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SUPPLY CAPACITY, DEMANDS AND BUDGET RESTRICTIO
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Abstract: Let G = (V, E) be a connected graph expressing a distribution network. The
elements of DV represent demand centres, while ScV contains the candidate
supply centers. To each node v; € D, we associate a demand d, and to each element v, of
S the couple (e, ¢;), where e and ¢; are the set up cost and the capacity of U,
respectively. Furthermore, the distance for every arc (v;, v;) € E and the transportation
cost of the product unit are given. In this paper an afgarithm i1s developed which
determines a subset of S in order to satisfy the demands with & minimum distribution
cost, so that the total set up cost of supply centers does not exceed a given budget.
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1. INTRODUCTION

The Location-allocation problems are connected with economic activities,
therefore this class of problems has a great importance in real life cases of applications.
Often the notion of transportation is involved with this type of problems.

The Transportation = Location problem has been formulated by Cooper [1], [2].
The subject presented in this paper belongs te the family of transportation - location
problems [3), [5]. Specifically, we confront the problem of selecting a subset of locations
to install supply centers in order to minimise the total transportation of product cost
from a subset of supply centers to the given demand locations taking into account the
following three restrictions:

i) the total setup cost of supply centers must not exceed a given budget
i) the capacity of the candidate supply centers

iii) satisfaction of the required demands
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2. DEFINITIONS - NOTATIONS

The distribution network is expressed by a connected graph G = (V, E), where
V = {vy, vy, ..., v, } contains the nodes of the graph, which corresponds to the demand
and candidate supply centers, while E comprises the edges of G, that are the pairs
(v;, uj) of elements of V which are directly connected.

The subsets of V which contains the demand and candidate supply centers are

denoted by D and S respectively. The cardinality of D is symbolised by » and this of S
by s.

To every demand node v; € D corresponds a demand quantity d; and to every
element v € S the pair (Ej' ej), where ¢; expresses the product quantity capacity of
v; € S and e; the corresponding setup cost.

The distance of an edge (v, uj] € E and the corresponding transportation cost of a
product unit using this edge are symbolised by a;; and L respectively. Finally, let B be
the disposed capital in order to establish supply centers.

Let X = [x,, x,, ... x,] is a bivalent vector , where x; € {0, 1}. A subset Q(X)c S is
associated to vector X such that

v; €Q ifandonlyif =x;=1
vj €Q ifandonlyif x;=0
Let T(X) represents the distribution transportation cost which corresponds to the

subset @ associated with X, taking always into consideration the posed restrictions.
Thus, our problem can be formulated as follows

minimise z=T(X),Xe X (1)
under

ieix,- <B (2}

i=1

D cixi2 ) d; (3)

i=1 =1

X'represents the family of all vectors which satisfies restrictions (2) and (3)

3. THE ALGORITHM

The presented algorithm is a tree search implicit enumeration procedure [8].
Prior to its establishment, two important remarks must be noticed.

1) A vector X is minimal with respect to (3), if and only if its associated subset
Q(X) is not contained in any subset Q'(X") € S for which X satisfies relation (3).

A minimal vector X of relation (3), which satisfies relation (2), may not give an
optimal solution to objective function (1).
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1) A vector X is maximal [4] with respect to relation (2), if and only if its
associated subset Q(X) does not contain any subset Q'(X") < Q(X) for which X satisfies
relation (2).

An optimal solution is a maximal vector X of relation (2), which satisfies (3).

The above reasoning comes from the fact that, if the optimal solution is a subset
Q'(X") ¢ Q(X), this solution will be detected after the application of a procedure which
solves the transportation problem [6], since a node v; € @X) ,which is not in the
optimal solution, will result to a null quantity of supply at this node.

Thus, the proposed algorithm first generates a maximal vector X [4] with respect
to relation (2), then it examines if X satisfies relation (3) and subsequently it computes
the corresponding value of T(X). The algorithm retains during the process the
minimum value found so far of the distribution cost T(X) and its associated vector,
yielding the optimal solution at its termination.

The previous discussion is incorporated in the steps of the algorithm presented
after the interpretation of its basic items.

S, : Subset of V, the elements of which are not contained in a partial
solution.

An element s; ¢ S, is comprised in a partial solution of the tree

search.
k: Cardinality of S,
ESk: Sum of the setup costs of a partial solution, i.e. ESk= ) e;

SJ.'ES‘
CSk: Sum of capacities of a partial solutioni.e. CSk= ) ¢;
"j ES;
A Sum of the demand quantities
X":  Vector associated with the best solution found at a certain stage
w; Sum of the setup costs of all the candidate elements to augment the
current subset 5.
Stepl (Initial conditions)
Readthe s, r, B, ¢, ¢; Vie{1,2,..,s} and d; Vie({l,2,..,r}.
r
Set A=>d;, k=0, ESk=e1, ECk=¢1,i=0, S§)=9, z2=.

=1 .

B 8
Vjels, s-1,..,2}) set Wi, =w; + e, ESk = Eeji CSk= ch
J:l j=l

Set i = i+1 and proceed to next step.
Step 2 (Branching— feasibility test)

If i > s then goto step 4
elseset k =k+1,s, =1, S, =8, v {s,}, ESk= ESk-e;, CSk = CSk—c;.
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If ESk > B then set i = i+1 and repeat step 2
else

if CSk < A then goto step 4

else proceed to next step.

Step 3 (maximal vector detection, computation of T(X), optimality test)
Vs; €S, set %, =0 else set %, = 1 and find T'(X).
If z>TX) then set z = T(X), X' X. Proceed to next step.

Step 4 (Backtrack — maximality test and termination test)
Set j = s,, ESk = ESk+e CSk = CSk+c k = k-1,
If k<0 then write z, X and stop
else
if ESk + w; < B then repeat step 4
else set ¢ = j+1 and goto step 2.

4, NUMERICAL EXAMPLE

To get a taste about the useful application of the proposed algorithm a numerical
example is next exposed.

Let G = (V, E) be a distribution network as illustrated in Figure 1.

Vel B

Y1

Figure 1.
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The following data concerning the capacity, setup cost and demand quantities
have been generated randomly

C=1[284 230 215 214 171 54 47 24,
E=[134 121 117 117 104 58 54 39],

D=[25 22 46 35 24 28 11 10},

ifi

We set B=E-13-—=24B.

¢; € 10,300 ]
e; € [ 30, 150 |

8
d;€[10,50], A=) d; =201

Without loss of generality we assume that the transportation cost of a product
unit per distance unit is one, and that S = D = V. Therefore the transportation cost
from any v; € S to any v; € D is the value of the shortest path between these nodes.
The obtained results using the above data is shown in Table 1.

Table 1.

1 5178 1593 197 242 64
2 5,6, 8 1785 201 249 72
3 5,6,7 1315 216 272 53
4 4,7,8 1371 210 285 55
5 4,6,8 1096 214 292 44
©O) 4,6,7 1087 229 315 43
i 4,5 1373 221 385 55
8 3,78 1671 210 286 67
9 3,6,8 1260 214 293 51
10 3,6,7 1307 229 316 52
11 3,5 1341 221 386 54
12 3,4 1546 234 429 62
13 3,17,8 1612 214 301 65
14 2.6, 8 1566 218 308 63
15 2,6,17 1304 233 321 52
16 2,5 1723 225 401 69
17 2, 4 1741 238 444 70
18 2,3 1681 238 445 67
19 1,17,8 2151 227 355 86
20 1,6,8 2486 231 362 100
21 1,6,7 1779 246 385 71
292 1,5 2210 238 455 88

optimal
solution



192 C.C.Tsouros, M. Satratzemi / Optimal distribution centers
The squared nodes of Figure 1 indicates the optimal locations of supply centers.

The distribution of the products which corresponds to the optimal solution (serial
number 6) is performed according to Table 2.

Table 2.

Dbul.ed
HLT] t.il

The last column of Table 1 expresses the percentage deviation between the
corresponding to each line distribution cost and the worst obtained one (serial number
20). As we can observe the distribution cost of the optimal solution is less than the half
cost of the worst solution, which might be an unplanned selected solution.

Another significant remark is that the total supply capacity of the optimal
solution is smaller than the worst one, and that the solution which corresponds to the

minimum capacity (serial number 1) is 36% far from the worst solution and 21% far
from the optimal one.

5. CONCLUSIONS

The computation of T(X) and the corresponding supply distribution scheme of
step 3 was accomplished by routine HO3ABF available in NAG Library. The proposed
algorithm is an exponential [7] time algorithm due to the procedure which generates
the maximal vectors. However, in practical situation the number of the involved
variables and the relation between the parameters of inequality (2) permits the
application of the stated algorithm successfully.
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