Yugoslav Journal of Operations Research 32 (2022), Number 2, 167–188 DOI: https://doi.org/10.2298/YJOR210218019D

SUFFICIENCY AND DUALITY OF SET-VALUED FRACTIONAL PROGRAMMING PROBLEMS VIA SECOND-ORDER CONTINGENT EPIDERIVATIVE

Koushik DAS Department of Mathematics, Taki Government College, Taki - 743429, West Bengal, India koushikdas.maths@gmail.com

Received: February 2021 / Accepted: August 2021

Abstract: In this paper, we establish second-order sufficient KKT optimality conditions of a set-valued fractional programming problem under second-order generalized cone convexity assumptions. We also prove duality results between the primal problem and second-order dual problems of parametric, Mond-Weir, Wolfe, and mixed types via the notion of second-order contingent epiderivative.

Keywords: Convex Cone, Set-Calued Map, Contingent Epiderivative, Duality. **MSC:** 26B25, 49N15.

1. INTRODUCTION

The theory of set-valued optimization problems, being an expanding branch of optimization theory, has attracted the attention of many researchers in the past few years. A set-valued optimization problem is one that involves set-valued maps as objective functions and constraints. Many optimization problems in mathematical economics, differential inclusions, image processing, optimal control, and viability theory are set-valued optimization problems, but there exist various types of notions of differentiability of set-valued maps. In 1997, Jahn and Rauh [22] introduced the notion of contingent epiderivative of set-valued maps. It has a vital role for establishment of optimality conditions of set-valued optimization problems. Borwein [6] introduced the notion of cone convexity of set-valued maps,

which plays an important role in the theory of set-valued optimization problems. There are various classes of set-valued optimization problems. An important class is that of set-valued fractional programming problems. In 1997, Bhatia and Mehra [4] introduced the notion of cone preinvexity of set-valued maps and established the Lagrangian duality results for the set-valued fractional programming problems. They also [5] developed the duality results for Geoffrion efficient solutions of the set-valued fractional programming problems via cone convexity. Gadhi and Jawhar [20] established the necessary optimality conditions of the set-valued fractional programming problems without any convex separation approach in 2013. Many authors like Kaul and Lyall [23], Bhatia and Garg [3], Suneja and Gupta [27], Suneja and Lalitha [28], and Lee and Ho [24] established the optimality conditions and developed the duality theorems for vector-valued fractional programming problems under generalized convexity assumptions. Li et al. [25, 26] established the necessary and sufficient optimality conditions by using higher-order contingent derivative. They also formulated the higher-order Mond-Weir dual for set-valued optimization problems and studied the duality theorems under convexity assumptions. In 2015, Das and Nahak [11] established the sufficient Karush-Kuhn-Tucker (KKT) optimality conditions for set-valued fractional programming problems under contingent epiderivative and ρ -cone convexity assumptions. They also studied the duality results of parametric, Mond-Weir, Wolfe, and mixed types for the problem. Later, they [9] established the sufficient KKT optimality conditions of set-valued optimization problems under generalized convexity assumptions and higher-order contingent derivative assumptions. They also proved weak, strong, and converse duality theorems of Mond-Weir, Wolfe and mixed types.

In this paper, we establish the second-order sufficient KKT optimality conditions of a set-valued fractional programming problem by using second-order ρ cone convexity assumptions. The duality results between the primal problem and second-order dual problems of parametric, Mond-Weir, Wolfe, and mixed types are also proved via the notion of second-order contingent epiderivative.

This paper is organized as follows. Section 2 deals with some definitions and preliminary concepts of set-valued maps. In Section 3, a set-valued fractional programming problem (FP) is considered and the second-order sufficient KKT conditions are established for the problem (FP). Various types of duality theorems are studied under second-order contingent epiderivative and second-order generalized cone convexity assumptions.

2. DEFINITIONS AND PRELIMINARIES

Let K be a nonempty subset of the *m*-dimensional Euclidean space \mathbb{R}^m . Then K is called a cone if $\lambda y \in K$, for all $y \in K$ and $\lambda \geq 0$. Furthermore, K is called non-trivial if $K \neq \{\mathbf{0}_{\mathbb{R}^m}\}$, proper if $K \neq \mathbb{R}^m$, pointed if $K \cap (-K) = \{\mathbf{0}_{\mathbb{R}^m}\}$, solid if $\operatorname{int}(K) \neq \emptyset$, closed if $\overline{K} = K$, and convex if $\lambda K + (1-\lambda)K \subseteq K$, for all $\lambda \in [0, 1]$, where $\operatorname{int}(K)$ and \overline{K} denote the interior and closure of K, respectively and $\mathbf{0}_{\mathbb{R}^m}$ is the zero element of \mathbb{R}^m .

Let us define the non-negative orthant \mathbb{R}^m_+ of \mathbb{R}^m by

$$\mathbb{R}^{m}_{+} = \{ y = (y_1, ..., y_m) \in \mathbb{R}^{m} : y_i \ge 0, \forall i = 1, 2, ..., m \}$$

Then \mathbb{R}^m_+ is a solid pointed closed convex cone and $\operatorname{int}(\mathbb{R}^m_+) \cup \{\mathbf{0}_{\mathbb{R}^m}\}\$ is a solid pointed convex cone in \mathbb{R}^m .

There are two types of cone-orderings in \mathbb{R}^m with respect to the solid pointed convex cone \mathbb{R}^m_+ of \mathbb{R}^m . For any two elements $y_1, y_2 \in \mathbb{R}^m$, we have

$$y_1 \leq y_2 \text{ if } y_2 - y_1 \in \mathbb{R}^m_+$$

and

$$y_1 < y_2$$
 if $y_2 - y_1 \in int(\mathbb{R}^m_+)$.

We say $y_2 \ge y_1$, if $y_1 \le y_2$ and $y_2 > y_1$, if $y_1 < y_2$.

The following notions of minimality are mainly used with respect to the solid pointed convex cone \mathbb{R}^m_+ of \mathbb{R}^m .

Definition 2.1. Let B be a nonempty subset of \mathbb{R}^m . Then minimal and weakly minimal points of B are defined as

- (i) $y' \in B$ is a minimal point of B if there is no $y \in B \setminus \{y'\}$ such that $y \leq y'$.
- (ii) $y' \in B$ is a weakly minimal point of B if there is no $y \in B$ such that y < y'.

The sets of minimal points and weakly minimal points of B are denoted by $\min(B)$ and w-min(B), respectively and characterized as

$$\min(B) = \{ y' \in B : (y' - \mathbb{R}^m_+) \cap B = \{ y' \} \}$$

and

w-min(B) = {
$$y' \in B : (y' - \operatorname{int}(\mathbb{R}^m_+)) \cap B = \emptyset$$
}.

Similarly, the sets of maximal points and weakly maximal points of B can be defined and characterized.

We recall the notions of contingent cone and second-order contingent set in a real normed space.

Definition 2.2. [1, 2] Let Y be a real normed space, $\emptyset \neq B \subseteq Y$, and $y' \in \overline{B}$. The contingent cone to B at y' is denoted by T(B, y') and defined as follows:

An element $y \in T(B, y')$ if there exist sequences $\{\lambda_n\}$ in \mathbb{R} , with $\lambda_n \to 0^+$ and $\{y_n\}$ in Y, with $y_n \to y$ such that

 $y' + \lambda_n y_n \in B, \forall n \in \mathbb{N},$

or, there exist sequences $\{t_n\}$ in \mathbb{R} , with $t_n > 0$ and $\{y'_n\}$ in B, with $y'_n \to y'$ such that

$$t_n(y'_n - y') \to y.$$

The contingent cone T(B, y') is actually a local approximation of the set B - y'. If $y' \in int(B)$, then T(B, y') = Y.

Proposition 2.1. [2] The contingent cone T(B, y') is a closed cone, but not necessarily convex and $T(B, y') \subseteq \overline{\bigcup_{h>0} \frac{B-y'}{h}}$.

Definition 2.3. [1, 2, 7] Let Y be a real normed space, $\emptyset \neq B \subseteq Y$, $y' \in \overline{B}$, and $u \in Y$. The second-order contingent set to B at y' in the direction u is denoted by $T^2(B, y', u)$ and defined as

An element $y \in T^2(B, y', u)$ if there exist sequences $\{\lambda_n\}$ in \mathbb{R} , with $\lambda_n \to 0^+$ and $\{y_n\}$ in Y, with $y_n \to y$ such that

$$y' + \lambda_n u + \frac{1}{2}{\lambda_n}^2 y_n \in B, \forall n \in \mathbb{N},$$

or, there exist sequences $\{t_n\}$, $\{t'_n\}$ in \mathbb{R} , with $t_n, t'_n > 0$, $t_n \to \infty$, $t'_n \to \infty$, $\frac{t'_n}{t_n} \to 2$, and $\{y'_n\}$ in B, with $y'_n \to y'$ such that

$$t_n(y'_n - y') \rightarrow u$$
 and $t'_n(t_n(y'_n - y') - u) \rightarrow y$.

Proposition 2.2. [29] The second-order contingent set $T^2(B, y', u)$ is a closed set, but not necessarily a cone. Even, $T^2(B, y', u)$ may not be convex, though B is convex. Also, $T^2(B, y', \theta_Y) = T(T(B, y'), \theta_Y) = T(B, y')$.

Let X, Y be real normed spaces, 2^Y be the set of all subsets of Y, and K be a solid pointed convex cone in Y. Let $F : X \to 2^Y$ be a set-valued map from X to Y, i.e., $F(x) \subseteq Y$, for all $x \in X$. The effective domain, image, graph, and epigraph of F are defined respectively by

$$dom(F) = \{x \in X : F(x) \neq \emptyset\},\$$

$$F(A) = \bigcup_{x \in A} F(x), \text{ for any } A(\neq \emptyset) \subseteq X,\$$

$$gr(F) = \{(x, y) \in X \times Y : y \in F(x)\},\$$

and

$$epi(F) = \{(x, y) \in X \times Y : y \in F(x) + K\}.$$

Let A be a nonempty subset of X, $x' \in A$, $F : X \to 2^Y$ be a set-valued map, with $A \subseteq \operatorname{dom}(F)$ and $y' \in F(x')$. Jahn and Rauh [22] introduced the notion of contingent epiderivative of set-valued maps, which plays an important role in set-valued optimization problems.

Definition 2.4. [22] A single-valued map $D_{\uparrow}F(x',y') : X \to Y$ whose epigraph coincides with the contingent cone to the epigraph of F at (x',y'), i.e.,

$$\operatorname{epi}(D_{\uparrow}F(x',y')) = T(\operatorname{epi}(F),(x',y')),$$

. . . .

is said to be the contingent epiderivative of F at (x', y').

When $f: X \to \mathbb{R}$ is a real-valued map, being continuous at $x_0 \in X$ and convex,

$$D_{\uparrow}f(x_0, f(x_0))(u) = f'(x_0)(u), \forall u \in X,$$

where $f'(x_0)(u)$ is the directional derivative of f at x_0 in the direction u.

Jahn et al. [21] introduced the notion of second-order contingent epiderivative of set-valued maps which also has a vital role in set-valued optimization problems.

Definition 2.5. [21] A single-valued map $D^2_{\uparrow}F(x', y', u, v) : X \to Y$ whose epigraph coincides with the second-order contingent set to the epigraph of F at $(x', y') \in$ gr(F) in a direction $(u, v) \in X \times Y$, i.e.,

$$epi(D^2_{\uparrow}F(x', y', u, v)) = T^2(epi(F), (x', y'), (u, v)),$$

is said to be the second-order contingent epiderivative of F at (x', y') in the direction (u, v).

Proposition 2.3. [2] Let $\emptyset \neq A \subseteq X$, $x' \in A$, $u \in X$, and $f : X \to Y$ be a single-valued map that is twice continuously differentiable around x'. The second-order contingent epiderivative $D^2_{\uparrow}f(x', f(x'), u, f'(x')u)$ of f at (x', f(x')) in the direction (u, f'(x')u) is given by

$$D^{2}_{\uparrow}f(x', f(x'), u, f'(x')u)(x) = f'(x')x + \frac{1}{2}f''(x')(u, u), x \in T^{2}(A, x', u).$$

Borwein [6] introduced the notion of cone convexity of set-valued maps.

Definition 2.6. [6] Let A be a nonempty convex subset of a real normed space X. A set-valued map $F: X \to 2^Y$, with $A \subseteq \text{dom}(F)$, is called K-convex on A if $\forall x_1, x_2 \in A \text{ and } \lambda \in [0, 1]$,

$$\lambda F(x_1) + (1-\lambda)F(x_2) \subseteq F(\lambda x_1 + (1-\lambda)x_2) + K.$$

It is clear that if a set-valued map $F: X \to 2^Y$ is K-convex on A, then epi(F) is a convex subset of $X \times Y$.

The following lemma represents cone convex set-valued maps in terms of contingent epiderivative.

Lemma 2.1. [22] If $F : X \to 2^Y$ is K-convex on a nonempty convex subset A of a real normed space X, then for all $x, x' \in A$ and $y' \in F(x')$,

$$F(x) - y' \subseteq D_{\uparrow}F(x', y')(x - x') + K.$$

Definition 2.7. [29] Let A be a nonempty subset of a real normed space X and $F: X \to 2^Y$ be a set-valued map, with $A \subseteq \text{dom}(F)$. Let $x', u \in A, y' \in F(x')$, and $v \in F(u) + K$. Assume that F is second-order contingent epiderivable at (x', y') in the direction (u - x', v - y'). Then F is said to be second-order K-convex at (x', y') in the direction (u - x', v - y') on A if

$$F(x) - y' \subseteq D^2_{\uparrow} F(x', y', u - x', v - y')(x - x') + K, \forall x \in A.$$

Let X be a real normed space and A a nonempty subset of X. Let $F: X \to 2^{\mathbb{R}^m}$, $G: X \to 2^{\mathbb{R}^m}$, and $H: X \to 2^{\mathbb{R}^k}$ be set-valued maps, with

 $A \subseteq \operatorname{dom}(F) \cap \operatorname{dom}(G) \cap \operatorname{dom}(H).$

Let $F = (F_1, F_2, ..., F_m)$, $G = (G_1, G_2, ..., G_m)$, and $H = (H_1, H_2, ..., H_k)$, where the set-valued maps $F_i : X \to 2^{\mathbb{R}}$, $G_i : X \to 2^{\mathbb{R}}$; i = 1, 2, ..., m, and $H_j : X \to 2^{\mathbb{R}}$; j = 1, 2, ..., k, are defined by

$$dom(F_i) = dom(F), dom(G_i) = dom(G), \text{ and } dom(H_j) = dom(H),$$
$$x \in A, y = (y_1, y_2, ..., y_m) \in F(x) \Longrightarrow y_i \in F_i(x), \forall i = 1, 2, ..., m,$$
$$z = (z_1, z_2, ..., z_m) \in G(x) \Longrightarrow z_i \in G_i(x), \forall i = 1, 2, ..., m,$$

and

172

$$w = (w_1, w_2, ..., w_k) \in H(x) \Longrightarrow w_j \in H_j(x), \forall j = 1, 2, ..., k$$

Assume that $F_i(x) \subseteq \mathbb{R}_+$ and $G_i(x) \subseteq \operatorname{int}(\mathbb{R}_+), \forall i = 1, 2, ..., m$ and $x \in A$. Let $\lambda' = (\lambda'_1, \lambda'_2, ..., \lambda'_m) \in \mathbb{R}^m_+$. Define elements $\frac{y}{z}, \lambda' z \in \mathbb{R}^m$ and a subset $\lambda' G(x)$ of \mathbb{R}^m by

$$\begin{split} &\frac{y}{z} = \left(\frac{y_1}{z_1}, \frac{y_2}{z_2}, ..., \frac{y_m}{z_m}\right) \\ &\lambda' z = (\lambda'_1 z_1, \lambda'_2 z_2, ..., \lambda'_m z_m), \end{split}$$

and

$$\lambda' G(x) = \{\lambda' z : z \in G(x)\}.$$

For $x \in A$, define a subset $\frac{F(x)}{G(x)}$ of \mathbb{R}^m by

$$\frac{F(x)}{G(x)} = \left\{ \frac{y}{z} = \left(\frac{y_1}{z_1}, \frac{y_2}{z_2}, \dots, \frac{y_m}{z_m} \right) : y = (y_1, y_2, \dots, y_m) \in F(x), \\ z = (z_1, z_2, \dots, z_m) \in G(x) \right\}.$$

We consider a set-valued fractional programming problem (FP).

$$\begin{array}{ll}
\text{minimize} & \frac{F(x)}{G(x)} \\
\text{subject to} & H(x) \cap (-\mathbb{R}^k_+) \neq \emptyset.
\end{array} \tag{FP}$$

The feasible set of the problem (FP) is given by

$$S = \{ x \in A : H(x) \cap (-\mathbb{R}^k_+) \neq \emptyset \}.$$

Definition 2.8. A point $(x', \frac{y'}{z'}) \in X \times \mathbb{R}^m$, with $x' \in S$, $y' \in F(x')$, and $z' \in G(x')$, is called a minimizer of the problem (FP) if for all $(x, \frac{y}{z}) \in X \times \mathbb{R}^m$, with $x \in S$, $y \in F(x)$, and $z \in G(x)$,

$$\frac{y}{z} - \frac{y'}{z'} \notin (-\mathbb{R}^m_+) \setminus \{\mathbf{0}_{\mathbb{R}^m}\}.$$

Definition 2.9. A point $(x', \frac{y'}{z'}) \in X \times \mathbb{R}^m$, with $x' \in S$, $y' \in F(x')$, and $z' \in G(x')$, is called a weak minimizer of the problem (FP) if for all $(x, \frac{y}{z}) \in X \times \mathbb{R}^m$, with $x \in S$, $y \in F(x)$, and $z \in G(x)$,

$$\frac{y}{z} - \frac{y'}{z'} \notin (-\mathrm{int}(\mathbb{R}^m_+))$$

Let $\lambda' \in \mathbb{R}^m_+$. We consider a parametric problem $(FP_{\lambda'})$ associated with the set-valued fractional programming problem (FP).

$$\begin{array}{ll} \underset{x \in A}{\operatorname{minimize}} & F(x) - \lambda' G(x) \\ \text{subject to} & H(x) \cap (-\mathbb{R}^k_+) \neq \emptyset. \end{array}$$

$$(FP_{\lambda'})$$

Definition 2.10. A point $(x', y' - \lambda'z') \in X \times \mathbb{R}^m$, with $x' \in S$, $y' \in F(x')$, and $z' \in G(x')$, is called a minimizer of the problem $(FP_{\lambda'})$ if for all $(x, y - \lambda'z) \in X \times \mathbb{R}^m$, with $x \in S$, $y \in F(x)$, and $z \in G(x)$,

$$(y - \lambda' z) - (y' - \lambda' z') \notin (-\mathbb{R}^m_+) \setminus \{\mathbf{0}_{\mathbb{R}^m}\}.$$

Definition 2.11. A point $(x', y' - \lambda'z') \in X \times \mathbb{R}^m$, with $x' \in S$, $y' \in F(x')$, and $z' \in G(x')$, is called a weak minimizer of the problem $(FP_{\lambda'})$ if for all $(x, y - \lambda'z) \in X \times \mathbb{R}^m$, with $x \in S$, $y \in F(x)$, and $z \in G(x)$,

$$(y - \lambda' z) - (y' - \lambda' z') \notin (-\operatorname{int}(\mathbb{R}^m_+)).$$

Gadhi and Jawhar [20] proved the relationship between the solutions of the problems (FP) and $(FP_{\lambda'})$.

Lemma 2.2. [20] A point $(x', \frac{y'}{z'}) \in X \times \mathbb{R}^m$ is a weak minimizer of the problem (FP) if and only if $(x', \mathbf{0}_{\mathbb{R}^m})$ is a weak minimizer of the problem $(FP_{\lambda'})$, where $\lambda' = \frac{y'}{z'}$.

For the special case, when $f: X \to \mathbb{R}^m$, $g: X \to \mathbb{R}^m$, and $h: X \to \mathbb{R}^k$ are single-valued maps, we have a multiobjective fractional programming problem as

$$\begin{array}{ll} \underset{x \in A}{\text{minimize}} & \frac{f(x)}{g(x)} = \left(\frac{f_1(x)}{g_1(x)}, \frac{f_2(x)}{g_2(x)}, ..., \frac{f_m(x)}{g_m(x)}\right)\\ \text{subject to} & h(x) \in (-\mathbb{R}^k_+), \end{array}$$

where $f = (f_1, f_2, ..., f_m)$ and $g = (g_1, g_2, ..., g_m)$, by considering $F(x) = \{f(x)\}$, $G(x) = \{g(x)\}$, and $H(x) = \{h(x)\}$ in the problem (FP).

3. MAIN RESULTS

Das and Nahak [8]-[19] introduced the notion of ρ -cone convex set-valued maps. They established the sufficient KKT conditions and studied the duality results for various types of set-valued optimization problems under contingent epiderivative and ρ -cone convexity assumptions. For $\rho = 0$, we have the usual notion of cone convexity of set-valued maps introduced by Borwein [6].

Definition 3.1. [8, 11] Let A be a nonempty convex subset of \mathbb{R}^n , $e \in int(\mathbb{R}^m_+)$ and $F : \mathbb{R}^n \to 2^{\mathbb{R}^m}$ be a set-valued map, with $A \subseteq dom(F)$. Then F is said to be $\rho \cdot \mathbb{R}^m_+$ -convex with respect to e on A if there exists $\rho \in \mathbb{R}$ such that

$$\lambda F(x_1) + (1-\lambda)F(x_2) \subseteq F(\lambda x_1 + (1-\lambda)x_2) + \rho\lambda(1-\lambda)||x_1 - x_2||^2 e + \mathbb{R}^m_+,$$

$$\forall x_1, x_2 \in A \text{ and } \forall \lambda \in [0, 1].$$

Das and Nahak [11] constructed an example of ρ -cone convex set-valued map, which is not cone convex. They also characterized ρ -cone convexity of set-valued maps in terms of contingent epiderivative.

Theorem 3.1. [11] Let A be a nonempty convex subset of \mathbb{R}^n , $e \in int(\mathbb{R}^m_+)$ and $F : \mathbb{R}^n \to 2^{\mathbb{R}^m}$ be $\rho \cdot \mathbb{R}^m_+$ -convex with respect to e on A. Let $x' \in A$ and $y' \in F(x')$. Then,

$$F(x) - y' \subseteq D_{\uparrow}F(x', y')(x - x') + \rho ||x - x'||^2 e + \mathbb{R}^m_+, \forall x \in A.$$

Das and Nahak [9] introduced second-order ρ -cone convexity of set-valued maps via second-order contingent epiderivative.

Definition 3.2. [9] Let A be a nonempty subset of \mathbb{R}^n , $e \in \operatorname{int}(\mathbb{R}^m_+)$, and $F : \mathbb{R}^n \to 2^{\mathbb{R}^m}$ be a set-valued map, with $A \subseteq \operatorname{dom}(F)$. Let $x', u \in A, y' \in F(x')$, and $v \in F(u) + \mathbb{R}^m_+$. Assume that F is second-order contingent epiderivable at (x', y') in the direction (u - x', v - y'). Then F is said to be second-order ρ - \mathbb{R}^m_+ -convex with respect to e at (x', y') in the direction (u - x', v - y') on A if there exists $\rho \in \mathbb{R}$ such that

$$F(x) - y' \subseteq D^2_{\uparrow}F(x', y', u - x', v - y')(x - x') + \rho \|x - x'\|^2 e + \mathbb{R}^m_+, \forall x \in A.$$

Remark 3.1. For u = x' and v = y', we have

$$F(x) - y' \subseteq D_{\uparrow}F(x', y')(x - x') + \rho ||x - x'||^2 e + \mathbb{R}^m_+, \forall x \in A.$$

In this case, we have the first order ρ - \mathbb{R}^m_+ -convexity via contingent epiderivative.

If $\rho > 0$, then F is said to be strongly second-order ρ - \mathbb{R}^m_+ -convex, if $\rho = 0$, we have the usual notion of second-order \mathbb{R}^m_+ -convexity, and if $\rho < 0$, then F is said to be weakly second-order ρ - \mathbb{R}^m_+ -convex.

Obviously, strongly second-order ρ - \mathbb{R}^m_+ -convexity \Rightarrow second-order \mathbb{R}^m_+ -convexity \Rightarrow weakly second-order ρ - \mathbb{R}^m_+ -convexity.

Das and Nahak [9] constructed a set-valued map $F : \mathbb{R} \to 2^{\mathbb{R}^2}$, which is second-order ρ - \mathbb{R}^2_+ -convex for some ρ , but is not second-order \mathbb{R}^m_+ -convex.

Remark 3.2. For the case of single-valued map, Definition 3.2 coincides with the existing one. Let X, Y be real normed spaces, K be a solid pointed convex cone in $Y, e \in int(K), u \in X$, and $v \in Y$. Let $f : X \to Y$ be a second-order continuously differentiable function at $x' \in X$. By considering $F(x) = \{f(x)\}$, from Definition 3.2 and Proposition 2.3, we can conclude that f is called second-order ρ -K-convex with respect to e at (x', f(x')) in the direction (u - x', v - f(x')) if there exists $\rho \in \mathbb{R}$ such that

$$f(x) - f(x') \in f'(x')(x - x') + \frac{1}{2}f''(x')(u - x', u - x') + \rho ||x - x'||^2 e + K, \forall x \in X, \forall x,$$

where v - f(x') = f'(x')(u - x').

The followings are some special cases.

When $Y = \mathbb{R}^m$, $K = \mathbb{R}^m_+$, $f = (f_1, f_2, ..., f_m)$, and $e = (1, 1, ..., 1) = \mathbf{1}_{\mathbb{R}^m}$, we have

$$f_i(x) - f_i(x') \ge f'_i(x')(x - x') + \frac{1}{2}f''_i(x')(u - x', u - x') + \rho ||x - x'||^2,$$

$$\forall x \in X \text{ and } i = 1, 2, ..., m.$$

When $Y = \mathbb{R}$, $K = \mathbb{R}_+$, and e = 1, we have

$$f(x) - f(x') \ge f'(x')(x - x') + \frac{1}{2}f''(x')(u - x', u - x') + \rho ||x - x'||^2, \forall x \in X.$$

When $X = \mathbb{R}^n$, $Y = \mathbb{R}$, $K = \mathbb{R}_+$, and e = 1, we have

$$f(x) - f(x') \ge (x - x')^T \nabla f(x') + \frac{1}{2} (u - x')^T H(x')(u - x') + \rho ||x - x'||^2, \forall x \in X,$$

where $\nabla f(x')$ and H(x') are the gradient and Hessain matrix of f at x', respectively.

3.1. Second-order optimality conditions

Let $\lambda' \in \mathbb{R}^m_+$ and $G: X \to 2^{\mathbb{R}^m}$ be a set-valued map. Define a set-valued map $(-\lambda'G): X \to 2^{\mathbb{R}^m}$ by

$$(-\lambda'G)(x) = -\lambda'G(x), \forall x \in \operatorname{dom}(G).$$

We establish the second-order sufficient optimality conditions of the problem (FP) under second-order contingent epiderivative and second-order ρ -cone convexity assumptions.

Theorem 3.2. (Second-order sufficient optimality conditions) Let A be a nonempty convex subset of a real normed space X, x' be an element of the feasible set S of the problem (FP), $y' \in F(x')$, $z' \in G(x')$, $\lambda' \in \frac{F(x')}{G(x')}$, $w' \in H(x') \cap (-L)$,

and $\rho_1, \rho_2, \rho_3 \in \mathbb{R}$. Let $u \in A$, $v \in F(u) + \mathbb{R}^m_+$, $r \in (-\lambda'G)(u) + \mathbb{R}^m_+$, and $s \in H(u) + \mathbb{R}^k_+$. Assume that F is second-order $\rho_1 \cdot \mathbb{R}^m_+$ -convex at (x', y') in the direction (u - x', v - y'), $-\lambda'G$ is second-order $\rho_2 \cdot \mathbb{R}^m_+$ -convex at $(x', -\lambda'z')$ in the direction $(u - x', r + \lambda'z')$, respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is second-order $\rho_3 \cdot \mathbb{R}^k_+$ -convex at (x', w') in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A. Suppose that there exists $(y^*, z^*) \in \mathbb{R}^m_+ \times \mathbb{R}^k_+$, with $y^* \neq \mathbf{0}_{\mathbb{R}^m}$, and

$$(\rho_1 + \rho_2)\langle y^*, \mathbf{1}_{\mathbb{R}^m} \rangle + \rho_3 \langle z^*, \mathbf{1}_{\mathbb{R}^k} \rangle \ge 0, \tag{3.1}$$

such that

176

$$\left\langle y^{*}, \left(D_{\uparrow}^{2}F(x',y',u-x',v-y') + D_{\uparrow}^{2}(-\lambda'G)(x',-\lambda'z',u-x',r+\lambda'z') \right)(x-x') \right\rangle$$

$$+ \left\langle z^{*}, D_{\uparrow}^{2}H(x',w',u-x',s-w')(x-x') \right\rangle \ge 0, \forall x \in A,$$

$$(3.2)$$

$$y' - \lambda' z' = \boldsymbol{\theta}_{\mathbb{R}^m},\tag{3.3}$$

and

$$\langle z^*, w' \rangle = 0. \tag{3.4}$$

Then $(x', \frac{y'}{z'})$ is a weak minimizer of the problem (FP).

Proof. We prove the theorem by the method of contradiction. Let $(x', \frac{y'}{z'})$ not be a weak minimzer of the problem (FP). Then there exist $x \in S$, $y \in F(x)$, and $z \in G(x)$ such that

$$\frac{y}{z} < \frac{y'}{z'}.$$

As $y' - \lambda' z' = \mathbf{0}_{\mathbb{R}^m}$, we have

$$\frac{y}{z} < \lambda'.$$

So,

$$y - \lambda' z < \mathbf{0}_{\mathbb{R}^m}.$$

Hence,

$$\langle y^*, y - \lambda' z \rangle < 0$$
, since $\mathbf{0}_{\mathbb{R}^m} \neq y^* \in \mathbb{R}^m_+$

Again, as $y' - \lambda' z' = \mathbf{0}_{\mathbb{R}^m}$, we have

$$\langle y^*, y' - \lambda' z' \rangle = 0.$$

Since $x \in S$, there exists an element $w \in H(x) \cap (-\mathbb{R}^k_+)$. Therefore,

 $\langle z^*, w \rangle \le 0.$

So,

$$\langle z^*, w - w' \rangle \le 0$$
, as $\langle z^*, w' \rangle = 0$

Hence,

$$\langle y^*, y - \lambda' z - (y' - \lambda' z') \rangle + \langle z^*, w - w' \rangle < 0.$$
(3.5)

As F is second-order ρ_1 - \mathbb{R}^m_+ -convex at (x', y') in the direction (u - x', v - y'), $-\lambda'G$ is second-order ρ_2 - \mathbb{R}^m_+ -convex at $(x', -\lambda'z')$ in the direction $(u - x', r + \lambda'z')$, respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is second-order ρ_3 - \mathbb{R}^k_+ -convex at (x', w')in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A, we have

$$F(x) - y' \subseteq D^2_{\uparrow} F(x', y', u - x', v - y')(x - x') + \rho_1 ||x - x'||^2 \mathbf{1}_{\mathbb{R}^m} + \mathbb{R}^m_+,$$

$$(-\lambda'G)(x) + \lambda'z' \subseteq D^2_{\uparrow}(-\lambda'G)(x', -\lambda'z', u-x', r+\lambda'z')(x-x') + \rho_2 \|x-x'\|^2 \mathbf{1}_{\mathbb{R}^m} + \mathbb{R}^m_+$$
 and

 $H(x) - w' \subseteq D^2_{\uparrow} H(x', w', u - x', s - w')(x - x') + \rho_3 \|x - x'\|^2 \mathbf{1}_{\mathbb{R}^k} + \mathbb{R}^k_+.$

Hence,

$$y - y' \in D^2_{\uparrow} F(x', y', u - x', v - y')(x - x') + \rho_1 ||x - x'||^2 \mathbf{1}_{\mathbb{R}^m} + \mathbb{R}^m_+,$$

$$-\lambda'z + \lambda'z' \in D^2_{\uparrow}(-\lambda'G)(x', -\lambda'z', u-x', r+\lambda'z')(x-x') + \rho_2 \|x-x'\|^2 \mathbf{1}_{\mathbb{R}^m} + \mathbb{R}^m_+$$
 ad

and

$$w - w' \in D^2_{\uparrow} H(x', w', u - x', s - w')(x - x') + \rho_3 \|x - x'\|^2 \mathbf{1}_{\mathbb{R}^k} + \mathbb{R}^k_+.$$

Hence, from (3.1) and (3.2), we have

 $\langle y^*, y - \lambda' z - (y' - \lambda' z') \rangle + \langle z^*, w - w' \rangle \ge 0,$

which contradicts (3.5).

Consequently, (x', y') is a weak minimizer of the problem (FP). \Box

Let $x \in A$, $x' \in S$, $y' = (y'_1, y'_2, ..., y'_m) \in F(x')$, and $z' = (z'_1, z'_2, ..., z'_m) \in G(x')$. Define subsets z'F(x) and -y'G(x) of \mathbb{R}^m by

$$z'F(x) = \{z'y = (z'_1y_1, z'_2y_2, ..., z'_my_m) : y = (y_1, y_2, ..., y_m) \in F(x)\}$$

and

$$-y'G(x) = \{-y'z = (-y'_1z_1, -y'_2z_2, ..., -y'_mz_m) : z = (z_1, z_2, ..., z_m) \in G(x)\}.$$

Define set-valued maps $z'F, (-y'G): X \to 2^{\mathbb{R}^m}$ by

$$(z'F)(x) = z'F(x), \forall x \in \operatorname{dom}(F)$$

and

$$(-y'G)(x) = -y'G(x), \forall x \in \operatorname{dom}(G)$$

We can also prove the following second-order sufficient optimality conditions through the same approach of Theorem 3.2.

Theorem 3.3. (Second-order sufficient optimality conditions) Let A be a nonempty convex subset of a real normed space X, x' be an element of the feasible set S of the problem (FP), $y' \in F(x')$, $z' \in G(x')$, $w' \in H(x') \cap (-L)$, and $\rho_1, \rho_2, \rho_3 \in \mathbb{R}$. Let $u \in A, v \in (z'F)(u) + \mathbb{R}^m_+, r \in (-y'G)(u) + \mathbb{R}^m_+$, and $s \in H(u) + \mathbb{R}^k_+$. Assume that (z'F) is second-order ρ_1 - \mathbb{R}^m_+ -convex at (x', z'y') in the direction (u - x', v - z'y'), -y'G is second-order ρ_2 - \mathbb{R}^m_+ -convex at (x', -y'z') in the direction (u - x', r + y'z'), respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is second-order ρ_3 - \mathbb{R}^k_+ -convex at (x', w') in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A. Suppose that there exists $(y^*, z^*) \in \mathbb{R}^m_+ \times \mathbb{R}^k_+$, with $y^* \neq \mathbf{0}_{\mathbb{R}^m}$, and (3.1) and (3.4) are satisfied, with

$$\left\langle y^{*}, \left(D^{2}_{\uparrow}(z'F)(x', z'y', u - x', v - z'y') + D^{2}_{\uparrow}(-y'G)(x', -y'z', u - x', r + y'z') \right)(x - x') \right\rangle$$

$$+ \left\langle z^{*}, D^{2}_{\uparrow}H(x', w, u - x', s - w')(x - x') \right\rangle \ge 0, \forall x \in A,$$

$$(3.6)$$

Then $(x', \frac{y'}{z'})$ is a weak minimizer of the problem (FP).

We formulate second-order parametric (PD), Mond-Weir (MWD), Wolfe (WD), and mixed types (MD) duals of the problem (FP) and prove the corresponding duality results.

3.2. Second-order parametric type dual

We consider a second-order parametric type dual (PD) of the problem (FP), where F, $-\lambda'G$, and H are second-order contingent epiderivable set-valued maps for all $\lambda' \in \mathbb{R}^m_+$. Let $u \in A, v \in F(u) + \mathbb{R}^m_+$, and $r \in (-\lambda'G)(u) + \mathbb{R}^m_+$.

maximize
$$\lambda'$$
 (PD)

subject to

178

$$\begin{cases} y^*, \left(D^2_{\uparrow} F(x', y', u - x', v - y') \right. \\ \left. + D^2_{\uparrow}(-\lambda'G)(x', -\lambda'z', u - x', r + \lambda'z') \right)(x - x') \right\rangle \\ \left. + \langle z^*, D^2_{\uparrow} H(x', w', u - x', s - w')(x - x') \rangle \ge 0, \forall x \in A, \\ s \in H(u) + \mathbb{R}^k_+, \\ y' - \lambda'z' \ge 0, \\ x' \in A, y' \in F(x'), z' \in G(x'), \lambda' \in \frac{F(x')}{G(x')}, w' \in H(x'), \\ y^* \in \mathbb{R}^m_+, z^* \in \mathbb{R}^k_+, \langle z^*, w' \rangle \ge 0, \text{ and } \langle y^*, \mathbf{1}_{\mathbb{R}^m} \rangle = 1. \end{cases}$$

Definition 3.3. A feasible point $(x', y', z', \lambda', w', y^*, z^*)$ of the problem (PD) is called a weak maximizer of (PD) if for all feasible points $(x, y, z, \lambda, w, y_1^*, z_1^*)$ of (PD),

$$\lambda - \lambda' \notin \operatorname{int}(\mathbb{R}^m_+).$$

Theorem 3.4. (Second-order weak duality) Let A be a nonempty convex subset of a real normed space X and \overline{x} be an element of the feasible set S of the problem (FP). Let $(x', y', z', \lambda', w', y^*, z^*)$ be a feasible point of the problem (PD). Let $u \in A, v \in F(u) + \mathbb{R}^m_+, r \in (-\lambda'G)(u) + \mathbb{R}^m_+$, and $s \in H(u) + \mathbb{R}^k_+$. Assume that F is second-order ρ_1 - \mathbb{R}^m_+ -convex at (x', y') in the direction (u - x', v - y'), $-\lambda'G$ is second-order ρ_2 - \mathbb{R}^m_+ -convex at $(x', -\lambda'z')$ in the direction $(u - x', r + \lambda'z')$, respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is second-order ρ_3 - \mathbb{R}^k_+ -convex at (x', w')in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A such that

$$(\rho_1 + \rho_2) + \rho_3 \langle z^*, \mathbf{1}_{\mathbb{R}^k} \rangle \ge 0.$$

$$(3.7)$$

Then,

$$\frac{F(\overline{x})}{G(\overline{x})} - \lambda' \subseteq \mathbb{R}^m \setminus (-\mathrm{int}(\mathbb{R}^m_+)).$$

Proof. We prove the theorem by the method of contradiction. Suppose that for some $\overline{y} \in F(\overline{x})$ and $\overline{z} \in G(\overline{x})$,

$$\frac{\overline{y}}{\overline{z}} - \lambda' \in (-\mathrm{int}(\mathbb{R}^m_+)).$$

Therefore,

$$\frac{\overline{y}}{\overline{z}} < \lambda'$$

So,

$$\overline{y} - \lambda' \overline{z} < \mathbf{0}_{\mathbb{R}^m}.$$

Therefore,

$$\langle y^*, \overline{y} - \lambda' \overline{z} \rangle < 0$$
, since $\mathbf{0}_{\mathbb{R}^m} \neq y^* \in \mathbb{R}^m_+$.

Again, from the constraints of (PD), we have

$$y' - \lambda' z' \ge 0.$$

Therefore,

$$\langle y^*, y' - \lambda' z' \rangle \ge 0.$$

Since $\overline{x} \in S$, we have

$$H(\overline{x}) \cap (-\mathbb{R}^k_+) \neq \emptyset.$$

Choose $\overline{w} \in H(\overline{x}) \cap (-\mathbb{R}^k_+)$. So, we have

$$\langle z^*, \overline{w} \rangle \le 0.$$

From the constraints of (PD), we have

$$\langle z^*, w' \rangle \ge 0.$$

So,

$$\langle z^*, \overline{w} - w' \rangle = \langle z^*, \overline{w} \rangle - \langle z^*, w' \rangle \le 0.$$

Hence,

$$\langle y^*, \overline{y} - \lambda' \overline{z} - (y' - \lambda' z') \rangle + \langle z^*, \overline{w} - w' \rangle < 0.$$
(3.8)

As F is second-order ρ_1 - \mathbb{R}^m_+ -convex at (x', y') in the direction (u - x', v - y'), $-\lambda'G$ is second-order ρ_2 - \mathbb{R}^m_+ -convex at $(x', -\lambda'z')$ in the direction $(u - x', r + \lambda'z')$, respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is second-order ρ_3 - \mathbb{R}^k_+ -convex at (x', w')in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A, we have

$$F(\overline{x}) - y' \subseteq D^2_{\uparrow} F(x', y', u - x', v - y')(\overline{x} - x') + \rho_1 \|\overline{x} - x'\|^2 \mathbf{1}_{\mathbb{R}^m} + \mathbb{R}^m_+,$$

 $(-\lambda'G)(\overline{x}) + \lambda'z' \subseteq D^2_{\uparrow}(-\lambda'G)(x', -\lambda'z', u-x', r+\lambda'z')(\overline{x}-x') + \rho_2 \|\overline{x}-x'\|^2 \mathbf{1}_{\mathbb{R}^m} + \mathbb{R}^m_+,$ and

$$H(\overline{x}) - w' \subseteq D^2_{\uparrow} H(x', w', u - x', s - w')(\overline{x} - x') + \rho_3 \|\overline{x} - x'\|^2 \mathbf{1}_{\mathbb{R}^k} + \mathbb{R}^k_+.$$

Hence,

$$\overline{y} - y' \in D^2_{\uparrow} F(x', y', u - x', v - y')(\overline{x} - x') + \rho_1 \|\overline{x} - x'\|^2 \mathbf{1}_{\mathbb{R}^m} + \mathbb{R}^m_+,$$
$$-\lambda'\overline{z} + \lambda'z' \in D^2_{\uparrow}(-\lambda'G)(x', -\lambda'z', u - x', r + \lambda'z')(\overline{x} - x') + \rho_2 \|\overline{x} - x'\|^2 \mathbf{1}_{\mathbb{R}^m} + \mathbb{R}^m_+,$$
d

and

$$\overline{w} - w' \in D^2_{\uparrow} H(x', w', u - x', s - w')(\overline{x} - x') + \rho_3 \|\overline{x} - x'\|^2 \mathbf{1}_{\mathbb{R}^k} + \mathbb{R}^k_+.$$

Hence, from the constraints of (PD) and (3.7), we have

$$\langle y^*, \overline{y} - \lambda' \overline{z} - (y' - \lambda' z') \rangle + \langle z^*, \overline{w} - w' \rangle \ge 0,$$

which contradicts (3.8). Therefore,

$$\frac{\overline{y}}{\overline{z}} - \lambda' \notin (-\operatorname{int}(\mathbb{R}^m_+)).$$

Since $\overline{y} \in F(\overline{x})$ is arbitrary, we have

$$\frac{F(\overline{x})}{G(\overline{x})} - \lambda' \subseteq \mathbb{R}^m \setminus (-\mathrm{int}(\mathbb{R}^m_+)),$$

which completes the proof of the theorem. \Box

Theorem 3.5. (Second-order strong duality) Let $(x', \frac{y'}{z'})$ be a weak minimizer of the problem (FP) and $w' \in H(x') \cap (-\mathbb{R}^k_+)$. Assume that for some $(y^*, z^*) \in \mathbb{R}^m_+ \times \mathbb{R}^k_+$, with $\langle y^*, \mathbf{1}_{\mathbb{R}^m} \rangle = 1$ and $\lambda' \in \frac{F(x')}{G(x')}$, (3.2), (3.3), and (3.4) are satisfied at the point $(x', y', z', \lambda', w', y^*, z^*)$. Then $(x', y', z', \lambda', w', y^*, z^*)$ is a feasible solution of the problem (PD). Furthermore, if the second-order weak duality Theorem 3.4 holds between the problems (FP) and (PD), then $(x', y', z', \lambda', w', y^*, z^*)$ is a weak maximizer of (PD).

Proof. As the (3.2), (3.3), and (3.4) are satisfied at $(x', y', z', \lambda', w', y^*, z^*)$, we have

$$\begin{split} \left\langle y^*, \left(D^2_{\uparrow} F(x', y', u - x', v - y') + D^2_{\uparrow}(-\lambda'G)(x', -\lambda'z', u - x', r + \lambda'z') \right)(x - x') \right\rangle \\ + \left\langle z^*, D^2_{\uparrow} H(x', w', u - x', s - w')(x - x') \right\rangle \ge 0, \forall x \in A, \\ y' - \lambda'z' = \mathbf{0}_{\mathbb{R}^m}, \end{split}$$

and

$$\langle z^*, w' \rangle = 0.$$

Hence $(x', y', z', \lambda', w', y^*, z^*)$ is a feasible solution of (PD). Suppose that the second-order weak duality Theorem 3.4 holds between (FP) and (PD) and $(x', y', z', \lambda', w', y^*, z^*)$ is not a weak maximizer of (PD). Then there exists a feasible point $(x, y, z, \lambda, w, y_1^*, z_1^*)$ of (PD) such that

$$\lambda - \lambda' \in \operatorname{int}(\mathbb{R}^m_+).$$

As $y' - \lambda' z' = \mathbf{0}_{\mathbb{R}^m}$, we have

$$\lambda - \frac{y'}{z'} \in \operatorname{int}(\mathbb{R}^m_+).$$

which contradicts the second-order weak duality Theorem 3.4 between (FP) and (PD).

Consequently, $(x', y', z', \lambda', w', y^*, z^*)$ is a weak maximizer of (PD). \Box

Theorem 3.6. (Second-order converse duality) Let A be a nonempty convex subset of a real normed space X and $(x', y', z', \lambda', w', y^*, z^*)$ be a feasible point of the problem (PD), where $\lambda' = \frac{y'}{z'}$. Let $(x', y', z', \lambda', w', y^*, z^*)$ be a feasible point of the problem (PD). Let $u \in A$, $v \in F(u) + \mathbb{R}^m_+$, $r \in (-\lambda'G)(u) + \mathbb{R}^m_+$, and $s \in H(u) + \mathbb{R}^k_+$. Assume that F is second-order ρ_1 - \mathbb{R}^m_+ -convex at (x', y') in the direction (u - x', v - y'), $-\lambda'G$ is second-order ρ_2 - \mathbb{R}^m_+ -convex at $(x', -\lambda'z')$ in the direction $(u - x', r + \lambda'z')$, respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is second-order ρ_3 - \mathbb{R}^k_+ -convex at (x', w') in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A, satisfying (3.7). If x' is an element of the feasible set S of the problem (FP), then $(x', \frac{y'}{z'})$ is a weak minimizer of the problem (FP). *Proof.* We prove the theorem by the method of contradiction. Suppose $(x', \frac{y'}{z'})$ is not a weak minimzer of the problem (FP). Therefore there exist $x \in S, y \in F(x)$, and $z \in G(x)$ such that

$$\frac{y}{z} < \frac{y'}{z'}.$$

As $\lambda' = \frac{y'}{z'}$, we have

$$\frac{y}{z} < \lambda'.$$

So,

$$y-\lambda'z<\mathbf{0}_{\mathbb{R}^m}.$$

Hence,

$$\langle y^*, y - \lambda' z \rangle < 0$$
, since $\mathbf{0}_{\mathbb{R}^m} \neq y^* \in \mathbb{R}^m_+$.

Again, from the constraints of (PD),

 $y' - \lambda' z' \ge 0.$

Therefore,

$$\langle y^*, y' - \lambda' z' \rangle \ge 0.$$

Since $x \in S$, there exists an element

$$w \in H(x) \cap (-\mathbb{R}^k_+).$$

Therefore,

$$\langle z^*, w \rangle \le 0.$$

We have

$$\langle z^*, w - w' \rangle \le 0$$
, as $\langle z^*, w' \rangle \ge 0$.

Hence,

$$\langle y^*, y - \lambda' z - (y' - \lambda' z') \rangle + \langle z^*, w - w' \rangle < 0.$$
(3.9)

As F is second-order ρ_1 - \mathbb{R}^m_+ -convex at (x', y') in the direction (u - x', v - y'), $-\lambda'G$ is second-order ρ_2 - \mathbb{R}^m_+ -convex at $(x', -\lambda'z')$ in the direction $(u - x', r + \lambda'z')$, respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is second-order ρ_3 - \mathbb{R}^k_+ -convex at (x', w')in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A, we have

$$F(x) - y' \subseteq D^2_{\uparrow} F(x', y', u - x', v - y')(x - x') + \rho_1 ||x - x'||^2 \mathbf{1}_{\mathbb{R}^m} + \mathbb{R}^m_+,$$

 $(-\lambda'G)(x) + \lambda'z' \subseteq D^2_{\uparrow}(-\lambda'G)(x', -\lambda'z', u-x', r+\lambda'z')(x-x') + \rho_2 \|x-x'\|^2 \mathbf{1}_{\mathbb{R}^m} + \mathbb{R}^m_+,$ and

$$H(x) - w' \subseteq D^2_{\uparrow} H(x', w', u - x', s - w')(x - x') + \rho_3 ||x - x'||^2 \mathbf{1}_{\mathbb{R}^k} + \mathbb{R}^k_+.$$

Hence,

$$y - y' \in D^{2}_{\uparrow}F(x', y', u - x', v - y')(x - x') + \rho_{1} ||x - x'||^{2} \mathbf{1}_{\mathbb{R}^{m}} + \mathbb{R}^{m}_{+},$$

$$\lambda'z + \lambda'z' \in D^{2}_{\uparrow}(-\lambda'G)(x', -\lambda'z', u - x', r + \lambda'z')(x - x') + \rho_{2} ||x - x'||^{2} \mathbf{1}_{\mathbb{R}^{m}} + \mathbb{R}^{m}_{+},$$

and

_

$$w - w' \in D^2_{\uparrow} H(x', w', u - x', s - w')(x - x') + \rho_3 \|x - x'\|^2 \mathbf{1}_{\mathbb{R}^k} + \mathbb{R}^k_+.$$

Hence, from the constraints of (PD) and (3.7), we have

$$\langle y^*, y - \lambda' z - (y' - \lambda' z') \rangle + \langle z^*, w - w' \rangle \ge 0,$$

which contradicts (3.9).

Consequently, $(x', \frac{y'}{z'})$ is a weak minimizer of the problem (FP). \Box

3.3. Second-order Mond-Weir type dual

We consider a second-order Mond-Weir type dual (MWD) of the problem (FP), where z'F, -y'G, and H are second-order contingent epiderivable set-valued maps for all $y', z' \in \mathbb{R}^m_+$. Let $u \in A, v \in (z'F)(u) + \mathbb{R}^m_+$, and $r \in (-y'G)(u) + \mathbb{R}^m_+$.

$$\begin{array}{ll} \text{maximize} & \frac{y'}{z'} \\ \text{subject to} \end{array} \tag{MWD}$$

$$\begin{split} \left\langle y^*, \left(D^2_{\uparrow}(z'F)(x', z'y', u - x', v - z'y') \right. \\ \left. + D^2_{\uparrow}(-y'G)(x', -y'z', u - x', r + y'z') \right) (x - x') \right\rangle \\ \left. + \left\langle z^*, D^2_{\uparrow}H(x', w, u - x', s - w')(x - x') \right\rangle \ge 0, \forall x \in A, \\ s \in H(u) + \mathbb{R}^k_+, \\ \left\langle z^*, w' \right\rangle \ge 0, \\ x' \in A, y' \in F(x'), z' \in G(x'), y^* \in \mathbb{R}^m_+, z^* \in \mathbb{R}^k_+, \text{ and } \left\langle y^*, \mathbf{1}_{\mathbb{R}^m} \right\rangle = 1. \end{split}$$

Definition 3.4. A feasible point $(x', y', z', w', y^*, z^*)$ of the problem (MWD) is called a weak maximizer of (MWD) if for all feasible points $(x, y, z, w, y_1^*, z_1^*)$ of (MWD),

$$\frac{y}{z} - \frac{y'}{z'} \notin \operatorname{int}(\mathbb{R}^m_+).$$

We prove the duality results of Mond-Weir type of the problem (FP). The proofs are very similar to Theorems 3.4 - 3.6, and hence omitted.

Theorem 3.7. (Second-order weak duality) Let A be a nonempty convex subset of a real normed space X and \overline{x} be an element of the feasible set S of (FP). Let $(x', y', z', w', y^*, z^*)$ be a feasible point of the problem (MWD). Let $u \in A$, $v \in (z'F)(u) + \mathbb{R}^m_+$, $r \in (-y'G)(u) + \mathbb{R}^m_+$, and $s \in H(u) + \mathbb{R}^k_+$. Assume that (z'F) is second-order ρ_1 - \mathbb{R}^m_+ -convex at (x', z'y') in the direction (u - x', v - z'y'), -y'G is second-order ρ_2 - \mathbb{R}^m_+ -convex at (x', -y'z') in the direction (u-x', r+y'z'), respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is second-order ρ_3 - \mathbb{R}^k_+ -convex at (x', w')in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A, satisfying (3.7). Then,

$$\frac{F(\overline{x})}{G(\overline{x})} - \frac{y'}{z'} \subseteq \mathbb{R}^m \setminus (-\mathrm{int}(\mathbb{R}^m_+)).$$

Theorem 3.8. (Second-order strong duality) Let $(x', \frac{y'}{z'})$ be a weak minimizer of the problem (FP) and $w' \in H(x') \cap (-\mathbb{R}^k_+)$. Assume that for some $(y^*, z^*) \in \mathbb{R}^m_+ \times \mathbb{R}^k_+$, with $\langle y^*, \mathbf{1}_{\mathbb{R}^m} \rangle = 1$, (3.4) and (3.6) are satisfied at $(x', y', z', w', y^*, z^*)$. Then $(x', y', z', w', y^*, z^*)$ is a feasible solution of the problem (MWD). Furthermore, if the second-order weak duality Theorem 3.7 holds between (FP) and (MWD), then the point $(x', y', z', w', y^*, z^*)$ is a weak maximizer of (MWD).

Theorem 3.9. (Second-order converse duality) Let A be a nonempty convex subset of a real normed space X and $(x', y', z', w', y^*, z^*)$ be a feasible point of the problem (MWD). Let $u \in A$, $v \in (z'F)(u) + \mathbb{R}^m_+$, $r \in (-y'G)(u) + \mathbb{R}^m_+$, and $s \in H(u) + \mathbb{R}^k_+$. Assume that (z'F) is second-order $\rho_1 \cdot \mathbb{R}^m_+$ -convex at (x', z'y') in the direction (u - x', v - z'y'), -y'G is second-order $\rho_2 \cdot \mathbb{R}^m_+$ -convex at (x', -y'z')in the direction (u - x', r + y'z'), respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is secondorder $\rho_3 \cdot \mathbb{R}^k_+$ -convex at (x', w') in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A, satisfying (3.7). If x' is an element of the feasible set S of the problem (FP), then $(x', \frac{y'}{z'})$ is a weak minimizer of the problem (FP).

3.4. Second-order Wolfe type dual

We consider a second-order Wolfe type dual (WD) of the problem (FP), where z'F, -y'G, and H are second-order contingent epiderivable set-valued maps for all $y', z' \in \mathbb{R}^m_+$. Let $u \in A, v \in (z'F)(u) + \mathbb{R}^m_+$, and $r \in (-y'G)(u) + \mathbb{R}^m_+$.

$$\begin{array}{ll} \text{maximize} & \frac{y' + \langle z^*, w' \rangle \mathbf{1}_{\mathbb{R}^m}}{z'} & (WD) \\ \text{subject to} & \\ & \left\langle y^*, \left(D^2_{\uparrow}(z'F)(x', z'y', u - x', v - z'y') \right. \\ & \left. + D^2_{\uparrow}(-y'G)(x', -y'z', u - x', v + y'z') \right)(x - x') \right\rangle \\ & \left. + \langle z^*, D^2_{\uparrow}H(x', w, u - x', s - w')(x - x') \rangle \ge 0, \forall x \in A, \\ & s \in H(u) + \mathbb{R}^k_+, \\ & x' \in A, y' \in F(x'), z' \in G(x'), y^* \in \mathbb{R}^m_+, z^* \in \mathbb{R}^k_+, \text{ and } \langle y^*, \mathbf{1}_{\mathbb{R}^m} \rangle = 1. \end{array}$$

Definition 3.5. A feasible point $(x', y', z', w', y^*, z^*)$ of the problem (WD) is called a weak maximizer of (WD) if for all feasible points $(x, y, z, w, y_1^*, z_1^*)$ of (WD),

$$\frac{y + \langle z_1^*, w \rangle \mathbf{1}_{\mathbb{R}^m}}{z} - \frac{y' + \langle z^*, w' \rangle \mathbf{1}_{\mathbb{R}^m}}{z'} \notin \operatorname{int}(\mathbb{R}^m_+).$$

We prove the duality results of Wolfe type of the problem (FP). The proofs are very similar to Theorems 3.4 - 3.6, and hence omitted.

Theorem 3.10. (Second-order weak duality) Let A be a nonempty convex subset of a real normed space X and \overline{x} be an element of the feasible set S of (FP). Let the point $(x', y', z', w', y^*, z^*)$ be a feasible point of the problem (WD). Let $u \in A$, $v \in (z'F)(u) + \mathbb{R}^m_+$, $r \in (-y'G)(u) + \mathbb{R}^m_+$, and $s \in H(u) + \mathbb{R}^k_+$. Assume that (z'F) is second-order ρ_1 - \mathbb{R}^m_+ -convex at (x', z'y') in the direction (u - x', v - z'y'), -y'G is second-order ρ_2 - \mathbb{R}^m_+ -convex at (x', -y'z') in the direction (u - x', r + y'z'), respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is second-order ρ_3 - \mathbb{R}^k_+ -convex at (x', w')in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A, satisfying (3.7). Then,

$$\frac{F(\overline{x})}{G(\overline{x})} - \frac{y' + \langle z^*, w' \rangle \mathbf{1}_{\mathbb{R}^m}}{z'} \subseteq \mathbb{R}^m \setminus (-\mathrm{int}(\mathbb{R}^m_+)).$$

Theorem 3.11. (Second-order strong duality) Let $(x', \frac{y'}{z'})$ be a weak minimizer of the problem (FP) and $w' \in H(x') \cap (-\mathbb{R}^k_+)$. Assume that for some $(y^*, z^*) \in \mathbb{R}^m_+ \times \mathbb{R}^k_+$, with $\langle y^*, \mathbf{1}_{\mathbb{R}^m} \rangle = 1$, (3.4) and (3.6) are satisfied at $(x', y', z', w', y^*, z^*)$. Then $(x', y', z', w', y^*, z^*)$ is a feasible solution of the problem (WD). Furthermore, if the second-order weak duality Theorem 3.10 holds between the problems (FP) and (WD), then $(x', y', z', w', y^*, z^*)$ is a weak maximizer of (WD).

Theorem 3.12. (Second-order converse duality) Let A be a nonempty convex subset of a real normed space X and $(x', y', z', w', y^*, z^*)$ be a feasible point of the problem (WD), with $\langle z^*, w' \rangle \geq 0$. Let $u \in A$, $v \in (z'F)(u) + \mathbb{R}^m_+$, $r \in (-y'G)(u) + \mathbb{R}^m_+$, and $s \in H(u) + \mathbb{R}^k_+$. Assume that (z'F) is second-order $\rho_1 - \mathbb{R}^m_+$ -convex at (x', z'y')in the direction (u-x', v-z'y'), -y'G is second-order $\rho_2 - \mathbb{R}^m_+$ -convex at (x', -y'z')in the direction (u-x', r+y'z'), respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is secondorder $\rho_3 - \mathbb{R}^k_+$ -convex at (x', w') in the direction (u-x', s-w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A, satisfying (3.7). If x' is an element of the feasible set S of the problem (FP), then $(x', \frac{y'}{z'})$ is a weak minimizer of the problem (FP).

3.5. Second-order mixed type dual

We consider a second-order mixed type dual (MD) of the problem (FP), where z'F, -y'G, and H are second-order contingent epiderivable set-valued maps for

 $\text{ all } y',z'\in \mathbb{R}^m_+. \text{ Let } u\in A, v\in (z'F)(u)+\mathbb{R}^m_+, \text{ and } r\in (-y'G)(u)+\mathbb{R}^m_+.$

maximize
$$\frac{y' + \langle z^*, w' \rangle \mathbf{1}_{\mathbb{R}^m}}{z'}$$
 (MD)

subject to

$$\begin{split} \left\langle y^{*}, \left(D_{\uparrow}^{2}(z'F)(x', z'y', u - x', v - z'y') \right. \\ \left. + D_{\uparrow}^{2}(-y'G)(x', -y'z', u - x', r + y'z') \right)(x - x') \right\rangle \\ \left. + \left\langle z^{*}, D_{\uparrow}^{2}H(x', w, u - x', s - w')(x - x') \right\rangle \ge 0, \forall x \in A, \\ s \in H(u) + \mathbb{R}_{+}^{k}, \\ \left\langle z^{*}, w' \right\rangle \ge 0, \\ x' \in A, y' \in F(x'), z' \in G(x'), y^{*} \in \mathbb{R}_{+}^{m}, z^{*} \in \mathbb{R}_{+}^{k}, \text{ and } \left\langle y^{*}, \mathbf{1}_{\mathbb{R}^{m}} \right\rangle = 1. \end{split}$$

Definition 3.6. A feasible point $(x', y', z', w', y^*, z^*)$ of the problem (MD) is called a weak maximizer of (MD) if for all feasible points $(x, y, z, w, y_1^*, z_1^*)$ of (MD),

$$\frac{y + \langle z_1^*, w \rangle \mathbf{1}_{\mathbb{R}^m}}{z} - \frac{y' + \langle z^*, w' \rangle \mathbf{1}_{\mathbb{R}^m}}{z'} \notin \operatorname{int}(\mathbb{R}^m_+).$$

We prove the duality results of mixed type of the problem (FP). The proofs are very similar to Theorems 3.4 - 3.6, and hence omitted.

Theorem 3.13. (Second-order weak duality) Let A be a nonempty convex subset of a real normed space X and \overline{x} be an element of the feasible set S of (FP). Let the point $(x', y', z', w', y^*, z^*)$ be a feasible point of the problem (MD). Let $u \in A$, $v \in (z'F)(u) + \mathbb{R}^m_+$, $r \in (-y'G)(u) + \mathbb{R}^m_+$, and $s \in H(u) + \mathbb{R}^k_+$. Assume that (z'F) is second-order ρ_1 - \mathbb{R}^m_+ -convex at (x', z'y') in the direction (u - x', v - z'y'), -y'G is second-order ρ_2 - \mathbb{R}^m_+ -convex at (x', -y'z') in the direction (u - x', r + y'z'), respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is second-order ρ_3 - \mathbb{R}^k_+ -convex at (x', w')in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A, satisfying (3.7). Then,

$$\frac{F(\overline{x})}{G(\overline{x})} - \frac{y' + \langle z^*, w' \rangle \mathbf{1}_{\mathbb{R}^m}}{z'} \subseteq \mathbb{R}^m \setminus (-\mathrm{int}(\mathbb{R}^m_+)).$$

Theorem 3.14. (Second-order strong duality) Let $(x', \frac{y'}{z'})$ be a weak minimizer of the problem (FP) and $w' \in H(x') \cap (-\mathbb{R}^k_+)$. Assume that for some $(y^*, z^*) \in \mathbb{R}^m_+ \times \mathbb{R}^k_+$, with $\langle y^*, \mathbf{1}_{\mathbb{R}^m} \rangle = 1$, (3.4) and (3.6) are satisfied at $(x', y', z', w', y^*, z^*)$. Then $(x', y', z', w', y^*, z^*)$ is a feasible solution of the problem (MD). Furthermore, if the second-order weak duality Theorem 3.13 holds between the problems (FP) and (MD), then $(x', y', z', w', y^*, z^*)$ is a weak maximizer of (MD).

Theorem 3.15. (Second-order converse duality) Let A be a nonempty convex subset of a real normed space X and $(x', y', z', w', y^*, z^*)$ be a feasible point of the problem (MD). Let $u \in A$, $v \in (z'F)(u) + \mathbb{R}^m_+$, $r \in (-y'G)(u) + \mathbb{R}^m_+$, and $s \in H(u) + \mathbb{R}^k_+$. Assume that (z'F) is second-order ρ_1 - \mathbb{R}^m_+ -convex at (x', z'y') in

the direction (u - x', v - z'y'), -y'G is second-order $\rho_2 \cdot \mathbb{R}^m_+$ -convex at (x', -y'z')in the direction (u - x', r + y'z'), respectively, with respect to $\mathbf{1}_{\mathbb{R}^m}$ and H is secondorder $\rho_3 \cdot \mathbb{R}^k_+$ -convex at (x', w') in the direction (u - x', s - w'), with respect to $\mathbf{1}_{\mathbb{R}^k}$, on A, satisfying (3.7). If x' is an element of the feasible set S of the problem (FP), then $(x', \frac{y'}{z_1})$ is a weak minimizer of the problem (FP).

4. CONCLUSIONS

In this paper, we establish the sufficient KKT conditions of the set-valued fractional programming problem (FP) via contingent epiderivative and ρ -cone convexity assumptions. We also develop the weak, strong, and converse duality theorems between the primal problem (FP) and the second-order dual problems of parametric (PD), Mond-Weir (MWD), Wolfe (WD), and mixed (MD) types, respectively.

Acknowledgement: The author is very thankful to the Editors and Referees for their valuable comments which improved the presentation of the paper.

REFERENCES

- Aubin, J. P., Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, in: Mathematical Analysis and Applications, Part A, L. Nachbin (ed.), Academic Press, New York, 1981.
- [2] Aubin, J. P., and Frankowska, H., Set-Valued Analysis. Birhäuser, Boston, 1990.
- [3] Bhatia, D., and Garg, P. K., "Duality for non smooth non linear fractional multiobjective programs via (F, *ρ*)-convexity", *Optimization*, 43 (2) (1998) 185–197.
- [4] Bhatia, D., and Mehra, A., "Lagrangian duality for preinvex set-valued functions", Journal of Mathematical Analysis and Applications, 214 (2) (1997) 599–612.
- [5] Bhatia, D., and Mehra, A., "Fractional programming involving set-valued functions", Indian Journal of Pure and Applied Mathematics, 29 (1998) 525–540.
- [6] Borwein, J., "Multivalued convexity and optimization: a unified approach to inequality and equality constraints", *Mathematical Programming*, 13 (1) (1977) 183–199.
- [7] Cambini, A., Martein, L., and Vlach, M., "Second order tangent sets and optimality conditions", *Mathematica Japonica*, 49 (3) (1999) 451–461.
- [8] Das, K., and Nahak, C., "Sufficient optimality conditions and duality theorems for setvalued optimization problem under generalized cone convexity", *Rendiconti del Circolo Matematico di Palermo*, 63 (3) (2014) 329–345.
- Das, K., and Nahak, C., "Sufficiency and duality of set-valued optimization problems via higher-order contingent derivative", *Journal of Advanced Mathematical Studies*, 8 (1) (2015) 137–151.
- [10] Das, K., and Nahak, C., "Optimality conditions for approximate quasi efficiency in setvalued equilibrium problems", SeMA Journal, 73 (2) (2016) 183–199.
- [11] Das, K., and Nahak, C., "Set-valued fractional programming problems under generalized cone convexity", Opsearch, 53 (1) (2016) 157–177.
- [12] Das, K., and Nahak, C., "Approximate quasi efficiency of set-valued optimization problems via weak subdifferential", SeMA Journal, 74 (4) (2017) 523–542.
- [13] Das, K., and Nahak, C., "Optimization problems with difference of set-valued maps under generalized cone convexity", *Journal of Applied Mathematics and Informatics*, 35 (1–2) (2017) 147–163.

- [14] Das, K., Nahak, C., "Set-valued minimax programming problems under generalized cone convexity", Rendiconti del Circolo Matematico di Palermo, 66 (3) (2017) 361–374.
- [15] Das, K., and Nahak, C., "Optimality conditions for set-valued minimax fractional programming problems", SeMA Journal, 77 (2) (2020) 161–179.
- [16] Das, K., and Nahak, C., "Optimality conditions for set-valued minimax programming problems via second-order contingent epiderivative", *Journal of Scientific Research*, 64 (2) (2020) 313–321.
- [17] Das, K., and Nahak, C., "Sufficiency and duality in set-valued optimization problems under (p, r)-ρ-(η, θ)-invexity", Acta Universitatis Apulensis, 62 (2020) 93–110.
- [18] Das, K., and Nahak, C., "Sufficiency and duality of set-valued semi-infinite programming problems under generalized cone convexity", Acta Universitatis Matthiae Belii. Series Mathematics, (2020) 95–111.
- [19] Das, K., and Nahak, C., "Set-valued optimization problems via second-order contingent epiderivative", Yugoslav Journal of Operations Research, 31 (1) (2021) 75–94.
- [20] Gadhi, N., and Jawhar, A., "Necessary optimality conditions for a set-valued fractional extremal programming problem under inclusion constraints", *Journal of Global Optimization*, 56 (2) (2013) 489–501.
- [21] Jahn, J., Khan, A., and Zeilinger, P., "Second-order optimality conditions in set optimization", Journal of Optimization Theory and Applications, 125 (2) (2005) 331–347.
- [22] Jahn, J., and Rauh, R., "Contingent epiderivatives and set-valued optimization", Mathematical Methods of Operations Research, 46 (2) (1997) 193–211.
- [23] Kaul, R. N., and Lyall, V., "A note on nonlinear fractional vector maximization", Opsearch, 26 (2) (1989) 108–121.
- [24] Lee, J. C., and Ho, S. C., "Optimality and duality for multiobjective fractional problems with r-invexity", Taiwanese Journal of Mathematics, 12 (3) (2008) 719–740.
- [25] Li, S. J., Teo, K. L., and Yang, X. Q., "Higher-order Mond-Weir duality for set-valued optimization", Journal of Computational and Applied Mathematics, 217 (2) (2008) 339– 349.
- [26] Li, S. J., Teo, K. L., and Yang, X. Q., "Higher-order optimality conditions for set-valued optimization", Journal of Optimization Theory and Applications, 137 (3) (2008) 533–553.
- [27] Suneja S. K., and Gupta, S., "Duality in multiple objective fractional programming problems involving nonconvex functions", *Opsearch*, 27 (4) (1990) 239–253.
- [28] Suneja S. K., and Lalitha, C., "Multiobjective fractional programming involving ρ-invex and related functions", Opsearch, 30 (1) (1993) 1–14.
- [29] Zhu, S. K., Li, S. J., and Teo, K. L., "Second-order Karush-Kuhn-Tucker optimality conditions for set-valued optimization", Journal of Global Optimization, 58 (4) (2014) 673–692.