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OPTIMUM DESIGN OF STEEL TRUSSES

Keti STASA
Polytechnic University of Tirana, Albania

Abstract: A procedure is presented for optimum design of steel trusses with
constraints on stresses, displacements and design variables. Buckling is considered in
the compression stresses constraints. The procedure intends to solve practical
problems and it complies with the Albanian Steel Structural Design Code KTP-10-78,
Optimum design of trusses is formulated as a problem of nonlinear mathematical
programming and it is solved by the optimization method of Sequential Linear
Programming with Move Limits. The difficulties introduced by the buckling
constraints are successfully overcome. Due to the use of some approximation concepts,
the procedure is presented computationally as an efficient one. Based on the results of
some examples, useful recommendations are given for a favourite initial design of the
procedure and also for the move limits parameter,

Keywords: Steel trusses, non-linear programming, optimum design.

1. INTRODUCTION

- Based on the fact of not having a single best optimization method for steel trusses
(4], it would be of interest to have a package of some optimum design procedures by
the most efficient optimization methods,

The presented procedure intends to enter such a package solving practical
problems and complying with the Albanian’ Code KTP-10-78 [6]. The procedure
presents the optimum design of steel trusses formulated as a nonlinear programming
problem with constraints on stresses (including buckling), displacements and design
variables, and solved by the optimization method of sequential linear programming
with move limits [1], [4], [10], [11].

Trusses are assumed to be with fixed topology and geometry, and subjected to
constant joint loads.
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2. DESIGN VARIABLES

The design variables in the presented procedure of the optimum design of steel
trusses are the cross-sectional areas of truss members. Each cross section is assumed
to be described by a single design variable.

In fact, considering buckling, the cross section should be described at least by two
design variables, namely, the area and the radius of gyration corresponding to the
maximum slenderness ratio of the member. But, because of doubling the design space
dimension, the use of these two kinds of design variables is computationally
inconvenient.

So, to be efficient from the standpoint of computational effort through the use of
a single design variable for each cross section and to consider buckling too, it is
assumed that the area and the radius of gyration are two dependent properties of a
cross section. Such a dependence can be described by empirical formulae established
from discrete data of standard steel sections [2], |3], [4], [7].

The empirical formula used here is
Fmin = )G‘JZ (1)

where r_ ;. is the cross-sectional minimum radius of gyration; A is the cross-sectional
area; f is a parameter determined by the least squares method. Equation (1) can be
used even when the radius of gyration corresponding to the maximum slenderness
ratio is not minimum, This is possible due to the use of the modified buckling length
Lo (21,

Loy = max (K [, Ky Eﬂy} (2)
that determines the maximum slenderness ratio 4,
e tom_ (3)
Tmin

where [,,, [, are the buckling lengths of the truss member in the planes of buckling
having as neutral axis X and Y principal axes of the cross section, respectively; K, Ky
are parameters relating the radii of gyration of the cross section r,, L (Figure 1) and
I min 88 follows:

(a) “U (b)

Figure 1. Cross sections of truss members
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min and =rmin
K, "y X, (4)

K, in the case when r_, = r, and K, when r ,  =r, are determined from the

discrete data of standard steel sections as the mean value of the quantities r_. / r, and

. min
Tmin/ Ty» Yespectively [2].

3. FORMULATION OF OPTIMUM DESIGN PROBLEM

The optimum design problem of trusses with constraints on stresses (including
buckling), displacements and design variables is formulated as follows:

Problem P
Find { X } such that

W=y{l}T{X} —— min (5)
subject to

{D*}<tD, )< (DY), k=1,.. K (6)

fo"}s{g)s{a’ L k=1,.. K (7)

(XLy<(Xy<s{XxUy (8)

where { X } is the vector of design variables, cross-sectional areas; W is the objective
function representing the truss weight; y is steel density; { [ } is the vector of members
lengths; { D, }, { g, } are the vectors of constrained joint displacements and members
stresses under the k-th load condition, respectively, { D}, { DV}, { &}, { 6V}, { XE ),
{ XU} are the vectors of lower and upper bounds on constrained joint displacements,
members stresses and design variables, respectively; K is the number of load
conditions.

The elements of { D, } and { g, } are usually implicit nonlinear functions of { X },
resulting with implicit nonlinear constraints for structural behavior (Equations (6)
and (7)). For any given value of { X } the corresponding { D, } and { g;, } are assumed
to be computed using the displacement method of structural analysis.

The only nonconstant bound vector of problem P is { ¢~ } and is defined according
to the Code KTP-10-78 as follows,

ock=-p,mR; e=1,.. ,E (9)

where oﬁ' is the e-th element of { & }; @, is the buckling factor of the e-th member;
m is the factor of service conditions; R is the design strength of steel; E is the number
of truss members.

¢, is determined for any given steel in terms of the maximum slenderness ratio of
the e-th member 2, by means of formulae established from data of the respective
tables of the Code KTP-10-78. Based on Equations (1) and (2), 4, is taken as
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[
A, = om-e (10)
X,
where [ is the modified buckling length of the e-th member; X is the cross-

sectional area of the e~th member.
{ 6V} is defined as

of =R; e=ly,B (11)

where o is the e-th element of { oV }.

e

To comply with the following requirement of the Code KTP-10-78

A, S[A]; e=1,.. .E (12)
and based on Equations (1) and (2), { X* } is defined as follows:
XE-—max(A.;,,A;); e=1,..,E _ (13)
: 2
A = o =g (14)
£ [ plA) ]

where X;" is the e-th element of { X% }; A_ .. 1s the cross—sectional minimum area; [ A |
1s the limiting slenderness ratio for compression or tension member by the above Code.

Problem P of Equation (5) through Equation (8) is presented as a nonlinear
programming problem.

4. OPTIMIZATION METHOD

The optimization method of sequential linear programming with move limits [1],
(4], [10], [11], used here to solve problem P, consists in replacing this problem by a
sequence of linear programming problems PA whose solutions converge to that of
problem P. The formulation of problem PA is based on:

1. The use of explicit linear approximation of structural behavior constraints,
based on the first order Taylor series expansion of a function f( { X'} ) about a

given point {E} ;
2. The use of move limits.
3. The use of the constant vector of lower bounds on members stresses {3"}

computed as { o }at the point {E} :

So, problem PA for a given point { X }is formulated as follows:
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Problem PA
Find { X } such that

W=y{l}T{X} —— min (15)
subject to:

{DL}S{E&}‘i*[vI:);,]{{X}—{i})S{DUI; k=1 0K (16)

(TE < (T )+ VT 1 U X - (XD <t} k=1, K an

{ XLy X)=qxY) (18)

{f}-mf}s{x;g{f}ﬂaf} (19)

where {ﬁk }, {gk } are the values of { D, } and { o | at the point {.’_{}; [\TE;, ], [vﬁ., ],
are the matrices of first derivates of displacements and stresses under the k-th load

condition, respectively, with respect to design variables computed at the point (X};
(AX }is the move limits vector at the point { X}, defined as
(AX}=C{X) (20)

where C is the move limits parameter takenas C = 0.2 or C = 0.1.

The additional constraints on design variables of equation (19) and the above
values of parameter C are used to ensure the assumed approximations about

structural behavior constraints and the vector { o} to be adequate.

In addition, to solve efficiently problem PA the following approximation concepts
[2], [4], 5], [8] are used:

1. Design variable linking to reduce the design space dimension.

2. Noncritical constraints deletion.

5. OPTIMUM DESIGN PROCEDURE

According to preceding discussions, an iterative optimum design procedure of
trusses is constructed (Figure 2).

The initial design {X }of each iteration cycle can be or not a feasible design of

problem P. Scaling of the design [2], [4], [5] leads to a constrained feasible design {(X)

which is the best design on the line through the points {O} and (X} called the design
line, and is defined as,

(X)=S{X}: S>0 (21)
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where S is the scaling factor { X } which will be discussed later.

| {:TI}

STRUCTURAL ANALYSIS at {X}

L

SCALING OF THE DESIAON {X} =— {X%}

L

Yo = )
.—4cor-rvznasm::£ ? > (x}) = {x)orPT-PA

lna T
STRUCTURAL REANALYSIS at {X}

L
SENSITIVITY ANALYSIS at {x}
FORMULATION AND SOLUTION OF PROBLEM PA al 'r‘\

L

{x }oPT-PA
L

I

{x}oPT-P = {;:} '

Figure 2. General flow chart of optimum design procedure

Based on truss properties, the structural reanalysis at { X} is efficiently carried
out as follows,

= 1 — = R
{Dk}'“-g{ﬂk}; {Ukl='§lak}; k=1,...,K (22]

where 15;‘}, {I_)k}, {o% }, {"?ik} are the values of {D,} and {0} at {}_{] and {}_L’},
respectively.

The sensitivity analysis at {jf- }, used to determine the matrices [?51,] and

[V 3;. ], is carried out by the behavior space approach [3], [4].

The convergence criterion used here is:
W, =W,
Wi

<e or t<tV (23)
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where ¢ is the index of the current cycle; W,, W,_, are the truss weight at the (-th and
(£-1)-th cycles, respectively; ¢ is a predetermined tolerance taken here as & = 0.01;
tY is the upper bound on the cycles number taken as tY = 20,

6. SCALING FACTOR

The scaling factor of { X} for all the constraints of problem P is defined as
S = max (S,) forall: (24)

where S, is the scaling factor of { X ) for the constraints on such a quantity as a joint
displacement, a member stress, or a design variable.

While it is simple to compute the above scaling factors of (X} for the constraints

bounds [2], [4], [5], the difficulty presented for compression stresses constraints
(buckling constraints) is overcome as subsequently.,

Scaling the design { X } only for the constraint on the compression stress g, (the

e-th clement of { o, }) by means of an iterative search procedure, the obtained point

{ X}, where the above constraint becomes active, gives

all

Sloy,) === (25)

e

1

=

where S(g,,) is the scaling factor of { X ) for the constraint on AR X,, X, are the e-th
elements uf{f} and {J-f}.
As it is certified, {f} lies on the design line of {fl in the interval of the points

{)_(} and {f};, where the last point is

{fif=3f{jf-}; S;=;jf (26)

e
where o, 'Ef' are the e-th elements of { o} l‘and [crL ) at {J-f ).

The iterative search procedure used to find { X} at a given cycle tests for being

{f} the point {ff} in the middle of the interval of the points { X, } and { X, }. This
interval has the following properties:

1. It contains {f} and lies in the interval of the points {X) and (X ), Where
the last interval is that of the points { X, } and { X, } at the first cycle.
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2. Unless the first cycle, the distance between the points { X, } and { X, } at a
given cycle is half of that distance at the preceding cycle.

The condition for being (X} the point {5( } is as follows:

Cr{.'ft & fe =
“Z=1%¢;, oO4=—"0, (27)
oﬁ' ek xc ek

-

where o, af are the e-th elements of {o,} and {a¥} at {}:’}; X, is the e-th

element of {)E }; €1s a predetermined tolerance taken as ¢ = 0.05.

The above procedure is computationally efficient one,

7. EXAMPLES

The examples of T'1 and T2 trusses (Figure 3) were solved using the computer

program ST-OPT, an implementation of the optimum design procedure presented
here,

Two kinds of the initial design of the procedure are considered
(X)={Anin} and {X}={X}srap (28)

where {A . } is the vector of cross-sectional minimum areas of truss members;
{ X Jgr_ap 18 the optimum design by the optimization criterion of the feasible most
stressed state and/or the feasible biggest slenderness ratio state, an optimum design
obtained using the computer program ST-AD [9].

While the move limits parameter C is assumed to be in the beginning of the
procedure C = 0.2 and then C = 0.1, four cases of the number of cycles where C = 0.2
are considered, taking this number as 0, 2, 5, and 10. For each truss example, from the

results taken for the above cases, only the results of the case of minimum weight truss
are reported here,

Truss members consisting of two equal leg angles (Figure 1 (a)) and the material
of Steel 3 with R = 2100 daN/em? are used.

In addition, unless the joints 7 and 11 of T2 truss, all the other joints of 7'1 and T2
trusses are assumed to be tied out of the truss plane.
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11 Truss

Bounds on displacements in X and Y
directions at the joints
lto4: +lem

T2 Truss
Bounds on displacements in Y
directional at the joints 5, 7, 9, 11,
13; +4cm

Yi{cmi

(a)

(6) 5 (Bles (10) 7#(12) g (14) 7 (16) & (12L& Xicm,

(2)er (4) 2

(b)

Figure 3. Examples: (a) T'1 truss; (b) T2 truss

Table 1. Members groups for T2 truss

9-16
19, 22, 34, 37

25, 28, 31

17, 18, 38, 39

20, 21, 23, 24, 35, 36, 38, 39
26, 27, 29, 30
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LOADS (daN)

X

~ INITIAL
DESIGN

(X}

4,6,8,10,12, 14, 16

Table 3. Results for 71 truss _
MOVE LIMITS

PARAMETER

fort <10
and
C=101
fort > 10

(t = index
of cycles)

4,6,8

PROGRESSION

OPTIMUM
DESIGN

WEIGHT
(k
2145.81
1916.82
1896.86
1750.38
1681.25
1709.88
1620.77
1600.28
1571.07

15571.44

MEMBER AREA
(cm?)
98.56
15.18

105.31
01.21
15.18
15.18
62.76
76.82
84.29
81.26

C=02
fort<2
and
C=0.1
fort > 2

1708.75
1606.75
1566.49
1548.96
1532.24

m.amm-—gtnm-qmcn.r-mb:w

120.62
15.51
101.43
54.49
10.34

NOTE: { X }s1_ap
is taken after 9 cycles

14.43
61.77
68.70
72.84

S w0 eSO 0N~

32,73
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Table 4. Results for T2 truss

INITIAL MOVE LIMITS WEIGHT OPTIMUM
DESIGN PARAMETER PROGRESSION DESIGN
(X G CYCLE | WEIGHT | MEMBER | AREA
(kg) (cm?) |
1 4957.88 1 [ 6072
C =02 2 4619.01 2 83.82
Vaan fort <5 3 4356.18 3 22.25
and 4 4295.42 4 22.25
C=0.1 5 4169.23 5 50.06
fort > 5 6 4167.92 6 30.44
7 22.25
1 4101.07 1 74.58
2 4050.34 2 67.77
{X }sr_ap C=01 3 4040.31 3 12.17
4 1217 |
NOTE: { X }sr_ap 5 47.08
is taken after 2 cycles 6 32.44
Lt oot o o P o |l g v (b i P 3 ]

8. CONCLUSIONS

The presented procedure of minimum weight design of steel trusses with
constraints on stresses (including buckling), displacements and design variables, a
practical procedure complying with the Albanian Code KTP-10-78, through the use of
approximate concepts is computationally efficient procedure. The difficulties
introduced by the buckling constraints are successfully evercome.

A favourite initial design for the presented procedure is obtained by the computer
program ST-AD, leading to the minimum weight design (global optimum) with less
computational effort.

The move limits parameter C is recommended being taken C = 0.2 in the
beginning of the procedure for 5 to 10 cycles for the initial design (A, } and up to 2
cycles for { X }gp_ap: and then C = 0.1.
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