒ Q(x, r),

is outer semicontinuous at (x◦, 0), in other words, the following inclusion holds:

lim sup
(x,r)→(x◦,0)

Q(x, r) ⊂ Q(x◦, 0).

An extended form of CCR-condition and Abadie’s constraint qualification [9] are
defined as follows:

Definition 11. (CCR condition) Feasible point x◦ satisfies the cone continuity
regularity (CCR) condition if the set-valued mapping

x ∈ Rn ⇒ D(x)

is outer semicontinuous at x◦. In other words, the following inclusion holds,

lim sup
x→x◦

D(x) ⊂ D(x◦).

Definition 12. Abadie’s constraint qualification holds at a feasible point x0, if

P(x◦) ⊂ TΩ(x◦).

Proposition 13. CCR implies SCAKKT-regularity, but converse may not be true

Proof. The first implication is a direct consequence from Definition 10 and Defi-
nition 11, and for converse part, we consider the following problem.

Min (f1(x), f2(x)), subject to g(x) = x2e
x1 5 0, h(x) = x2 = 0,

where f1(x) = 2x2, f2(x) = −x2, x ∈ R2. Consider at point x◦ = (0, 0).

Q(x◦, 0) ={λ1∇f1(x◦) + λ2∇f2(x◦) + µ∇g(x◦) + τ∇h(x◦) : λi = 0, µ = 0, τ ∈ R},
={λ1(0, 2) + λ1(0,−1) + µ(0, 1) + τ(0, 1) : λi = 0, µ = 0, τ ∈ R},
={0} × R.
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Let ω◦ = (ω◦1 , ω
◦
2) ∈ lim sup(x,r)→(x◦,0)Q(x, r), then there exist sequences xk →

x◦, ωk → ω◦ in R2 and rk ↓ 0, where

ωk =λk1∇f1(xk) + λk2∇f2(xk) + µk∇g(xk) + τk∇h(xk),

=λk1(0, 2) + λk2(0,−1) + µk(xk2e
xk
1 , ex

k
1 ) + τk(0, 1),

and multipliers satisfying the conditions

|λk1(f1(xk)− f1(x◦))+|+ |λk2(f2(xk)− f2(x◦))+|+ |µkg(xk)+|
+ |τkhl(xk)| 5 rk, λi = 0, µ = 0, τ ∈ R. (20)

Then, from (20), we have

|2λk1xk2 |+ |λk2xk2 |+ |µkxk2ex
k
1 |+ |τkxk2 | 5 rk, λi = 0, µ = 0, τ ∈ R.

Since ωk1 = |µkxk2ex
k
1 | 5 rk, then ωk1 → 0, which implies that ω◦ ∈ Q(x◦, 0) =

{0}×R, but x◦ does not satisfy cone continuity regularity condition, choose xk1 =
1
k , x

k
2 = 1

k , λ
k
1 =

λk
2

2 , µ
k = 1

xk
2e

xk
1

and τk = −k, then we have

ωk = λk1(0, 2) + λk2(0,−1) + µk(xk2e
xk
1 , ex

k
1 ) + τk(0, 1) = (1, 0) /∈ D(x◦), ∀ k.

In the following lemma we establish relationship between strong Karush-Kuhn-
Tucker (SKKT) optimality conditions for (MOP) and feasible points of (MOP).

Lemma 14. Let x◦ be a feasible point. Then, x◦ satisfies the SKKT conditions
of (MOP) if and only if −λi∇fi(x◦) ∈ Q(x◦, 0) for λi > 0, ∀ i = 1, ..., p.

Proof. Suppose that there exists vector λ ∈ Rp, with λ > 0, µ ∈ Rm+ and τ ∈ Rr
such that

p∑
i=1

λi∇fi(x◦) +

m∑
j=1

µj∇gi(x◦) +

r∑
l=1

τl∇hl(x◦) = 0.

It follows that, for each i ∈ I = {1, ..., p},

−λi∇fi(x◦) =
∑

t∈I\{i}

λt∇ft(x◦) +

m∑
j=1

µj∇gi(x◦) +

r∑
l=1

τl∇hl(x◦) ∈ Q(x◦, 0).

For converse part, let −λi∇fi(x◦) ∈ Q(x◦, 0) for λi > 0, i ∈ I. Then, for each
i ∈ I, there exist λi ∈ Rp+, µi ∈ Rm+ and τ i ∈ Rr such that

−λi∇fi(x◦) =

p∑
t=1

λit∇ft(x◦) +

m∑
j=1

µij∇gj(x◦) +

r∑
l=1

τ il∇hl(x◦) ∈ Q(x◦, 0).
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which implies that,

λi∇fi(x◦) +

p∑
t=1

λit∇ft(x◦) +

m∑
j=1

µij∇gj(x◦) +

r∑
l=1

τ il∇hl(x◦) = 0,∀ i ∈ I. (21)

If we add all equations included in (23) from i = 1 to p and put

λ̄t = λi +

p∑
t=1

λit, t = 1, ..., p, µ̄j =

m∑
j=1

µij , τ̄j =

r∑
l=1

τ il ,

then we get

p∑
t=1

λ̄t∇ft(x◦) +

m∑
j=1

µ̄j∇gj(x◦) +

r∑
l=1

τ̄l∇hl(x◦) = 0.

This completes the proof.

Theorem 15. If x◦ ∈ Ω is a limit point of an SCAKKT sequence (xk) ⊂ Rn and
SCAKKT-regularity holds, then x◦ is an SKKT point.

Proof. Let x◦ be a SCAKKT point. To show that the SKKT conditions hold at
x◦, it is sufficient to prove −λ◦i∇fi(x◦) ∈ Q(x◦, 0) for λ◦i > 0, ∀ i ∈ I = {1, ..., p},
as in Lemma 14. Since x◦ satisfies SCAKKT conditions, then there exist sequences
xk ⊂ Rn and {(λk, µk, τk)} ⊂ Rp+ × Rm+ × Rr, such that λki > 0, i ∈ I, µkj = 0 for
j /∈ J(x◦) = {j : gj(x

◦) = 0} and

ωk =

p∑
i=1

λki∇fi(xk) +

m∑
j=1

µkj∇gj(xk) +

r∑
l=1

τkl ∇hl(xk)→ 0, (22)

under the conditions

p∑
i=1

|λki (fi(x
k)− fi(x◦))+|+

m∑
j=1

|µkj gi(xk)+|+
r∑
l=1

|τkl hl(xk)| 5 rk, rk ↓ 0.

It follows that, for each i ∈ I,

ωk − λki∇fi(xk) =
∑

t∈I\{i}

λkt∇ft(xk) +

m∑
j=1

µkj∇gj(xk) +

r∑
l=1

τkl ∇hl(xk). (23)

Thus, for each i, we have

ωk − λki∇fi(xk) ∈ Q(xk, rk). (24)

From (23) to (25), we get

−λ◦i∇fi(x◦) ∈ lim sup
k→∞

Q(xk, rk) ⊂ lim sup
(xk,rk)→(x◦,0)

Q(xk, rk) ⊂ Q(x◦, 0),

as SCAKKT-regularity holds at x◦.
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Corollary 16. If x◦ ∈ Ω is a local efficient solution to (MOP) and verifies the
SCAKKT-regularity conditions, then x◦ is a SKKT point.

The following lemma is extension of [11, Lemma 4.3] to (MOP), which is required to
establish relationship between SCAKKT-regularity conditions and Abadie’s con-
straint qualification.

Lemma 17. For all x◦ ∈ Ω and v ∈ T ◦Ω(x◦), there exist sequences {xk} ⊂
Rn, {ωk} ⊂ Rn, {λk} ⊂ Rp+, {µk} ⊂ Rm+ , {τk} ⊂ Rr, w ∈ Rp, ρk > 0, and rk ⊂
R with conditions xk → x◦, λk → λ◦, rk ↓ 0, w > 0, ρk → ∞ and λk > 0 ∀ k,
such that

(1) vki =
∑

t∈I\{i}
λkt∇ft(xk) +

m∑
j=1

µkj∇gj(xk) +
r∑
l=1

τkl ∇hl(xk)→ v, ∀ i = 1, ..., p,

(2)
p∑
i=1

|λki (fi(x
k)− fi(x◦))+|+

m∑
j=1

|µkj gi(xk)+|+
r∑
l=1

|τkl hl(xk)| 5 rk,

(3) λki = wi + ρk(fi(x
k)− fi(x◦))+, µ

k
j = ρkgj(x

k)+ and τkl = ρkhl(x
k).

Proof. Let v ∈ T ◦Ω(x◦), then from [14, Theorem 6.11], there exist smooth functions
λ◦i fi(x), for each i ∈ I = {1, ..., p}, such that

−λ◦i∇fi(x◦) = v (25)

and λ◦i fi(x
◦) attains its global minimum uniquely at x◦ ∈ Ω. Consider, for each

k ∈ N, the following optimization problem as in Theorem4:

Min Fk(x), subject to x ∈ B̄(x◦, δ), (26)

where

Fk(x) =

p∑
i=1

wifi(x) +
ρk
2

{ p∑
i=1

(fi(x)− fi(x◦))2
+ +

m∑
j=1

gj(x)2
+ +

r∑
l=1

hl(x)2
}
.

Since B̄(x◦, δ) is compact and Fk(x) is continuous, then from Weierstrass theorem
there exists a solution, for (26). Let xk be the solution, then

p∑
i=1

wi∇fi(xk) +

p∑
i=1

ρk(fi(x
k)− fi(x◦))+∇fi(xk) +

m∑
j=1

ρkgj(x
k)+∇gj(xk)

+

r∑
l=1

ρkhl(x
k)∇hl(xk) = 0.

(27)

Let λki = wi + ρk(fi(x
k) − fi(x◦))+, µ

k
j = ρkgj(x

k)+ and τkl = ρkhl(x
k). Then,

(27) implies that

∇Fk(xk) =

p∑
i=1

λki∇fi(xk) +

m∑
j=1

µkj∇gj(xk) +

r∑
l=1

τkl ∇hl(xk) = 0. (28)
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Now, from [13, Theorem 2.1] we get

p∑
i=1

wifi(x
k) 5

p∑
i=1

wifi(x
k)+

ρk
2

{ p∑
i=1

(fi(x
k)−fi(x0))2

++

m∑
j=1

gj(x
k)2

++

r∑
l=1

hl(x
k)2
}

5 Fk(x◦) =

p∑
i=1

wifi(x
◦). (29)

Fk(xk) is bounded in B̄(x◦, δ), then from (29), we have

p∑
i=1

|λki (fi(x
k)−fi(x◦))+|+

m∑
j=1

|µkj gi(xk)+|+
r∑
l=1

|τkl hl(xk)| 5 rk, for some rk ↓ 0.

Since,

vki =
∑

t∈I\{i}

λkt∇ft(xk) +

m∑
j=1

µkj∇gj(xk) +

r∑
l=1

τkl ∇hl(xk) (30)

therefore from (25), (28) and (30), we get

vki = −λki∇fi(xk)→ v.

Hence the theorem.

Theorem 18. SCAKKT-regularity implies Abadie’s constraint qualification.

Proof. We have to show that P(x◦) ⊂ TΩ(x◦), for this, first we show NΩ(x◦) ⊂
P◦(x◦), which is equivalent to NΩ(x◦) ⊂ Q(x◦, 0). Let v ∈ NΩ(x◦), then from
property of normal cone[14], there are sequences {xk} and {vk} such that

xk → x◦, vk → v, and vk ∈ T ◦Ω(xk).

Now, from Lemma (13), for each vk ∈ T ◦Ω(xk) there exist sequences xk,` and vk,`i
satisfying the Lemma 17. Therefore, for all k, ` ∈ N, we have

lim
`→∞

vk,`i = lim
`→∞

{ ∑
t∈I\{i}

λk,`t ∇ft(xk,`) +

m∑
j=1

µk,`j ∇gj(x
k,`)

+

r∑
l=1

τk,`l ∇hl(x
k,`)

}
= vk (31)

where λk,`i = wi + ρ`(fi(x
k,`) − fi(x

◦))+, i = 1, ..., p, µk,`j = ρ`gj(x
k,`)+,∀j =

1, ...,m, and τk,`l = ρ`hl(x
k,`), ∀l = 1, ..., r. Thus, for all k ∈ N, there exist `(k)

such that
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1. ||xk − xk,`(k)|| < 1
2k ;

2. v
k,`(k)
i =

∑
t∈I\{i}

λ
k,`(k)
t ∇ft(xk,`(k))+

m∑
j=1

µ
k,`(k)
j ∇gj(xk,`(k))+

r∑
l=1

τ
k,`(k)
l ∇hl(xk,`(k))

3. ||vk − vk,`(k)
i || < 1

2k ;

4. λ
k,`(k)
i −wi = ρ`(k)(fi(x

k,`(k))−fi(x◦))+, i = 1, ..., p, µ
k,`(k)
j = ρ`(k)gj(x

k,`(k))+,∀j =

1, ...,m, and τ
k,`(k)
l = ρ`(k)hl(x

k,`(k)), ∀l = 1, ..., r.

Clearly,

lim
k→∞

xk,`(k) = x◦, lim
k→∞

v
k,`(k)
i = v.

Also for sufficiently large k, we have

p∑
i=1

|λk,`(k)
i (fi(x

k,`(k))− fi(x◦))+|+
m∑
j=1

|µk,`(k)
j gi(x

k,`(k))+|

+

r∑
l=1

|τk,`(k)
l hl(x

k,`(k))| 5 rk,`(k), rk,`(k) ↓ 0. (32)

Therefore,

v
k,`(k)
i ∈ Q(xk,`(k), rk,`(k)),

that is, we have sequences

xk,`(k) → x◦, v
k,`(k)
i → v with v

k,`(k)
i ∈ Q(xk,`(k), rk,`(k)).

From SCAKKT-regularity condition and definition of outer limit we have

v ∈ lim sup
(x,r)→(x◦,0)

Q(x, r) ⊂ Q(x◦, 0).

Then,
NΩ(x◦) ⊂ Q(x◦, 0) = P◦(x◦),

which implies
P(x◦) = Q◦(x◦, 0) ⊂ N◦Ω(x◦).

From [14, Theorem 6.28], we have

N◦Ω(x◦) ⊂ TΩ(x◦).

Hence,
P(x◦) ⊂ TΩ(x◦),

as we wanted to show.

In the following example we show that Abadie’s CQ is strictly weaker than
SCAKKT-regularity condition.
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Example 19. Consider the problem

min (f1(x1, x2), f2(x1, x2)), s.t. gi(x1, x2) 5 0, i = 1, 2, 3,

at point x◦ = (0, 0), where

f1(x1, x2) = −x1, f2(x1, x2) = −x2, g1(x1, x2) = −x1,

g2(x1, x2) = −x2e
x2 and g3(x1, x2) = −x1x2.

Feasible set Ω1 = {(x1, x2) ∈ R2 : x1 ≥ 0, x1 ≥ 0}. Then, P(x◦) = {(x1, x2) ∈
R2 : x1 ≥ 0, x1 ≥ 0} = TΩ1(x◦), Abadie’s constraint qualification holds at point
x◦. Now, we prove that Q(x, r) is not outer semicontinuous at x◦, for this choose
xk = (− 1

k ,
1
k ), λk1 = 1

k , λ
k
2 = 1

k , µ
k
1 = 0, µk2 = 0, µk3 = k. Then,

rk = |λk1(f1(xk)− f1(x◦))|+ |λk2(f2(xk)− f2(x◦))|+ |µk1g1(xk)|

+ |µk2g2(xk)| + |µk3g3(xk)| = 2

k2
+

1

k
→ 0

and

vk1 = λk2∇f2(xk) + µk1∇g1(xk) + µk2∇g2(xk) + µk3∇g3(xk)→ (−1, 1).

vk1 = (−1, 1) ∈ Q(xk, rk) for all k ∈ N, means (−1, 1) ∈ lim sup(x,r)→(x◦,0)Q(x, r),
but (−1, 1) /∈ Q(x◦, 0) = {(x1, x2) ∈ Rn : x1 5 0, x2 5 0}. Thus, SCAKKT-
regularity is not satisfied.

5. CONCLUSIONS

In this paper, we have established SCAKKT sequential optimality conditions,
which are different from ASKKT and AKKT optimality conditions. We have intro-
duced a constraint qualification that is weaker constraint qualification than CCR
condition for multiobjective sequential optimality conditions and strong constraint
qualification to Abadie’s constraint qualification. Since sequential optimality con-
ditions are useful for algorithmic consequences, therefore algorithmic development
is still open for future research in this direction.
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