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Abstract: In the present paper, a newly combined higher-order non-differentiable sym-
metric duality in scalar-objective programming over arbitrary cones is formulated. In
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literature we have discussed primal-dual results with arbitrary cones, while in this ar-
ticle, we have derived combined result with one model over arbitrary cones. The the-
orems of duality are derived for these problems under η-pseudoinvexity/η-invexity/C-
pseudoconvexity/C-convexity speculations over arbitrary cones.

Keywords: Symmetric Duality, Non-Differentiable Programming, Mixed Duality, Arbi-

trary Cones.
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1. INTRODUCTION

Duality mathematical programming is used in Economics, Control Theory,
Business and other diverse fields. In mathematical programming, a pair of primal
and dual problems is said to be symmetric when the dual problem is expressed in
the form of the primal problem, then it does happen that its dual is the primal
problem. Symmetric duality in nonlinear programming was introduced by Dorn
[10]. The notion of symmetric duality was developed significantly by Dantzig et
al.[11]. Mangasarian [16] introduced the concept of second and higher-order du-
ality for nonlinear problems. The study of higher-order duality is significant due
to the computational advantage over the first order duality as it provides tighter
bounds for the value of the objective function when approximations are used.

In recent past, several definitions such as nonsmooth univex, nonsmooth qua-
siunivex and nonsmooth pseudoinvex functions have been introduced by Xianjun
[20]. Mond and Zhang [17] obtained duality results for various higher-order dual
problems under higher-order invexity assumptions. Chandra et al. [3] and Yang
et al. [21] discussed a mixed symmetric dual formulation for a nonlinear program-
ming problem and for a class of non-differentiable nonlinear programming prob-
lems, respectively. Later on, Chen [1] studied duality relations for Mond-Weir
type multi-objective higher-order symmetric dual programs under F -convexity as-
sumptions.

Khurana [15] defined the cone-pseudobonvex / strongly cone-pseudobonvex
functions and formulated a pair of Mond-Weir type symmetric dual multiobjec-
tive programs over arbitrary cones, also established the duality theorems by using
these defined functions. Recently, Kaseem [14] introduced second order (K,F )-
pseudoconvex and strongly second order (K,F )-pseudoconvex functions and for-
mulated a pair of second order multiobjective symmetric dual nonlinear programs
over arbitrary cones in order to prove weak, strong and converse duality theorems.
For more information, readers are advised to see [4, 5, 6, 7, 8, 9].

∗Corresponding author
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We have formulated a new mixed type higher-order non-differentiable symmet-
ric duality in scalar-objective programming problem. In literature, we have dis-
cussed the results either Wolfe or Mond-Weir type dual or separately, while in this
we have combined result over one model over arbitrary cones. The duality theo-
rems are proved for these programs over arbitrary cones under η-pseudoinvexity/η-
invexity/C-pseudoconvexity/C-convexity assumptions.

2. PRELIMINARIES AND DEFINITIONS

We examine the subsequent scalar objective programming problem:

(P) Minimize F (x) and x ∈ X
where X ⊆ Rn+m. Let F : X → R.

The subsequent pattern for vector inequalities will be used: If a, b ∈ Rn, then

a = b⇔ ai = bi, i = 1, 2, ..., n;

a > b⇔ a = b and a 6= b;

a > b⇔ ai > bi, i = 1, 2, ..., n.

2.1. Definition

Let C be a nonempty compact convex set in Rn. The support function s(x|C)
of C is defined by

s(x|C) = max{xT y : y ∈ C}.

The sub-differential of s(x|C) is given by

∂s(x|C) = {z ∈ C : zTx = s(x|C)}.

For any convex set S ⊂ Rn, the normal cone to S at a point x ∈ S is defined by

NS(x) = {y ∈ Rn : yT (z − x) 5 0 for all z ∈ S}.

It is readily verified that for a compact convex set E, y is in NE(x) if and only if

s(y|E) = xT y.

2.2. Definition

The positive polar cone P ∗ of a cone P is defined by

P ∗ = {y ∈ Rp : xT y = 0,∀x ∈ P}
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2.3. Definition

Let C : X ×X ×Rn → R (X ⊆ Rn) be a function which satisfies Cx,u(0) = 0,
∀(x, u) ∈ X ×X. Then, the function C is said to be convex on Rn with respect to
third argument iff for any fixed (x, u) ∈ X ×X,

Cx,u(λx1 + (1− λ)x2) 5 λCx,u(x1) + (1− λ)Cx,u(x2), ∀λ ∈ (0, 1), ∀x1, x2 ∈ Rn.

Many generalizations [2, 12, 13, 18] of the definition of a convex function have
been introduced in optimization theory in order to weak the assumption of con-
vexity for establishing duality results for new classes of nonconvex optimization
problems, including vector optimization problems. One of such a generalization of
convexity in the vectorial case, we introduce the following concept of higher-order
C-convex/C-pseudoconvex functions:

2.4. Definition

Φ : X 7→ R is higher-order invex at u ∈ X with respect to η : X × X 7→ Rn

and H : X ×Rn 7→ R, (X ⊆ Rn) if for all (x, p) ∈ X ×Rn,

Φ(x)− Φ(u)−H(u, p) + pT∇pH(u, p) = ηT (x, u){∇xΦ(u) +∇pH(u, p)}.

2.5. Definition

Φ : X 7→ R is higher-order C-convex at u ∈ X with respect to H : X × Rn 7→
R, (X ⊆ Rn) if for all (x, p) ∈ X ×Rn,

Φ(x)− Φ(u)−H(u, p) + pT∇pH(u, p) = Cx,u

{
∇xΦ(u) +∇pH(u, p)

}
.

2.6. Example

Let X = [0, 2] ⊆ R, n = m = 1 and k = 1. Consider the function Φ : X → R
is given by

Φ(x) =

(
ex − e−x

2

)5

.

Next, H : X ×X → R is given as

H(u, p) =
u2p

3

and η(x, u) = x2u2 + u.

We have to claim that Φ is higher-order invex at u ∈ X with respect to η and H.
For this, it is sufficient to prove that the following expression is nonnegative i.e.

Υ = Φ(x)−Φ(u)−H(u, p) + pT∇pH(u, p)− ηT (x, u){∇xΦ(u) +∇pH(u, p)} = 0.

Substituting the values of Φ, H and η in above expression, we have

Υ =

(
ex − e−x

2

)5

−u
2p

3
+
u2p

3
−
(
eu − e−u

2

)5

−(x2u2+u)

(
5
(eu − e−u

2

)4(eu + e−u

2

)
+
u2

3

)
.



Dubey et al. / A Class of New Type Unified Non-Differentiable Higher Order 193

Figure 1: The function Υ =

(
ex − e−x

2

)5

, ∀ p, ∀ x ∈
[
0, 2

]
is non-negative

Figure 2: The function Υ1 = (x3 + x2), ∀ p, ∀ x ∈ [−1, 1] is non-negative
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Simplifying the above equation at the point u = 0 ∈ X, we obtain

Υ =

(
ex − e−x

2

)5

, ∀ x ∈ X.

From Figure 1, it is clear that Υ = 0, ∀ x ∈ X. Therefore, Φ is higher-order invex
at u = 0 ∈ X with respect to η and H.

2.7. Example

Let X = [−1, 1]. Consider the function Φ : X → R is given by

Φ(x) = x3 + x2.

Next, H : X ×X → R is given as

H(u, p) = −u
4p

5
.

Consider η(x, u) = x2u2.
We have to claim that Φ is higher-order invex at u = 0 ∈ X with respect to η and
H. For this, it is enough to show that

Υ1 = Φ(x)−Φ(u)−H(u, p) + pT∇pH(u, p)− ηT (x, u){∇xΦ(u) +∇pH(u, p)} = 0.

Obviously, from Figure 2, we have Υ1 = 0, ∀ x ∈ X. Hence, Φ is higher-order
invex at u = 0 ∈ X with respect to η and H.

2.8. Definition

Φ : X 7→ R is higher-order pseudo-invex at u ∈ X with respect to η : X×X 7→
Rn and H : X ×Rn 7→ R, (X ⊆ Rn) if for all (x, p) ∈ X ×Rn,

ηT (x, u)
{
∇xΦ(u)+∇pH(u, p)

}
= 0⇒

(
Φ(x)−Φ(u)−H(u, p)+pT∇pH(u, p)

)
= 0.

2.9. Definition

Φ : X 7→ R is higher-order C-pseudo-convex at u ∈ X with respect to H :
X ×Rn 7→ R, (X ⊆ Rn) if for all (x, p) ∈ Rn ×Rn,

Cx,u

{
∇xΦ(u) +∇pH(u, p)

}
= 0⇒

(
Φ(x)−Φ(u)−H(u, p) + pT∇pH(u, p)

)
= 0.

2.10. Example

Consider a function Φ(x) = e−x − x2, Cx,u(a) = a2(x2 − u2),
H(u, p) = p(1 + u)−1, where X = [1,∞).

The above example 2.10 shows that the function Φ is higher-order C-pseudoconvex
at u = 1 ∈ [1,∞), but it is not higher-order F -pseudoconvex at u = 1 ∈ [1,∞)
because it is not sublinear in its third position.
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3. NON-DIFFERENTIABLE HIGHER ORDER MIXED TYPE
SYMMETRIC DUALITY MODEL OVER ARBITRARY CONES

For N= {1, 2, 3, ..., n} and M= {1, 2, 3, ..., m}, let us assume J1 ⊂ N ,
K1 ⊂ M and J2 = N \ J1 and K2 = M \K1, where |J1| denotes the number of
elements in the set J1. The other numbers |J2|, |K1| and |K2| are defined similarly.
Notice that if J1 = ∅, then J2 = N , that is |J1| = 0 and |J2| = n then R|J1| is
zero dimensional Euclidean space and R|J2| is n-dimensional Euclidean space. It
is clear that any x ∈ Rn can be written as x = {x1, x2}, x1 ∈ R|J1|, x2 ∈ R|J2|.
Similarly, any y ∈ Rm can be written as y = {y1, y2}, y1 ∈ R|K1|, y2 ∈ R|K2|.
Let
(i) f1 : R|J1| ×R|K1| → R,
(ii) f2 : R|J2| ×R|K2| → R,
(iii) g1 : R|J1| ×R|K1| ×R|J1| → R,
(iv) g2 : R|J2| ×R|K2| ×R|J2| → R,
(v) h1 : R|J1| ×R|K1| ×R|K1| → R,
(vi) h2 : R|J2|×R|K2|×R|K2| → R, be twice differentiable functions, respectively.

In this section, we introduce the following pair of non-differentiable higher or-
der symmetric duality model over arbitrary cones and derive duality theorems.

Primal Problem (MNHP):

Minimize L(x, y, z, p) =
f1(x1, y1) + s(x1|E1) + f2(x2, y2) + s(x2|E2)− yT1 z1 +h1(x1, y1, p1) +h2(x2, y2, p2)

−pT1∇p1
h1(x1, y1, p1)−pT2∇p2

h2(x2, y2, p2)−(y2)T [∇y2
f2(x2, y2)+∇p2

h2(x2, y2, p2)]

subject to

−
(
∇y1

f1(x1, y1)− z1 +∇p1
h1(x1, y1, p1)

)
∈ C∗1 , (1)

−
(
∇y2f2(x2, y2)− z2 +∇p2h2(x2, y2, p2)

)
∈ C∗2 , (2)

yT1 [∇y1
f1(x1, y1)− z1 +∇p1

h1(x1, y1, p1)] = 0, (3)

pT1 [∇y1f1(x1, y1)− z1 +∇p1h1(x1, y1, p1)] = 0, (4)

pT2 [∇y2f2(x2, y2)− z2 +∇p2h2(x2, y2, p2)] = 0, (5)

x1 ∈ C3, x2 ∈ C4, y2 = 0, (6)

z1 ∈ D1, z2 ∈ D2. (7)

Dual Problem (MNHD):
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Minimize M(u, v, w, r) =
f1(u1, v1)− s(v1|D1) + f2(u2, v2)− s(v2|D2) +uT1 w1 + g1(u1, v1, r1) + g2(u2, v2, r2)

−rT1 ∇r1g1(u1, v1, r1)−(r2)T∇r2g2(u2, v2, r2)−(u2)T [∇u2
f2(u2, v2)+∇r2g2(u2, v2, r2)]

subject to(
∇u1

f1(u1, v1) + w1 +∇r1g1(u1, v1, r1)

)
∈ C∗3 , (8)(

∇u2f2(u2, v2) + w2 +∇r2g2(u2, v2, r2)

)
∈ C∗4 , (9)

uT1 [∇u1
f1(u1, v1) + w1 +∇r1g1(u1, v1, r1)] 5 0, (10)

rT1 [∇u1
f1(u1, v1) + w1 +∇r1g1(u1, v1, r1)] 5 0, (11)

(r2)T [∇u2f2(u2, v2) + w2 +∇r2g2(u2, v2, r2)] 5 0, (12)

v1 ∈ C1, v2 ∈ C2, u2 = 0, (13)

w1 ∈ E1, w2 ∈ E2, (14)

where p1 ∈ R|K1|, p2 ∈ R|K2|, r1 ∈ R|J1| and r2 ∈ R|J2| and E1, E2, D1 and D2

are compact convex sets in R|J1|, R|J2|, R|K1| and R|K2|, respectively.

Let P 0 and Q0 be feasible set of (MNHP) and (MNHD), respectively.

Theorem 3.1 (Weak Duality). Let (x1, x2, y1, y2, z1, z2, p1, p2) ∈ P 0 and
(u1, u2, v1, v2, w1, w2, r1, r2) ∈ Q0. Let

(i) f1(., v1) + (.)Tw1 be higher-order pseudo-invex at u1 with respect to η1 and
g1,
(ii)-f1(x1, .) + (.)T z1 be higheror-der pseudo-invex at y1 with respect to η2 and
-h1,
(iii) f2(., v2) + (.)Tw2 be higher-order invex at u2 with respect to η3 and g2,
(iv) -f2(x2, .) + (.)T z2 be higher-order invex at y2 with respect to η4 and -h2,
(v) η1(x1, u1) + u1 + r1 ∈ C3,
(vi) η2(v1, y1) + y1 + p1 ∈ C4,
(vii) η3(x2, u2) + u2 + r2 ∈ C1,
(viii) η4(v2, y2) + y2 + p2 ∈ C2.

Then,

L(x1, x2, y1, y2, z1, p1, p2) ≮M(u1, u2, v1, v2, w1, r1, r2). (15)

Proof: By hypotheses (iii) and (iv), we get

f2(x2, v2) + xT2 w2 − f2(u2, v2)− (u2)Tw2 − g2(u2, v2, p2) + (r2)T∇r2g2(u2, v2, p2)

= η3(x2, u2)[∇x2f2(u2, v2) + w2 +∇r2g2(u2, v2, r2)], (16)
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and
f2(x2, y2)− (y2)T z2 − f2(x2, v2) + (v2)T z2 − h2(x2, v2, p2) + pT2∇p2h2(x2, v2, p2)

= η4(v2, y2)[−∇y2
f2(x2, y2) + z2 −∇p2

h2(x2, y2, p2)]. (17)

Using hypotheses (vii), (viii) and the dual constraints (2) and (9), we have

(η3(x2, u2) + u2 + r2)[∇x2
f2(u2, v2) + w2 +∇r2g2(u2, v2, r2)] = 0,

and

(η4(v2, y2) + y2 + p2)[−∇y2
f2(x2, y2) + z2 −∇p2

h2(x2, y2, p2)] = 0.

Above inequalities follows that:

η3(x2, u2)[∇x2
f2(u2, v2) + w2 +∇r2g2(u2, v2, r2)] + u2[∇x2

f2(u2, v2) + w2

+∇r2g2(u2, v2, r2)] = −r2[∇x2
f2(u2, v2) + w2 +∇r2g2(u2, v2, r2)],

and
η4(v2, y2)[−∇y2

f2(x2, y2) + z2 −∇p2
h2(x2, y2, p2)] + y2[−∇y2

f(x2, y2) + z2

−∇p2h2(x2, y2, p2)] = p2[∇y2f2(x2, y2)− z2 +∇p2h2(x2, y2, p2)]. (18)

Using inequalities (5) and (12) gives that

η3(x2, u2)[∇x2
f2(u2, v2) + w2 +∇r2g2(u2, v2, r2)]

= −u2[∇x2
f2(u2, v2) + w2 +∇r2g2(u2, v2, r2)], (19)

η4(v2, y2)[−∇y2f2(x2, y2) + z2 −∇p2h2(x2, y2, p2)]

= y2[∇y2f2(x2, y2) + z2 +∇p2h2(x2, y2, p2)]. (20)

Further, from inequalities (16) and (17), we obtain

f2(x2, v2) + xT2 w2 − f2(u2, v2)− (u2)Tw2 − g2(u2, v2, p2) + (r2)T∇r2g2(u2, v2, p2)

= −u2[∇x2f2(u2, v2) + w2 +∇r2g2(u2, v2, r2)], (21)

f2(x2, y2)− (y2)T z2 − f2(x2, v2) + (v2)T z2 − h2(x2, v2, p2) + pT2∇p2h2(x2, v2, p2)

= y2[∇y2
f2(x2, y2) + z2 +∇p2

h2(x2, y2, p2)]. (22)

Adding the above inequalities, we have

f2(x2, y2) + xT2 w2 − (y2)T z2 + h2(x2, y2, p2)− pT2∇p2h2(x2, y2, p2)

−y2[∇y2
f2(x2, y2)− z2 +∇p2

h2(x2, y2, p2)]
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= f2(u2, v2) + (u2)Tw2 − (v2)T z2 + g2(u2, v2, p2)− (r2)T∇r2g2(u2, v2, p2)

−u2[∇x2
f2(u2, v2) + w2 +∇r2g2(u2, v2, r2)].

Now, using xT2 w2 5 s(x2|E2) and (v2)T z2 5 s(v2|D2), we obtain

f2(x2, y2) + s(x2|E2) + h2(x2, y2, p2)− pT2∇p2h2(x2, y2, p2)

−y2[∇y2
f(x2, y2) +∇p2

h2(x2, y2, p2)]

= f2(u2, v2)− s(v2|D2) + g2(u2, v2, p2)− (r2)T∇r2g2(u2, v2, p2)

−u2[∇x2
f2(u2, v2) +∇r2g2(u2, v2, r2)]. (23)

Similarly, using hypotheses (v), (vi), primal-dual constraints and the fact that
(x1)Tw1 5 s(x1|E1) and vT1 z1 5 s(v1|D1), we get

f1(x1, y1)− yT1 z1 + s(x1|E1) + h1(x1, y1, p1)− pT1∇p1
h1(x1, y1, p1)

= f1(u1, v1) + vT1 w1 − s(v1|D1) + g1(u1, v1, p1)− rT1 ∇r1g1(u1, v1, p1). (24)

Combining inequalities (23) and (24), we obtain

L(x1, x2, y1, y2, z1, p1, p2) =M(u1, u2, v1, v2, w1, r1, r2).

This completes the proof.

Theorem 3.2 (Weak Duality). Let (x1, x2, y1, y2, z1, z2, p1, p2) ∈ P 0 and
(u1, u2, v1, v2, w1, w2, r1, r2) ∈ Q0. Let

(i) f1(., v1) + (.)Tw1 be higher-order C-pseudo-convex at u1 with respect to g1,
(ii) -f1(x1, .)+(.)T z1 be higher-order C- pseudo-convex at y1 with respect to −h1,
(iii) f2(., v2) + (.)Tw2 be higher-order C-convex at u2 with respect to g2,
(iv) -f2(x2, .) + (.)T z2 be higher-order C- invex at y2 with respect to η4 and −h2,
(v) Cx1,u1(∇u1f1(u1, v1) + w1 + ∇r1h1(u1, v1, r1)) + uT1 (∇u1f1(u1, v1) + w1 +
∇r1h1(u1, v1, r1)) + rT1 (∇u1

f1(u1, v1) + w1

+∇r1h1(u1, v1, r1)) ∈ C3, ∀x1, u1 ∈ C3,
(∇u1

f1(u1, v1) + w1 +∇r1h1(u1, v1, r1)) ∈ C∗3 ,
(vi) Cv1,y1(−∇y1f1(x1, y1)− z1 +∇p1g1(x1, y1, p1)) + yT1 (−∇y1f1(x1, y1)− z1

+∇p1g1(x1, y1, p1)) + pT1 (−∇y1f1(x1, y1)− z1 +∇p1g1(x1, y1, p1)) ∈ C1,
∀v1, y1 ∈ C1, (−∇y1

f1(x1, y1)− z1 +∇p1
g1(x1, y1, p1)) ∈ C∗1 ,

(vii) Cx2,u2
(∇u2

f2(u2, v2) + w2 +∇r2h2(u2, v2, r2)) + uT1 (∇u2
f2(u2, v2)

+w2 +∇r2h2(u2, v2, r2)) + rT2 (∇u2
f2(u2, v2) +w2 +∇r2h2(u2, v2, r2)) ∈ C4,

∀x2, u2 ∈ C4, (∇u2f2(u2, v2) + w2 +∇r2h2(u2, v2, r2)) ∈ C∗4 ,
(viii) Cv2,y2(−∇y2f2(x2, y2)− z2 +∇p2g2(x2, y2, p2)) + yT2 (−∇y2f2(x2, y2)
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− z2 +∇p2
g2(x2, y2, p2)) + pT2 (−∇y2

f2(x2, y2)− z2 +∇p2
g2(x2, y2, p2)) ∈ C2,

∀v2, y2 ∈ C2, (−∇y2f1(x2, y2)− z2 +∇p2g2(x2, y2, p2)) ∈ C∗2 .

Then,

L(x1, x2, y1, y2, z1, p1, p2) ≮M(u1, u2, v1, v2, w1, r1, r2).

Proof: The proof follows on the lines of Theorem 3.1.

Theorem 3.3 (Strong Duality). Let (x̄1, x̄2, ȳ1, ȳ2, z̄1, z̄2, p̄1, p̄2) be an opti-
mal solution of (MNHP). Suppose that

(i) ∇p1p1
h1(x̄1, ȳ1, p̄1) is positive or negative definite and ∇p2p2

h2(x̄2, ȳ2, p̄2)
is negative definite,
(ii) ∇y1f1(x̄1, ȳ1)− z̄1 +∇p1h1(x̄1, ȳ1, p̄1) 6= 0 and
∇y2f2(x̄2, ȳ2)− z̄2 +∇p2h2(x̄2, ȳ2, p̄2) 6= 0,

(iii) (p̄1)T [∇y1
f1(x̄1, ȳ1)− z̄1 +∇p1

h1(x̄1, ȳ1, p̄1)] = 0⇒ p̄1 = 0 and
y2[∇y2

h2(x̄2, ȳ2, p̄2)−∇p2
h2(x̄2, ȳ2, p̄2) +∇y2y2

f2(x̄2, ȳ2)p̄2] = 0⇒ p̄2 = 0,
(iv) h1(x̄1, ȳ1, 0) = g1(x̄1, ȳ1, 0), ∇x1

h1(x̄1, ȳ1, 0) = ∇r1g1(x̄1, ȳ1, 0),
∇y1h1(x̄1, ȳ1, 0) = ∇p1h1(x̄1, ȳ1, 0) and h2(x̄2, ȳ2, 0) = g2(x̄2, ȳ2, 0),
∇x2h2(x̄2, ȳ2, 0) = ∇r2g2(x̄2, ȳ2, 0).

Then,

(I) (x̄1, x̄2, ȳ1, ȳ2, w̄1, w̄2, r̄1 = 0, r̄2 = 0) is feasible for (MNHD) and
(II) L(x̄1, x̄2, ȳ1, ȳ2, z̄1, z̄2, p̄1, p̄2) = M(x̄1, x̄2, ȳ1, ȳ2, w̄1, w̄2, r̄1, r̄2).

Furthermore, if the assumptions of Theorem 3.1 or 3.2 are satisfied ∀ P 0 and Q0

, then (x̄1, x̄2, ȳ1, ȳ2, w̄1, w̄2, r̄1 = 0, r̄2 = 0) is an optimal solution for (MNHD).

Proof:
Since (x̄1, x̄2, ȳ1, ȳ2, z̄1, z̄2, p̄1, p̄2) is an optimal solution of (MNHP ), by the Fritz
John necessary optimality conditions [16], there exist α, γ ∈ R+, δ1 ∈ R, δ2 ∈ R,
β1 ∈ R|K1|, β2, ζ ∈ R|K2|, ξ1 ∈ R|J1|, ξ2 ∈ R|J2| such that the following conditions
are satisfied at (x̄1, x̄2, ȳ1, ȳ2 ,̄̄ z1, z̄2, p̄1, p̄2) :

(x1 − x̄1)T
(
α[∇x1

f1(x̄1, ȳ1) + ξ1 +∇x1
h1(x̄1, ȳ1, p̄1)−∇p1x1

h1(x̄1, ȳ1, p̄1)p̄1]

+[∇y1x1
f1(x̄1, ȳ1)+∇p1x1

h1(x̄1, ȳ1, p̄1)](β1−γȳ1−δ1p̄1)

)
= 0, ∀ x1 ∈ C3, (25)

(x2 − x̄2)T
(
α[∇x2f2(x̄2, ȳ2) + ξ2 +∇x2h2(x̄2, ȳ2, p̄2)] + {∇p2x2h2(x̄2, ȳ2, p̄2)}

(β2−αȳ2−αp̄2−δ2p̄2)+{∇y2x2
f2(x̄2, ȳ2)}(β2−αȳ2−δ2p̄2) = 0, ∀ x2 ∈ C4, (26)
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α[∇y1
f1(x̄1, ȳ1)− z̄1 +∇y1

h1(x̄1, ȳ1, p̄1)−∇p1y1
h1(x̄1, ȳ1, p̄1)p̄1] + (∇y1y1

f1(x̄1, ȳ1)

+∇p1y1h1(x̄1, ȳ1, p̄1))(β1−γȳ1−δ1p̄1)−γ[∇y1f1(x̄1, ȳ1)−z̄1+∇p1h1(x̄1, ȳ1, p̄1)] = 0,

(27)

{∇p2y2
h2(x̄2, ȳ2, p̄2)}(β2 − αȳ2 − αp̄2 − δ2p̄2) + α[∇y2

h2(x̄2, ȳ2, p̄2)

−∇p2
h2(x̄2, ȳ2, p̄2)] + {∇y2y2

f2(x̄2, ȳ2)}(β2 − αȳ2 − δ2p̄2)− ζ = 0, (28)

{∇p1p1
h1(x̄1, ȳ1, p̄1)}(β1 − αp̄1 − γȳ1 − δ1p̄1)

−δ1[∇y1
f1(x̄1, ȳ1)− z̄1 +∇p1

h1(x̄1, ȳ1, p̄1)] = 0, (29)

{∇p2p2h2(x̄2, ȳ2, p̄2)}(β2 − αȳ2 − αp̄2 − δ2p̄2)

−δ2[∇y2
f2(x̄2, ȳ2)− z̄2 +∇p2

h2(x̄2, ȳ2, p̄2)] = 0, (30)

β1[∇y1f1(x̄1, ȳ1)− z̄1 +∇p1h1(x̄1, ȳ1, p̄1)] = 0, (31)

β2[∇y2
f2(x̄2, ȳ2)− z̄2 +∇p2

h2(x̄2, ȳ2, p̄2)] = 0, (32)

γȳ1[∇y1
f1(x̄1, ȳ1)− z̄1 +∇p1

h1(x̄1, ȳ1, p̄1)] = 0, (33)

δ1p̄1[∇y1f1(x̄1, ȳ1)− z̄1 +∇p1h1(x̄1, ȳ1, p̄1)] = 0, (34)

δ2p̄2[∇y2
f2(x̄2, ȳ2)− z̄2 +∇p2

h2(x̄2, ȳ2, p̄2)] = 0, (35)

(α− γ1)y1 + β1 − δ1p1 ∈ ND1
(z̄1), (36)

β2 − δ2p2 ∈ ND2(z̄2), (37)

ξ1
T x̄1 = s(x1|E1), ξ1 ∈ E1, (38)

ξ2
T x̄2 = s(x2|E2), ξ2 ∈ E2, (39)

µ1x̄1 = 0, (40)

µ2x̄2 = 0, (41)

ζȳ2 = 0, (42)

(α, β1, β2, γ, δ1, δ2, ζ) 6= 0, (43)

(α, β1, β2, γ, δ1, δ2, ζ) = 0, (44)

Remaining proof of Theorem 3.3 follows on the lines of [19]

Theorem 3.4 (Converse Duality). Let (ū1, ū2, v̄1, v̄2, w̄1, w̄2, r̄1, r̄2) be an op-
timal solution of (MNHD). Suppose that

(i) ∇r1r1g1(ū1, v̄1, r̄1) is positive or negative definite and ∇r2r2g2(ū2, v̄2, r̄2)
is negative definite,
(ii) ∇u1f1(ū1, v̄1) + w̄1 +∇r1g1(ū1, v̄1, r̄1) 6= 0 and

v2[∇y2f2(x̄2, ȳ2) + w̄2 +∇p2h2(x̄2, ȳ2, p̄2)] 6= 0,
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(iii) (r̄1)T [∇u1
f1(ū1, v̄1) + w̄1 +∇r1g1(ū1, v̄1, r̄1)] = 0⇒ r̄1 = 0 and

u2[∇u2g2(ū2, v̄2, r̄2)−∇r2g2(ū2, v̄2, r̄2) +∇u2u2f2(ū2, v̄2)r̄2] = 0⇒ r̄2 = 0,
(iv) g1(ū1, v̄1, 0) = g1(ū1, v̄1, 0), ∇u1g1(ū1, v̄1, 0) = ∇r1g1(ū1, v̄1, 0),

∇v1g1(ū1, v̄1, 0) = ∇r1g1(ū1, v̄1, 0) and g2(ū2, v̄2, 0) = h2(ū2, v̄2, 0),
∇u2

g2(ū2, v̄2, 0) = ∇r2h2(ū2, v̄2, 0).

Then,

(I) (ū1, ū2, v̄1, v̄2, z̄1, z̄2, p̄1 = 0, p̄2 = 0) is feasible for (MNHP ) and
(II) L(ū1, ū2, v̄1, z̄1, z̄2, v̄2, p̄1, p̄2) = M(ū1, ū2, v̄1, v̄2, w̄1, w̄2, r̄1, r̄2).

Furthermore, if the hypotheses of Theorem 3.1 or 3.2 are satisfied for all feasible
solutions of (MNHP ) and (MNHD), then (ū1, ū2, v̄1, v̄2, z̄1, z̄2, p̄1 = 0, p̄2 = 0) is
an optimal solution for (MNHP ).

Proof. Follows on the line of Theorem 3.3.

4. CONCLUSIONS

A pair of non-differentiable mixed type symmetric dual programs has been
formulated over arbitrary cone constraints by considering the optimization under
the assumptions of η-pseudoinvexity/η-invexity/C-pseudoconvexity/C-convexity.
For future prospectus, the primal-dual problems may be extended for mixed sym-
metric duality in integer for scalar and multi-objective programming over cone
constraints. The present work can also be extended to nondifferentiable higher
order symmetric fractional programming over arbitrary cones. This will orient the
future task of the authors.
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