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Abstract: In this paper, a class of nonconvex nondifferentiable generalized minimax
fractional programming problems is considered. Sufficient optimality conditions for the
considered nondifferentiable generalized minimax fractional programming problem are
established under the concept of (Φ, ρ)-invexity. Further, two types of dual models are
formulated and various duality theorems relating to the primal minimax fractional pro-
gramming problem and dual problems are established. The results established in the
paper generalize and extend several known results in the literature to a wider class of
nondifferentiable minimax fractional programming problems. To the best of our knowl-
edge, these results have not been established till now.
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1. INTRODUCTION

Minimax programming has been an interesting field of active research for a long
time. These problems are of pivotal importance in many areas of modern research
such as economics, engineering design, portfolio selection, game theory, rational
Chebyshev approximations and financial planning, see [7, 8, 43] and the references
cited therein. Necessary optimality conditions for finite-dimensional constrained
minimax problems in terms of Lagrange multipliers have been originally inves-
tigated by Bram [11] and Danskin [15]. Schmitendorf [42] has established the
necessary and sufficient optimality conditions for the following minimax program-
ming problem:

(P ) min sup
y∈Y

f(x, y)

subject to h(x) ≤ 0,

where f(., .) : Rn×Rm → R and h(.) : Rn → Rp are differentiable convex functions
and Y is a compact subset of Rm. Bector and Bhatia [9] and Weir [48] relaxed the
convexity assumption in proving the sufficient optimality conditions for problem
(P) and formulated several dual models. They proved such results under pseudo-
convexity and quasiconvexity assumptions imposed on the functions constituting
problem (P) and its duals. Bector et al. [10] derived duality results for minimax
programming problems involving V -invex functions.

The concept of invex functions introduced by Hanson [24] and named by Craven
[14] is a significant generalization of convex functions. The theory of mathematical
programming has grown remarkably, when further extensions of invexity have been
introduced to establish the optimality conditions and duality results. Preda [41] in-
troduced the concept of (F, ρ)-convexity as an extension of F -convexity defined by
Hanson and Mond [25], whereas the concept of ρ-convexity was introduced by Vial
[46]. Jeyakumar [28] generalized the Vial [46] notion of ρ-convexity to ρ-invexity.
In a recent work, Yuan et al. [50] introduced a unified formulation of general-
ized convexity, called (C,α, ρ, d)-convexity. The (C,α, ρ, d)-convexity extends the
(F, α, ρ, d)-convexity introduced by Liang et al. [31] by relaxing the sublinearity
of the scale function to convexity. Caristi et al. [12] introduced the notion of
(Φ, ρ)-invexity for differentiable scalar optimization problems, which generalizes
invexity as well as (F, ρ)-convexity. Recently, Antczak and Stasiak [6] generalized
the concept of (Φ, ρ)-invexity to a nondifferentiable case and they introduced the
definition of a locally Lipschitz (Φ, ρ)-invex function. Very recently, nonsmooth
semi-inifnite minimax programming problems with locally Lipschitz (Φ, ρ)-invex
and generalized locally Lipschitz (Φ, ρ)-invex functions have been studied by Liu
et al. [34] and Upadhyay and Mishra [45].
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Many authors investigated the optimality conditions and duality results for
minimax fractional programming problems using generalized convexity assump-
tions, see for example [1, 3, 4, 5, 13, 16, 17, 18, 19, 20, 21, 32, 33, 34, 38, 39, 44, 45]
and the references cited therein. Lai et al. [30] established the necessary and suffi-
cient optimality conditions and Lai and Lee [29] obtained duality results for a class
of nondifferentiable minimax programming problems with generalized convex func-
tions. Several authors have developed interesting results in nondifferentiable mini-
max fractional programming problems; see for example [26, 27, 33, 36, 37, 40] and
the references therein. Recently, the concept of nondifferentiable (Φ, ρ)-invexity
was used by Antczak [2] in proving the sufficient optimality conditions and various
duality results for a class of nondifferentiable minimax programming problems.

Motivated by the works of Caristi et al. [12], Lai and Lee [29], Lai et al. [30],
Upadhyay and Mishra [45] and Yuan et al. [50], we consider a class of noncon-
vex nondifferentiable generalized minimax fractional programming problems with
(Φ, ρ)-invex functions. We establish the sufficient optimality conditions for such a
nondifferentiable optimization problem. The necessary optimality criteria are then
used to formulate two types of dual models for the considered nondifferentiable
generalized minimax programming problem. Further, under (Φ, ρ)-invexity hy-
potheses, weak, strong and strict converse duality results are established between
the considered nondifferentiable generalized minimax programming problem and
its duals formulated in the paper.

2. DEFINITIONS and PRELIMINARES

Let Rn be the n-dimensional Euclidean space and Rn+ be the non-negative
orthant of Rn. Let ∅ 6= X0 ⊆ Rn and 〈., .〉 denotes the Euclidean inner product.

We consider the following nondifferentiable generalized minimax fractional pro-
gramming problem:

(P ) inf
x∈Rn

sup
y∈Y

{
φ(x, y) := f(x,y)+〈x,Ax〉1/2

g(x,y)−〈x,Bx〉1/2

}
subject to hj(x) ≤ 0, j ∈ J := {1, . . . , p} ,

where Y is a compact subset of Rm, f(., .), g(., .) : Rn×Rm → R and h : Rn → Rp
are C1-mappings. Let A and B be n × n positive semidefinite matrices. The
problem (P) is a nondifferentiable optimization problem if either A or B is nonzero.
If A and B are null matrices, problem (P) is a differentiable generalized minimax
fractional programming problem.

Let X := {x ∈ Rn | hj(x) ≤ 0, j ∈ J} be the set of all feasible solutions for

(P). Assume that for each (x, y) ∈ X × Y, f(x, y) + 〈x,Ax〉1/2 ≥ 0 and g(x, y) −
〈x,Bx〉1/2 > 0. Let us define the following sets for every x ∈ X :

J(x) := {j ∈ J |hj(x) = 0} ,
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Y (x) :=

{
y ∈ Y |f(x, y) + 〈x,Ax〉1/2

g(x, y)− 〈x,Bx〉1/2
= sup
z∈Y

f(x, z) + 〈x,Ax〉1/2

g(x, z)− 〈x,Bx〉1/2

}
,

K(x) :=

{
(s, t, ȳ) ∈ N × Rs+ × Rms : 1 ≤ s ≤ n+ 1, t = (t1, . . . , ts) ∈ Rs+

with

s∑
i=1

ti = 1 and ȳ = (ȳ1, . . . , ȳm) with ȳi ∈ Y (x), i = 1, . . . , s

}
.

Since f and g are continuously differentiable and Y is a compact subset of Rm, it
follows that, for each x∗ ∈ X,Y (x∗) 6= ∅ and, for any ȳi ∈ Y (x∗), we can find a
positive constant k0 such that k0 = φ(x∗, ȳi). The following generalized Schwartz
inequality will be needed in our considerations:

〈x,Aν〉 ≤ 〈x,Ax〉1/2 〈ν,Aν〉1/2 ,∀ x, ν ∈ Rn. (1)

The equality holds if Ax = λAν, for some λ ≥ 0.

Hence, if 〈ν,Aν〉1/2 ≤ 1, we have

〈x,Aν〉 ≤ 〈x,Ax〉1/2 . (2)

Now on, we assume that an element of (n + 1)-dimensional Euclidean space
Rn+1 is represented as the ordered pair (y, r) with y ∈ Rn and r ∈ R. Let Φ :
X0 × X0 × Rn+1 → R and ρ be a real number such that Φ(x, u, .) is convex on
Rn+1 and Φ (x, u, (0, r)) ≥ 0, for all (x, u) ∈ X0 ×X0 and r ≥ 0.

In order to relax the convexity assumptions, we use the following definitions
from Ferrara and Stefanescu [24].

Definition 1. A differentiable function f : X0 → R is said to be (Φ, ρ)-invex at
u ∈ X0 on X, if for all x ∈ X, we have

f(x)− f(u) ≥ Φ (x, u, (∇f(u), ρ)) .

The following example is taken from Upadhyay and Mishra [45]

Example 2. Consider the function f : D → R, given by

f(x) = (x1 + 1)(x2 + 2),

where D = ]−1, 1[× ]−1, 1[ . Define

Φ (x, y, (z, ρ)) = 2 (2ρ − 1) |(x1 − y1)(x2 − y2)|+ 〈z, x− y〉 .

The function f is (Φ, ρ)-invex at y = 0 for ρ = 1
2 on X, where X = {(x1, x2) ∈

R2 : x1x2 ≥ 0}.
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Definition 3. A differentiable function f : X0 → R is said to be strictly (Φ, ρ)-
invex at u ∈ X0 on X, if for all x ∈ X, we have

f(x)− f(u) > Φ (x, u, (∇f(u), ρ)) .

Remark 4. [12] If f1 is (Φ, ρ1)-invex and f2 is (Φ, ρ2) -invex, then λf1+(1−λ)f2

is (Φ, λρ1 + (1− λ)ρ2)-invex, whenever λ ∈ [0, 1] .

Remark 5. The notion of (Φ, ρ)-invexity generalizes and extends a number of
generalized convexity notions. Indeed, from Definition 1, there are the following
special cases:

(1) If Φ (x, u, (∇f(u), ρ)) = 〈∇f(u), η(x, u)〉 , where η : X0×X0 → Rn, then (Φ, ρ)-
invexity reduces to the definition of invex function (with respect to η) introduced
by Hanson [24].
(2) If Φ (x, u, (∇f(u), ρ)) = 1

b(x,u) 〈∇f(u), η(x, u)〉 , where b : X0 × X0 → R+/0,

and η : X0 × X0 → Rn, then (Φ, ρ)-invexity reduces to the definition of b-invex
function (with respect to η ) (see, Mishra et al. [40]).
(3) If Φ (x, u, (∇f(u), ρ)) = F (x, u,∇f(u)), where F (x, u, .) is a sublinear function
in the third argument, then the (Φ, ρ)-invexity reduces to the definition of F -
convexity introduced by Hanson and Mond [25].

(4) If Φ (x, u, (∇f(u), ρ)) = 〈∇f(u), (x− u)〉 + ρ ‖x− u‖2 , then (Φ, ρ)-invexity
reduces to the definition of ρ-convex function introduced by Vial [46].

(5) If Φ (x, u, (∇f(u), ρ)) = 〈∇f(u), η(x, u)〉+ρ ‖d(x, u)‖2 , where η, d : X0×X0 →
Rn and d(x, y) 6= 0, whenever x 6= y, then (Φ, ρ)-invexity reduces to the definition
of ρ-invex function (with respect to η and d ) introduced by Jeyakumar [28].

(6) If Φ (x, u, (∇f(u), ρ)) = F (x, u,∇f(u)) + ρ ‖d(x, u)‖2 , where F (x, u, .) is a
sublinear functional in the third argument, then the (Φ, ρ)-invexity reduces to the
definition of (Φ, ρ)-convexity introduced by Preda [41].
(7) Let C : X0×X0×Rn → R, α : X0×X0 → R+\{0} and d : X0×X0 → R+ be
the functions such that C is convex in the third argument satisfying C(x, a, 0) = 0,
for all (x, a) ∈ X0 × X0 and d(x, a) = 0 if and only if x = a. If Φ(x, a, (y, ρ)) =
C(x, a, y)α(x, a)+ρd(x, a) and ρ is a constant, then the definition of a (Φ, ρ)-invex
function reduces to the definition of (C,α, ρ, d)-convexity introduced by Yuan et
al. [50].

3. OPTIMALITY CONDITIONS

In this section, we establish the sufficient optimality conditions for the problem
(P) under (Φ, ρ)-invexity assumptions.

Before establishing the sufficient optimality conditions, we state the following
necessary optimality conditions for the problem (P) established in Lai et al. [30]

Theorem 6. (Necessary optimality conditions) Let x∗ be an optimal solution for
(P) satisfying 〈x∗, Ax∗〉 > 0, 〈x∗, Bx∗〉 > 0 and ∇hj(x∗), j ∈ J(x∗) are linearly
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independent. Then, there exist (s, t∗, ȳ) ∈ K(x∗), k0 ∈ R+, u, ν ∈ Rn and µ∗ ∈ Rp+,
such that

s∑
i=1

t∗i {∇f(x∗, ȳi) +Au− k0 (∇g(x∗, ȳi)−Bν)}+∇〈µ∗, h(x∗)〉 = 0, (3)

f(x∗, ȳi) + 〈x∗, Ax∗〉1/2 − k0

(
g(x∗, ȳi)− 〈x∗, Bx∗〉1/2

)
= 0, i = 1, . . . , s, (4)

〈µ∗, h(x∗)〉 = 0, (5)

t∗i ≥ 0, i = 1, . . . , s, with

s∑
i=1

t∗i = 1, (6)

〈u,Au〉 ≤ 1, 〈ν,Bν〉 ≤ 1, (7)

〈x∗, Au〉 = 〈x∗, Ax∗〉1/2 , 〈x∗, Bν〉 = 〈x∗, Bx∗〉1/2 . (8)

In the above theorem, we observe that both the matrices A and B are positive
definite at the solution x∗. If one of 〈x∗, Ax∗〉 and 〈x∗, Bx∗〉 is zero or both A and
B are singular at x∗, then, for s, t∗, ȳ ∈ K(x∗), we can take a set Zȳ(x∗) as defined
in Lai et al. [30] by

Zȳ(x∗) := {z ∈ Rn| 〈∇hj(x∗), z〉 ≤ 0, j ∈ J(x∗)}

satisfying any one of the following three assumptions:
(i)〈x∗, Ax∗〉 > 0, 〈x∗, Bx∗〉 = 0

⇒

〈
s∑
i=1

t∗i∇f(x∗, ȳi) +
Ax∗

〈Ax∗, x∗〉1/2
− k0∇g(x∗, ȳi), z

〉
+
〈
(k2

0B)z, z
〉1/2

< 0,

(ii)〈x∗, Ax∗〉 = 0, 〈x∗, Bx∗〉 > 0

⇒

〈
s∑
i=1

t∗i

(
∇f(x∗, ȳi)− k0

(
∇g(x∗, ȳi)−

Bx∗

〈Bx∗, x∗〉1/2

))
, z

〉
+ 〈Bz, z〉1/2 < 0,

(iii)〈x∗, Ax∗〉 = 0, 〈x∗, Bx∗〉 = 0

⇒

〈
s∑
i=1

t∗i∇f(x∗, ȳi)− k0∇g(x∗, ȳi), z

〉
+ 〈(k0B)z, z〉1/2 + 〈Bz, z〉1/2 < 0.

If we assume that Zȳ(x∗) = ∅ in Theorem 6, then the result of Theorem 6 still
holds.

In the next theorem, we denote

φ0(.) :=

s∑
i=1

t∗i
{

(f(., ȳi) + 〈., Au〉)− k0 (g(., ȳi)− 〈., Bν〉)
}
.
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Theorem 7. (Sufficient optimality conditions) Let x∗ ∈ X be a feasible solution
for (P) and there exist k0 ∈ R+, (s, t

∗, ȳ) ∈ K(x∗), u, ν ∈ Rn and µ∗ ∈ Rp+ satis-
fying (3)-(8). Further, assume that f(., ȳi) + 〈., Au〉 and −g(., ȳi) + 〈., Bν〉 , i =
1, . . . , s, are (Φ, ρi)-invex and (Φ, ρ̄i)-invex at x∗ on X, respectively, and hj(.), j =
1, . . . , p, is (Φ, ρ∗j )-invex at x∗ on X such that, the inequality

s∑
i=1

t∗i (ρi + k0ρ̄i) +

p∑
j=1

µ∗jρ
∗
j ≥ 0 (9)

holds. Then x∗ is an optimal solution for (P).

Proof. We proceed by contradiction. Suppose that x∗ is not an optimal solution
for (P). Then, there exists x̃ ∈ X, such that

sup
y∈Y

f(x̃, y) + 〈x̃, Ax̃〉1/2

g(x̃, y)− 〈x̃, Bx̃〉1/2
< sup
y∈Y

f(x∗, y) + 〈x∗, Ax∗〉1/2

g(x∗, y)− 〈x∗, Bx∗〉1/2
.

We observe that

sup
y∈Y

f(x∗, y) + 〈x∗, Ax∗〉1/2

g(x∗, y)− 〈x∗, Bx∗〉1/2
=
f(x∗, ȳi) + 〈x∗, Ax∗〉1/2

g(x∗, ȳi)− 〈x∗, Bx∗〉1/2
= k0,

for ȳi ∈ Y (x∗), i = 1, . . . , s and

f(x̃, ȳi) + 〈x̃, Ax̃〉1/2

g(x̃, ȳi)− 〈x̃, Bx̃〉1/2
≤ sup
y∈Y

f(x̃, y) + 〈x̃, Ax̃〉1/2

g(x̃, y)− 〈x̃, Bx̃〉1/2
.

Thus, we have

f(x̃, ȳi) + 〈x̃, Ax̃〉1/2

g(x̃, ȳi)− 〈x̃, Bx̃〉1/2
< k0, i = 1, . . . , s.

The above inequalities yield

f(x̃, ȳi) + 〈x̃, Ax̃〉1/2 − k0(g(x̃, ȳi)− 〈x̃, Bx̃〉1/2) < 0, i = 1, . . . , s. (10)

From (1), (4), (6), (7)− (8) and (10), we get

φ0(x̃) =

s∑
i=1

t∗i

{(
f(x̃, ȳi) + 〈x̃, Au〉1/2

)
− k0

(
g(x̃, ȳi)− 〈x̃, Bν〉1/2

)}
≤

s∑
i=1

t∗i

{(
f(x̃, ȳi) + 〈x̃, Ax̃〉1/2

)
− k0

(
(g(x̃, ȳi)− 〈x̃, Bx̃〉1/2

)}
< 0 =

s∑
i=1

t∗i

{(
f(x∗, ȳi) + 〈x∗, Ax∗〉1/2

)
− k0

(
g(x∗, ȳi)− 〈x∗, Bx∗〉1/2

)}
=

s∑
i=1

t∗i

{
(f(x∗, ȳi) + 〈x∗, Au〉)− k0 (g(x∗, ȳi)− 〈x∗, Bν〉)

}
= φ0(x∗).
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Thus,

s∑
i=1

t∗i {(f(x, ȳi) + 〈x,Au〉)− (f(x∗, ȳi) + 〈x∗, Au〉)}

+

s∑
i=1

t∗i k0 {− (g(x, ȳi)− 〈x,Bν〉) + (g(x∗, ȳi)− 〈x∗, Bν〉)} < 0.

By (5) and x ∈ X, it follows that

s∑
i=1

t∗i {(f(x, ȳi) + 〈x,Au〉)− (f(x∗, ȳi) + 〈x∗, Au〉)}+

s∑
i=1

t∗i k0{−(g(x, ȳi)−

〈x,Bν〉) + (g(x∗, ȳi)− 〈x∗, Bν〉)}+

p∑
j=1

µ∗j (hj(x)− hj(x∗)) < 0. (11)

By the (Φ, ρi)-invexity of (f(., ȳi) + 〈., Au〉) and (Φ, ρ̄i)-invexity of
(g(., ȳi)− 〈., Bν〉) at x∗, for i = 1, . . . , s, and for all x̄ ∈ X, it follows that

f(x̃, ȳi) + 〈x̃, Au〉−f(x∗, ȳi)− 〈x∗, Au〉 ≥
Φ (x̃, x∗, (∇f(x∗, ȳi) +Au, ρi)) , i = 1, . . . , s (12)

and

−g(x̃, ȳi) + 〈x̃, Bν〉+g(x∗, ȳi)− 〈x∗, Bν〉 ≥
Φ (x̃, x∗, (∇f(x∗, ȳi) +Bν, ρ̄i)) , i = 1, . . . , s. (13)

The (Φ, ρ∗j )-invexity of hj(.) at x∗ implies that

hj(x̃)− hj(x∗) ≥ Φ
(
x̃, x∗, (∇hj(x∗)ρ∗j )

)
, j = 1, . . . , p. (14)

By (12) − (14), the convexity of Φ(x, x∗, .) on Rn+1, and the fact that x̃ ∈ X, it
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follows that

Φ

(
x̃, x∗,

1

γ

( s∑
i=1

t∗i {∇f(x∗, ȳi) +Au− k0(∇g(x∗, ȳi)−Bν)}+

p∑
j=1

µ∗j∇hj(x∗),
s∑
i=1

t∗i (ρi + k0ρ̄i) +

p∑
j=1

µ∗jρ
∗
j

))

≤ 1

γ

[ s∑
i=1

t∗iΦ(x̃,x∗, (∇f(x∗, ȳi) +Au, ρi)) + k0

s∑
i=1

t∗iΦ
(
x̃, x∗,

(
−∇g(x∗, ȳi)+Bν, ρ̄i

))
+

p∑
j=1

µ∗jΦ
(
x̃, x∗, (∇hj(x∗), ρ∗j )

)]

≤ 1

γ

[ s∑
i=1

t∗i ((f(x̃, ȳi) + 〈x̃, Au〉)− (f(x∗, ȳi) + 〈x∗, Au〉)) +

s∑
i=1

t∗i k0(
−
(
g(x̃, ȳi)− 〈x̃,Bν〉

)
+
(
g(x∗, ȳi)− 〈x∗, Bν〉

))
+

p∑
j=1

µ∗j (hj(x̃)− hj(x∗))
]
< 0, (15)

where

γ = 1 + k0 +

p∑
j=1

µ∗j .

By (3), (9) and the definition of Φ, we have

Φ

(
x̃, x∗,

1

γ

( s∑
i=1

t∗i {∇f(x∗, ȳi) +Au− k0(∇g(x∗, ȳi)−Bν)}

+

p∑
j=1

µ∗j∇hj(x∗),
s∑
i=1

t∗i (ρi + k0ρ̄i) +

p∑
j=1

µ∗jρ
∗
j

))
≥ 0,

which is a contradiction to (15).
This completes the proof.

4. FIRST DUAL MODEL

In this section, for the considered nondifferentiable generalized minimax frac-
tional programming problem (P), we formulate the first dual model (DI). Further,
under (Φ, ρ)-invexity hypotheses, we establish various duality results between (P)
and (DI).
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Related to (P), we formulate the first dual model (DI) as follows:

(DI) max
(s,t,ȳ)∈K(z)

sup
(z,µ,k,u,ν)∈Ω1(s,t,ȳ)

k,

where Ω1(s, t, ȳ) denotes the set of all (z, µ, k, u, ν) ∈ Rn × Rp+ × R+ × Rn × Rn
satisfying

s∑
i=1

ti {∇f(z, ȳi) +Au− k (∇g(z, ȳi)−Bν)}+∇〈µ, h(z)〉 = 0, (16)

s∑
i=1

∇f(z, ȳi) + 〈z,Au〉 − k (g(z, ȳi)− 〈z,Bν〉) ≥ 0, (17)

〈µ, h(z)〉 ≥ 0, (18)

(s, t, ȳ) ∈ K(z), (19)

〈u,Au〉 ≤ 1, 〈ν,Bν〉 ≤ 1. (20)

For a triplet (s, t, ȳ) ∈ K(z), if the set Ω1(s, t, ȳ) = ∅, then we define the supremum
over it to be −∞ Throughout this section, we denote

φ1(.) =

s∑
i=1

ti {f(., ȳi) + 〈., Au〉 − k ((., ȳi)− 〈., Bν〉)} .

Further, let prRnΩ1(s, t, ȳ) denote the projection of the set Ω1(s, t, ȳ) on Rn.

Now, we derive weak, strong and strict converse duality theorems.

Theorem 8. (Weak duality) Let x and (z, µ, k, u, ν, s, t, ȳ) be any feasible solu-
tions of (P) and (DI), respectively. Further, assume that f(., ȳ) + 〈., Au〉 , i =
1, . . . , s are (Φ, ρi)-invex at z on X ∪prRnΩ1(s, t, ȳ),−g(., ȳ) + 〈., Bν〉 , i = 1, . . . , s
are (Φ, ρ̄i)-invex at z on X ∪ prRnΩ1(s, t, ȳ), hj(.), j = 1, ..., p are (Φ, ρ∗j )-invex at
z on X ∪ prRnΩ1(s, t, ȳ) and the inequality

s∑
i=1

ti (ρi + kρ̄i) +

p∑
j=1

µjρ
∗
j ≥ 0, (21)

holds. Then,

sup
y∈Y

f(x, y) + 〈x,Ax〉1/2

g(x, y)− 〈x,Bx〉1/2
≥ k.

Proof. We proceed by contradiction. Suppose that

sup
y∈Y

f(x, y) + 〈x,Ax〉1/2

g(x, y)− 〈x,Bx〉1/2
< k.
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Therefore, we get the following inequality

f(x, ȳi) + 〈x,Ax〉1/2 − k
(
g(x, ȳi)− 〈x,Bx〉1/2

)
< 0, for all ȳi ∈ Y.

From ti ≥ 0, i = 1, . . . , s with
∑s
i=1 ti = 1, it follows that

ti

{
f(x, ȳi) + 〈x,Ax〉1/2 − k

(
g(x, ȳi)− 〈x,Bx〉1/2

)}
≤ 0, (22)

with at least one strict inequality, because t = (t1, . . . , ts) 6= 0.
From (1), (16), (19) and (22), we have

φ1(x) =

s∑
i=1

ti {f(x, ȳi) + 〈x,Au〉 − k (g(x, ȳi)− 〈x,Bν〉)}

≤
s∑
i=1

ti

{
f(x, ȳi) + 〈x,Ax〉1/2 − k

(
g(x, ȳi)− 〈x,Bx〉1/2

)}
< 0 ≤

s∑
i=1

ti {f(z, ȳi) + 〈z,Au〉 − k (g(z, ȳi)− 〈z,Bν〉)} = φ1(z).

Hence,

s∑
i=1

ti{(f(x, ȳi) + 〈x,Au〉)− (f(z, ȳi) + 〈z,Au〉)}

+

s∑
i=1

tik{−(g(x, ȳi)− 〈x,Bν〉) + (g(z, ȳi)− 〈z,Bν〉)} < 0.

By the feasibility of x for (P) and (18), we get

s∑
i=1

ti{(f(x, ȳi)+〈x,Au〉)− (f(z, ȳi) + 〈z,Au〉)}+

s∑
i=1

tik{−(g(x, ȳi)− 〈x,Bν〉)

+ (g(z, ȳi)− 〈z,Bν〉)}+

p∑
j=1

µj(hj(x)− hj(z)) < 0. (23)
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From (23) and convexity of Φ(x, z, .) on Rn+1, it follows that

Φ

(
x, z,

1

γ

( s∑
i=1

ti{∇f(z, ȳi) +Au− k(∇f(z, ȳi)−Bν)}+

p∑
j=1

µj∇hj(z),

s∑
i=1

ti(ρi + kρ̄i) +

p∑
j=1

µjρ
∗
j

))

≤ 1

γ

( s∑
i=1

tiΦ(x, z, (∇f(z, ȳi) +Au, ρi))+k

s∑
i=1

tiΦ(x, z, (−∇g(z, ȳi) +Bν, ρ̄i))

+

p∑
j=1

µjΦ(x, z, (∇hj(z), ρ∗j ))
)

≤ 1

γ

[ s∑
i=1

ti((f(x, ȳi) + 〈x,Au〉)− (f(z, ȳi) + 〈z,Au〉)) +

s∑
i=1

tik

(
−
(
g(x, ȳi)

−〈x,Bν〉
)

+
(
g(z, ȳi)− 〈z,Bν〉

))
+

p∑
j=1

µ∗j (hj(x)− hj(z))
]
< 0,

(24)

where

γ = 1 + k +

p∑
j=1

µj .

By (3), (9) and the definition of Φ we get

Φ

(
x, z,

1

γ

( s∑
i=1

ti{∇f(z, ȳi)+Au− k(∇f(z, ȳi)−Bν)}+

p∑
j=1

µj∇hj(z),

s∑
i=1

ti(ρi + kρ̄i) +

p∑
j=1

µjρ
∗
j

))
≥ 0,

which is a contradiction to (24). This completes the proof.

Theorem 9. (Strong duality) Assume that x∗ is an optimal solution for (P) and
that ∇hj(x∗), j ∈ J(x∗), are linearly independent. Then, there exist
(s̄, t̄, ȳ∗) ∈ K(x∗) and (x∗, µ̄, k̄, ū, ν̄) ∈ Ω1(s̄, t̄, ȳ∗) such that (x∗, µ̄, k̄, ū, ν̄, s̄, t̄,
ȳ∗) is a feasible solution for (DI). Further, if all hypotheses of weak duality (The-
orem 8) are fulfilled, then (x∗, µ̄, k̄, ū, ν̄, s̄, t̄, ȳ∗) is optimal in dual problem (DI)
and objective functions in problems (P) and (DI) have the same values.

Proof. Since x∗ is an optimal solution in the nondifferentiable minimax fractional
programming problem (P), by Theorem 6, there exist (s̄, t̄, ȳ∗) ∈ K(x∗) and
(x∗, µ̄, k̄, ū, ν̄) ∈ Ω1(s̄, t̄, ȳ∗) such that (x∗, µ̄, k̄, ū, ν̄, s̄, t̄, ȳ∗) is feasible for (DI) and

k̄ =
f(x∗, y∗i ) + 〈x∗, Ax∗〉1/2

g(x∗, y∗i )− 〈x∗, Bx∗〉1/2
.
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Thus, if all the hypotheses of the weak duality (Theorem 8) are fulfilled, then the
optimality of (x∗, µ̄, k̄, ū, ν̄, s̄, t̄, ȳ∗) follows directly from this theorem.

Theorem 10. (Strict converse duality) Let x∗ and (z̄, µ̄, k̄, ū, ν̄, s̄, t̄, ȳ∗) be the op-
timal solutions for (P) and (DI), respectively, and ∇hj(x∗), j ∈ J(x∗) be linearly
independent. Assume that f(., y∗i )+〈., Aū〉 and −g(., y∗i )+〈., Bν̄〉 , i = 1, . . . , s, are
strictly (Φ, ρi)-invex and strictly (Φ, ρ̄i)-invex functions at z̄ on X∪prRnΩ1(s̄, t̄, ȳ∗)
respectively and hj(.), j = 1, . . . , p, is (Φ, ρ∗j )-invex at z̄ on X ∪prRnΩ1(s̄, t̄, ȳ∗) for

all (s̄, t̄, ȳ∗) ∈ K(x∗) and (z̄, µ̄, k̄, ū, ν̄) ∈ Ω1(s̄, t̄, ȳ∗), Further, assume that the
inequality

s∑
i=1

t̄i(ρi + k̄ρ̄i) +

p∑
j=1

µ̄jρ
∗
j ≥ 0 (25)

holds. Then, x∗ = z̄, that is, z̄ is optimal for (P) and

sup
y∈Y

f(z̄, ȳ∗) + 〈z̄, Az̄〉1/2

g(z̄, ȳ∗)− 〈z̄, Bz̄〉1/2
= k̄.

Proof. Suppose, contrary to the result, that x∗ 6= z̄. By the hypotheses of the
theorem and following along the lines of the proof of Theorem 8, we have

0 ≤ Φ

(
x∗, z̄,

1

γ

( s∑
i=1

t̄i
{
∇f(z̄, ȳ∗i )+Aū− k̄(∇g(z̄, ȳ∗i )−Bν̄)

}
+

p∑
j=1

µ̄j∇hj(z̄),

s∑
i=1

t̄i(ρi + k̄ρ̄i) +

p∑
j=1

µ̄jρ
∗
j

))

≤ 1

γ

( s∑
i=1

t̄iΦ
(
x∗, z̄, (∇f(z̄, ȳ∗i )+Aū, ρi)

)
+ k̄

s∑
i=1

t̄iΦ
(
x∗, z̄,

(
−∇g(z̄, ȳ∗i )

+Bν̄, ρ̄i
))

+

p∑
j=1

µ̄jΦ(x∗, z̄, (∇hj(z̄), ρ∗j ))
)

<
1

γ

[ s∑
i=1

t̄i
{

(f(x∗, ȳ∗i ) + 〈x∗, Aū〉)− (f(z̄, ȳ∗i )+〈z̄, Aū〉)
}

+

s∑
i=1

t̄ik̄

{
− (g(x∗, ȳ∗i )− 〈x∗, Bν̄〉) + (g(z̄, ȳ∗i )− 〈z̄, Bν̄〉)

}
+

p∑
j=1

µ̄j(hj(x
∗)− hj(z̄))

]
,

(26)

where

γ = 1 + k̄ +

p∑
j=1

µ̄j .



16 B.B. Upadhyay, et al. / Nondifferentiable Generalized Minimax

By the feasibility of x∗ and (18), we get

p∑
j=1

µ̄j [hj(x
∗)− hj(z̄)] ≤ 0. (27)

From (26) and (27), we have

s∑
i=1

t̄i{(f(x∗, ȳ∗i ) + 〈x∗, Aū〉)− (f(z̄, ȳ∗i ) + 〈z̄, Aū〉)}+

s∑
i=1

t̄ik̄{−(g(x∗, ȳ∗i )− 〈x∗, Bν̄〉) + (g(z̄, ȳ∗i )− 〈z̄, Bν̄〉)} > 0.

By (16) and (2), the above inequality implies that

s∑
i=1

t̄i

{(
f(x∗, ȳ∗i ) + 〈x∗, Ax∗〉1/2

)
− k̄

(
g(x∗, ȳ∗i ) + 〈x∗, Bx∗〉1/2

)}
>

s∑
i=1

t̄i

{(
f(z̄, ȳ∗i ) + 〈z̄, Az̄〉1/2

)
− k̄

(
g(z̄, ȳ∗i ) + 〈z̄, Bz̄〉1/2

)}
≥ 0.

From the above inequality, we conclude that there exists a certain i0 ∈ {1, . . . , s},
such that{(

f(x∗, ȳ∗i0) + 〈x∗, Ax∗〉1/2
)
− k̄

(
g(x∗, ȳ∗i0) + 〈x∗, Bx∗〉1/2

)}
> 0.

It follows that

sup
y∈Y

f(x∗, ȳ∗) + 〈x∗, Ax∗〉1/2

g(x, ȳ∗)− 〈x∗, Bx∗〉1/2
≥
f(x∗, ȳ∗i0) + 〈x∗, Ax∗〉1/2

g(x, ȳ∗)− 〈x∗, Bx∗〉1/2
> k̄. (28)

By the strong duality theorem (Theorem 9), it follows that

sup
y∈Y

f(x∗, ȳ∗) + 〈x∗, Ax∗〉1/2

g(x, ȳ∗)− 〈x∗, Bx∗〉1/2
= k̄,

which contradicts (28). Therefore, x∗ = z̄. Hence, the proof is complete.

5. SECOND DUAL MODEL

In this section, for the considered nondifferentiable generalized minimax frac-
tional programming problem (P), we formulate the second dual model (DII). Fur-
ther, under (Φ, ρ) -invexity hypotheses, we establish various duality results between
(P) and (DII).

We state the modified version of Theorem 6, by replacing the parameter k0

with f(x∗,ȳ∗)+〈x∗,Ax∗〉1/2

g(x,ȳ∗)−〈x∗,Bx∗〉1/2 and by rewriting the multiplier functions associated with

the inequality constraints.
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Theorem 11. Let x∗ be an optimal solution for (P) and let ∇hj(x∗), j ∈ J(x∗)
be linearly independent. Then, there exist (s̄, t̄, ȳ) ∈ K(x∗) and µ̄ ∈ Rp+, such that

s̄∑
i=1

t̄i(g(x∗, ȳi)− 〈x∗,Bx∗〉1/2)(∇f(x∗, ȳi) +Au)− (f(x∗, ȳi)+

〈x∗, Ax∗〉1/2)(∇g(x∗, ȳi)−Bν) +

p∑
j=1

µ̄j∇hj(x∗) = 0,

p∑
i=1

µ̄j∇hj(x∗) ≥ 0,

µ̄ ∈Rp+, t̄i ≥ 0,

s̄∑
i=1

t̄i = 1, ȳi ∈ Y (x̄), i = 1, . . . , s̄.

We formulate the second dual model as follows:

(DII) max
(s,t,ȳ)∈K(z)

sup
(z,µ,u,ν)∈Ω2(s,t,ȳ)

F (z),

where F (z) = sup
y∈Y

f(z,y)+〈z,Az〉1/2

g(z,y)−〈z,Bz〉1/2 and Ω2(s, t, ȳ) denote the set of all

(z, µ, u, ν) ∈ Rn × Rm+ × Rn × Rn satisfying

s∑
i=1

ti

{
(g(z, ȳi)− 〈z,Bz〉1/2)(∇f(z, ȳi) +Au)−

(f(z, ȳi) + 〈z,Az〉1/2)(∇g(z, ȳi)−Bν)

}
+

p∑
j=1

µ̄j∇hj(z) = 0,

(29)

p∑
j=1

µjhj(z) ≥ 0, (30)

(s, t, ȳ) ∈ K(z), (31)

〈z,Az〉1/2 = 〈z,Au〉 , 〈z,Bz〉1/2 = 〈z,Bν〉 , 〈u,Au〉 ≤ 1, 〈ν,Bν〉 ≤ 1 (32)

For a triplet (s, t, ȳ) ∈ K(z), if the set Ω2(s, t, ȳ) is empty, then we define the
supremum over it to be −∞ Throughout this section, we denote

φ2(.) =

s∑
i=1

ti

{
(g(z, ȳi)− 〈z,Bν〉)(f(., ȳi) + 〈., Au〉)−

(f(z, ȳi)+〈z,Au〉)(∇g(., ȳi)− 〈., Bν〉)
}
.

Further, let prRnΩ2(s, t, ȳ) denote the projection of the set on Rn.

Now, we establish weak, strong and strict converse duality theorems.
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Theorem 12. (Weak duality) Let x and (z, µ, u, ν, s, t, ȳ) be the feasible solutions
for (P) and (DII), respectively. Further, assume that f(., ȳi)+ 〈., Au〉 , i = 1, . . . , s
are (Φ, ρi)-invex at z on X ∪ prRnΩ2(s, t, ȳ), −g(., ȳi) + 〈., Bν〉 , i = 1, . . . , s, are
(Φ, ρ̄i)-invex at z on X ∪ prRnΩ2(s, t, ȳ), hj(.), j = 1, . . . , p are (Φ, ρ∗j )-invex at z
on X ∪ prRnΩ2(s, t, ȳ) and the inequality

s∑
i=1

ti

{(
g(z, ȳi)− 〈z,Bz〉1/2

)
ρi +

((
f(z, ȳi) + 〈z,Bz〉1/2

)
ρ̄i

)}
+

p∑
j=1

µjρ
∗
j ≥ 0,

(33)

holds. Then,

sup
y∈Y

f(x, y) + 〈x,Ax〉1/2

g(x, y)− 〈x,Bx〉1/2
≥ F (z).

Proof. Suppose, contrary to the result, that

sup
y∈Y

f(x, y) + 〈x,Ax〉1/2

g(x, y)− 〈x,Bx〉1/2
< F (z). (34)

Since, ȳi ∈ Y (z), i = 1, . . . , s we get

F (z) = sup
y∈Y

f(z, ȳi) + 〈z,Az〉1/2

g(z, ȳi)− 〈z,Bz〉1/2
. (35)

By (34) and (35), we get(
g(z, yi)− 〈z,Bz〉1/2

)(
f(x, ȳi) + 〈x,Ax〉1/2

)
−(

f(z, ȳi) + 〈z,Az〉1/2
)(

g(z, ȳi)− 〈x,Bx〉1/2
)
< 0,

for all i = 1, . . . , s and ȳi ∈ Y.
From ȳi ∈ Y (z) ⊂ Y and t ∈ Rs+ with

∑s
i=1 ti = 1, it follows that

s∑
i=1

ti

{(
g(z, ȳi)− 〈z,Bz〉1/2)

)(
f(x,ȳi) + 〈x,A〉1/2

)
−(

f(z, ȳi) + 〈z,Az〉1/2
)(

g(z, ȳi)− 〈x,Bx〉1/2
)}

< 0.

(36)
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From (1), (32) and (36), we have

φ2(x) =

s∑
i=1

ti

{
(g(z, ȳi)− 〈z,Bν〉)(f(x, ȳi) + 〈x,Au〉)−

(f(z, ȳi) + 〈z,Au〉)(g(z, ȳi)− 〈x,Bx〉)
}

≤
s∑
i=1

ti

{
(g(z, ȳi)− 〈z,Bz〉1/2)(f(x, ȳi) + 〈x,Ax〉1/2)

−(f(z, ȳi) + 〈z,Az〉1/2)(g(x, ȳi)− 〈x,Bx〉1/2)

}
< 0 = φ2(z).

Hence,
φ2(x) < φ2(z).

By the feasibility of x for (P) and (30), we get

(φ2(x)− φ2(z)) +

p∑
j=1

µj (hj(x)− hj(z)) < 0. (37)

From the (Φ, ρi)-invexity of (f(., ȳi) + 〈., Au〉) and (Φ, ρ̄i)-invexity of
(−g(., ȳi) + 〈., Bν〉) at z, for i = 1, . . . , s, it follows that

f(x, ȳi) + 〈x,Au〉 − f(z, ȳi)−〈z,Au〉 ≥
Φ(x, z, (∇f(z, ȳi) +Au, ρi)), i = 1, . . . , s, (38)

and

−g(x, ȳi) + 〈x,Bν〉+ g(z, ȳi)−〈z,Bν〉 ≥
Φ(x, z, (−∇g(z, ȳi) +Bν, ρ̄i)), i = 1, . . . , s.

(39)

The (Φ, ρ∗j )-invexity of hj(.) at z implies that

hj(x)− hj(z) ≥ Φ(x, z, (∇hj(z), ρ∗j )), j = 1, . . . , p. (40)

Multiplying (38) by ti

(
g(z, ȳi)− 〈z,Bz〉1/2

)
, (39) by ti

(
f(z, ȳi)− 〈z,Bz〉1/2

)
,

and then summing up these inequalities to (40) along with the convexity of Φ(x, z, (.))
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on Rn+1, we get

1

γ
(φ2(x)− φ2(z) +

p∑
j=1

µjhj(x)−
p∑
j=1

µjhj(z))

≥ 1

γ

s∑
i=1

ti

{(
Φ(x, z(∇f(z, ȳi)+Au, ρi))

)
(g(z, ȳi)〈z,Bz〉1/2)

+

(
Φ(x, z, (∇g(z)−Bν, ρ̄i)

)(
f(z, ȳi)− 〈z,Bz〉1/2

)}
+

1

γ

p∑
j=1

µjΦ(x, z, (∇hj(z), ρ̄∗j ))

≥ Φ

(
x, z,

1

γ

( s∑
i=1

ti

((
∇f(z, ȳi) +Au

)
(g(z, ȳi)− 〈z,Bz〉1/2)

−
(
f(z, ȳi) + 〈z,Az〉1/2

)(
∇g(z, ȳi)−Bν

))
+

p∑
j=1

µj∇hj(z)
)
,

1

γ

(
ρi
(
f(z, ȳi)

−〈z,Bz〉1/2
)

+ ρ̄i
(
f(z, ȳi)+〈z,Az〉1/2

))
+

p∑
j=1

µ̄jρ
∗
j

))
≥ 0,

(41)

where

γ =

s∑
i=1

t̄i

{(
g(z, ȳi)− 〈z,Bz〉1/2

)
+
(
f(z, ȳi) + 〈z,Bz〉1/2

)}
+

p∑
j=1

µ̄j .

which is a contradiction to (37). This completes the proof.

Theorem 13. (Strong duality) Let x∗ be an optimal solution for (P) and ∇hj(x∗),
j ∈ J(x∗) be linearly independent. Then, there exist (s̄, t̄, ȳ∗) ∈ K(x∗) and
(x∗, µ̄, ū, ν̄) ∈ Ω2(s̄, t̄, ȳ∗) such that (x∗, µ̄, ū, ν̄, s̄, t̄, ȳ∗) is a feasible solution for
(DII). Further, if all the hypotheses of the weak duality (Theorem 12) are fulfilled,
then, (x∗, µ̄, ū, ν̄, s̄, t̄, ȳ∗) is optimal in dual problem (DII) and objective functions
in problems (P) and (DII) have the same values.

Proof. Since x∗ is an optimal solution in the considered nondifferentiable minimax
fractional programming problem (P), then by Theorem 6 there exist ū, ν̄ ∈ Rn and
µ̄ ∈ Rp+ to satisfy the expression (29) obtained by substituting

k0 =
f(x∗, ȳ∗i ) + 〈x∗, Ax∗〉1/2

g(x, ȳ∗i )− 〈x∗, Bx∗〉1/2
,

in (3). It follows that there exist (s̄, t̄, ȳ∗) ∈ K(x∗) and (x∗, µ̄, ū, ν̄) ∈ Ω2(s̄, t̄, ȳ∗)
such that (x∗, µ̄, ū, ν̄, s̄, t̄, ȳ∗) is feasible for (DII). Thus, if all the hypotheses of the
weak duality (Theorem 12) are fulfilled, then, the optimality of (x∗, µ̄, ū, ν̄, s̄, t̄, ȳ∗)
follows directly from this theorem.
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Theorem 14. (Strict converse duality) Let x∗ and (z̄, µ̄, k̄ū, ν̄, s̄, t̄, ȳ∗) be the opti-
mal solutions for (P) and (DII), respectively and let ∇hj(x∗), j ∈ J(x∗) be linearly
independent. Assume that f(., ȳ∗i )+ 〈., Aū〉 and −g(., ȳ∗i )+ 〈., Bν̄〉 , for i = 1, . . . , s
are strictly (Φ, ρi)-invex and strictly (Φ, ρ̄i)-invex at z̄ on X ∪ prRnΩ2(s̄, t̄, ȳ∗), re-
spectively and let hj(.) for j = 1, . . . , p be (Φ, ρ∗j )-invex at z̄ on X∪prRnΩ2(s̄, t̄, ȳ∗),

for all (s̄, t̄, ȳ∗) ∈ K(x∗) and (z̄, µ̄, k̄ū, ν̄) ∈ Ω2(s̄, t̄, ȳ∗). Further, assume that the
inequality

s∑
i=1

t̄i

((
g(z̄, ȳi)− 〈z̄, Bz̄〉1/2

)
ρi +

(
f(z̄, ȳi) + 〈z̄, Bz̄〉1/2

)
ρ̄i

)
+

p∑
j=1

µ̄j ρ̄
∗
j ≥ 0, (42)

holds. Then, x∗ = z̄, that is, z̄ is optimal for (P) and

sup
y∈Y

f(z̄, ȳ∗) + 〈z̄, Az̄〉1/2

g(z̄, ȳ∗)− 〈z̄, Bz̄〉1/2
= F (z̄).

Proof. Suppose, contrary to the result, that x∗ 6= z. Using the hypotheses of the
theorem and proceeding as in Theorem 12, we get

1

γ

φ2(x∗)− φ2(z̄) +

p∑
j=1

µ̄jhj(x
∗)−

p∑
j=1

µ̄jhj(z̄)


>

1

γ

s∑
i=1

t̄i

{(
Φ (x∗, z̄, (∇f(z̄, ȳ∗i ) +Aū, ρi))

) (
g(z̄, ȳ∗i )− 〈z̄, Bz̄〉1/2

)
+

(
Φ (x∗, z̄, (∇g(z̄) +Bν̄, ρ̄i))

)(
f(z̄, ȳ∗i ) + 〈z̄, Az̄〉1/2

)}
+

1

γ

p∑
j=1

µ̄j

Φ
(
x∗, z̄,

(
∇hj(z̄), ρ∗j

))
≥ Φ

(
x∗, z̄,

1

γ

( s∑
i=1

t̄i

(
(∇f(z̄, ȳ∗i ) +Aū)

(
g(z̄, ȳ∗i )− 〈z̄, Bz̄〉1/2

)

−
(
f(z̄, ȳ∗i ) + 〈z̄, Az̄〉1/2

)
(∇g(z̄, ȳ∗i )−Bν̄)

)
+

p∑
j=1

µ̄j∇hj(z̄)
)
,

ρi

(
g(z̄, ȳ∗i )− 〈z̄, Bz̄〉1/2

)
+ ρ̄i

(
f(z̄, ȳ∗i ) + 〈z̄, Az̄〉1/2

)
+

p∑
j=1

µ̄jρ
∗
j

))
≥ 0,

where

γ =

s∑
i=1

t̄i

{(
g(z̄, ȳi)− 〈z̄, Bz̄〉1/2

)
+
(
f(z̄, ȳi) + 〈z̄, Bz̄〉1/2

)}
+

p∑
j=1

µ̄j .
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That is,

1

γ

φ2(x∗)− φ2(z̄) +

p∑
j=1

µ̄jhj(x
∗)−

p∑
j=1

µ̄jhj(z̄)

 > 0. (43)

By the feasibility of x∗ and (30), we get

p∑
j=1

µ̄j [hj(x
∗)− hj(z̄)] ≤ 0. (44)

From (43) and (44), we have

φ2(x∗)− φ2(z̄) > 0.

That is,

s̄∑
i=1

t̄i

{
(g(z̄, ȳ∗i )− 〈z̄, Bν̄〉(f(x∗, ȳ∗i )+〈x∗, Aū〉)− (f(z̄, ȳ∗i )+

〈z̄,Aū〉)(g(x∗, ȳ∗i )− 〈x∗, Bν̄〉)
}

>

s̄∑
i=1

t̄i

{
(g(z̄, ȳ∗i )− 〈z̄, Bν̄〉)(f(z̄, ȳ∗i )+〈z̄, Aū〉)− (f(z̄, ȳ∗i )+

〈z̄,Aū〉)(g(z̄, ȳ∗i )− 〈z̄, Bν̄〉)
}
≥ 0.

Therefore, there exists a certain i0, such that

s̄∑
i=1

t̄i

{
(g(z̄, ȳ∗i0)− 〈z̄, Bν̄〉)(f(x∗, ȳ∗i0) + 〈x∗, Aū〉)−

(f(z̄, ȳ∗i0)+〈z̄, Aū〉)(g(x∗, ȳ∗i0)− 〈x∗, Bν̄〉)
}
> 0.

From the above inequality and (32), it follows that

sup
y∈Y

f(x∗, ȳ∗) + 〈x∗, Ax∗〉1/2

g(x∗, ȳ∗)− 〈x∗, Bx∗〉1/2
≥
f(x∗, ȳ∗i0) + 〈x∗, Ax∗〉1/2

g(x∗, ȳ∗i0)− 〈x∗, Bx∗〉1/2
> F (z̄). (45)

By the strong duality theorem (Theorem 13), it follows that

sup
y∈Y

f(x∗, ȳ∗) + 〈x∗, Ax∗〉1/2

g(x∗, ȳ∗)− 〈x∗, Bx∗〉1/2
= F (z̄). (46)

Thus, inequality (46), contradicts (45). Therefore, x∗ = z.
Hence, the proof is complete.
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The follwing example illustrates the significance of Theorems 6-14.

Example 15. Consider the following nondifferentiable generalized minimax frac-
tional programming problem:

(P1) inf
x∈R

sup
y∈Y

{
φ(x, y) :=

f(x, y) + 〈x,Ax〉1/2

g(x, y)− 〈x,Bx〉1/2

}
subject to h(x) ≤ 0,

where Y = [0, 1], A = B = 1. The functions f, g : R × R → R and h : R → R are
defined as

f(x, y) = x2 + x+ y2, g(x, y) = 2x+ 1,

and
h(x) = 1− x.

Note that the set of all feasible solutions is X = {x ∈ R : 1−x ≤ 0} = [1,∞). The
sets Y (x) and K(x) are given as

Y (x) = {1} and K(x) = {(1, 1, 1)}.

Now, for all (x, y) ∈ X × Y = {(x, y) : x ≥ 1, 0 ≤ y ≤ 1}, we have

f(x, y) + 〈x,Ax〉1/2 = x2 + x+ y2 + |x| > 0

and
g(x, y)− 〈x,Bx〉 = 2x+ 1− |x| > 0.

Now, we will find a minimax solution of (P) for x∗ ∈ [1,∞), we have considered
the following cases.

Case 1 Let x∗ = 1. From (3)-(8), we get x∗ = 1, u = 1, v = 1, k0 = 2 and
µ∗ = 2. Hence, necessary optimality conditions (Theorem 6) are satisfied at x∗.

Case 2 Let x∗ > 1. From (4)-(8), we get u = 1, v = 1, k0 = x∗+1 and µ∗ = 0.
Putting these values in (3), we get x∗+1 = 0, which is not possible for any x∗ > 1.
Hence, necessary optimality conditions (Theorem 6) are not satisfied for x∗ > 1.

Define
Φ(x, y, (z, ρ)) = 〈z, x− y〉+ ρ‖x− y‖2.

We can check that the functions f(x, ȳ)+〈x,Au〉 = x2 +x+ ȳ2 +xu and −g(x, ȳ)+
〈x,Bv〉 = −2x − 1 + xv are (Φ, ρ)-invex for ρ = 1/2 and (Φ, ρ̄)-invex at x∗ for
ρ̄ = −1/8 on X, respectively, and h(x) is (Φ, ρ∗)-invex at x∗ for ρ∗ = −1/8 on X.
Furhtermore,

t∗(ρ+ k0ρ̄) + µ∗ρ∗ = 0.

By setting s = 1, t∗ = 1, ȳ = 1, u = 1, v = 1, k0 = 2 and µ∗ = 2, the sufficient
optimality conditions (Theorem 7) are satisfied. Hence, x∗ = 1 is the optimal
solution for (P1).

Now, we will formulate the first dual model for (P1).

(DI ′) max
(s,t,ȳ)∈K(z)

sup
(z,µ,k,u,v)∈Ω1(s,t,ȳ)

k,
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where Ω1 denotes the set of all (z, µ, k, u, v) ∈ R× R+ × R+ × R× R satisfying

2z + 1 + u− k(2− v)− µ = 0,

2z + 1 + zu− k(2z + 1− zv) ≥ 0

µ(1− z) ≥ 0,

u2 ≤ 1, v2 ≤ 1.

We can verify that, Ω1 = {(z, µ, k, u, v) : 0 ≤ z ≤ 1, 0 ≤ µ ≤ 4, 0 ≤ k ≤ 2, −1 ≤
u, v ≤ 1}.

We can check that the functions f(x, ȳ) + 〈x,Au〉 = x2 + x + ȳ2 + xu and
−g(x, ȳ) + 〈x,Bv〉 = −2x−1 +xv are strictly (Φ, ρ)-invex for ρ = 1/2 and strictly
(Φ, ρ̄)-invex at x∗ for ρ̄ = −1/8 on X ∪prR Ω1(s̄, t̄, ȳ∗), respectively, and h(x) is
strictly (Φ, ρ∗)-invex at x∗ for ρ∗ = −1/8 on X ∪prR Ω1(s̄, t̄, ȳ∗). Furhtermore,

t∗(ρ+ k0ρ̄) + µ∗ρ∗ = 0,

and

sup
y∈Y

f(x, y) + 〈x,Ax〉1/2

g(x, y)− 〈x,Bx〉1/2
≥ k, ∀x ∈ X and k ∈ Ω1(s, t, ȳ).

Hence, the weak duality conditions (Theorem 8) are satisfied.
By setting s̄ = 1, t̄ = 1, ȳ∗ = 1, ū = 1, v̄ = 1, k̄0 = 2 and µ̄ = 2, the strong

converse duality conditions (Theorem 9) and strict converse duality conditions
(Theorem 10) are satisfied. Hence, z̄ = x∗ = 1 is the optimal solution for (P1)
and

sup
y∈Y

f(z̄, ȳ∗) + 〈z̄, Az̄〉1/2

g(z̄, ȳ∗)− 〈z̄, Bz̄〉1/2
= k̄.

Now, we will formulate the second dual model for (P1).

(DII ′) max
(s,t,ȳ)∈K(z)

sup
(z,µ,u,v)∈Ω2(s,t,ȳ)

F (z),

where F (z) = sup
y∈Y

f(z,y)+〈z,Az〉1/2
g(z,y)−〈z,Bz〉1/2 and Ω2 denotes the set of all (z, µ, u, v) ∈ R ×

R+ × R× R satisfying

(2z + 1− |z|)(2z + 1 + u)− (z2 + z + 1 + |z|)(2− v)− µ = 0,

µ(1− z) ≥ 0,

u2 ≤ 1, v2 ≤ 1, |z| = zu, |z| = zv.

We can verify that, Ω2 = {(z, µ, u, v) : z ∈ (−∞, −1−
√

10
3 ] ∪ [0, 1], µ ∈ [1, 4], u =

v ∈ {−1, 0, 1}}.
We can check that the functions f(x, ȳ) + 〈x,Au〉 = x2 + x + ȳ2 + xu and

−g(x, ȳ) + 〈x,Bv〉 = −2x−1 +xv are strictly (Φ, ρ)-invex for ρ = 1/2 and strictly
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(Φ, ρ̄)-invex at x∗ for ρ̄ = −1/8 on X ∪prR Ω2(s̄, t̄, ȳ∗), respectively, and h(x) is
strictly (Φ, ρ∗)-invex at x∗ for ρ∗ = −1/8 on X ∪prR Ω2(s̄, t̄, ȳ∗). Furhtermore,

t∗{(g(z, ȳ)− 〈z,Bz〉1/2)ρ+ (f(z, ȳ + 〈z,Bz〉1/2)ρ̄)}+ µρ∗ ≥ 0, ∀z ∈ [0, 1].

and

sup
y∈Y

f(x, y) + 〈x,Ax〉1/2

g(x, y)− 〈x,Bx〉1/2
≥ F (z), ∀x ∈ X and z ∈ Ω2(s, t, ȳ).

Hence, weak duality conditions (Theorem 12) are satisfied.
By setting z̄ = 1, s̄ = 1, t̄ = 1, ȳ∗ = 1, ū = 1, v̄ = 1 and µ̄ = 2, the strong

converse duality conditions (Theorem 13) and strict converse duality conditions
(Theorem 14) are satisfied. Hence, z̄ = x∗ = 1 is the optimal solution for (P1)
and

sup
y∈Y

f(z̄, ȳ∗) + 〈z̄, Az̄〉1/2

g(z̄, ȳ∗)− 〈z̄, Bz̄〉1/2
= F (z̄).

6. CONCLUSIONS and FUTURE DIRECTIONS

In the paper, a new class of nonconvex nondifferentiable generalized minmax
programming problems (P) has been considered. The sufficient optimality results
have been established for such nonsmooth optimization problems under hypothe-
ses that the functions involved are (Φ, ρ)-invex. Further, two dual models (DI) and
(DII) have been formulated for the considered nondifferentiable generalized mini-
max programming problem (P) and several duality results have been established
between the primal optimization problem and its duals also under (Φ, ρ)-invexity.
Note that, in the light of Remark 2.5, the results of the paper extend and gener-
alize several results of Lai and Lee [29], Lai et al. [30], Liang and Shi [32], Liu
and Wu [33], Liu et al. [35] and Mishra et al. [37, 40]. Results of the paper may
be extended for real valued nondifferentiable locally Lipschitz functions on real
Banach spaces using the tools of Michel Penot subdifferentials or convexificators,
which will orient the future research of the authors.
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