Yugoslay Journal of Operations Research
4 (1994), Number 2, 149-157
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Valentin E. BRIMKOV

Institute of Mathematics, Bulgarian Academy of Sciences,
1113 Sofia, Bulgaria

Abstract: The main result of the paper is a quasi-polynomial algorithm for generating
the extremal points (vertices) of the Knapsack Polytope. The complexity of this
algorithm (for fixed dimension) is better than the complexity of all the known quasi-
polynomial algorithms for this problem. The idea is similar to this one used by Hales
and Larman [2]. Our improvement is based on obtaining of new upper bounds for the
number of the vertices of the Knapsack Polytope.

The algorithm can be applied directly to solve the Knapsack Problem with arbitrary
convex objective function.
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1. INTRODUCTION

The Knapsack Problem
(KP) maxcx  subjectto axs<b, xeZj

where a,ceZ!, beZ, is one of the most intensively explored combinatorial
optimization problems, It is a model of important real problems and, at the same time,
because of its simplicity, is often used as a model one for searching and testing of new
ideas und approaches for solving other NP-hard problems. Moreover, some algorithms
for more general integer programming problems use algorithms for KP as a
subroutine.

The KP is among the NP-hard problems for whose solving most notable successes
are reached: pseudopolynomial algorithms [6), fully polynomial approximation schemes
(3], high effective heuristic algorithms [7], etc. Amidst the basic theoretical
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achievements the so called quasi-polynomial algorithms can be indicated, whose
complexity is polynomial if the problem's dimension n is fixed.

An interesting and important object of research, connected to the KP is the
knapsack polytope, defined as a convex hull of all admissible solutions of the problem.
The extremal elements (vertices) of the knapsack polytope are of special importance. It
is clear that a method for generating the vertices is also a method for solving the KP,
even with arbitrary convex objective function.

The main result of this paper is sketched in the last section quasi-polynomial
algorithm for finding the vertices of the knapsack polytope (and, consequently, for
solving the KP), whose complexity (for fixed dimension) is better than the complexity
of all the known quasi-polynomial algorithms.

The algorithm's idea is similar to this one, used by Haies and Larman in [2]. The
improvement is based on obtaining of new upper bounds for the number of vertices of
the knapsack polytope (section 2.2). The bounds are improved bilaterally: by
increasing the logarithm base in the evaluation function, and by decreasing the degree
of this (polynomial) function.

Some of the results are presented in [1].

2. VERTICES OF THE KNAPSACK POLYTOPE

In this section we present some definitions and subsidiary results highlighting the

matter, and obtain new upper bounds for the number of the vertices of the knapsack
polytope.

2.1. DEFINITIONS AND SUBSIDIARY RESULTS

LEMMA 1. If P is an arbitrary knapsack polytope, it can be presented by an inequality

ax <b whose minimal coefficient @, . = min, a, is arbitrary large.

COROLLARY 1. Every knapsack polytope can be given by arbitrary large input
(independently on the dimension of the polytope).

Let us denote Pyla,b)=conv{xeZj:ax<b} and let P be an arbitrary
n-dimensional knapsack polytope. We define a class

K(P)={(a,b):aeZ?,beZ,, GCD(ay,...,a,, b) =1, P=Py(a,b)}

(GCD - Greatest Common Divisor) of all knapsack inputs determining P (obviously,
K(P) is nonempty).

Usually, a concrete (individual) n-dimensional knapsack polytope P is given by a
concrete couple (a,b) € K(P), and it is naturally to evaluate the number of the vertices
by a function of the parameters a, b and n.
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Let N(P) denotes the number of the vertices of a knapsack polytope P. We say
that the function fin,a,b) is an upper bound for N(P), if for every n-dimensional
knapsack polytope P and every (a,b) € K(P) N(P)<fln,a,b).

LEMMA 2. Let n 2 2 be a fixed natural number. Then, for every natural number [ 2n+1
there exist n—dimensional knapsack polytopes with [ vertices.

The proof can be done in constructive way, by induction on n and L.

COROLLARY 2. There is no function f:Z_ —Z_ such that for every fixed n 2 2 and for
every n—dimensional knapsack polytope P to be fulfilled N(P) < fln).

In (2], [8], [9] and [10] bounds are obtained for the number of vertices of the
polytope of Integer Linear Programming Problem P,(A,b) = conv (x e Z":Ax =b |,
where A is a m x n matrix with integer elements, and b is a n-dimensional integer
vector. In particular, for the knapsack polytope, the best bounds are polynomials of
power n of log, (b/a, ), ie. quasi-polynomials. For example, it is shown in [2] that

min

N(Py(a, ) < (logg —2

Emin

)", where a,;,=mina,. (1)
i

Further, we will improve this result.

2.2. NEW UPPER BOUNDS FOR THE NUMBER OF THE
KNAPSACK POLYTOPE VERTICES

First, we will show that the bound (1) can be improved by increasing the base of
the logarithm in the evaluating function.

THEOREM 1. For every n-dimensional knapsack polytope P,la,b) there exists a
positive number &, such that
" b .
N(Py(a, ) <[] [logs, @], where Q= :— tor j=l,m (2
J=1 J
(here and further [ x | denotes the greatest integer in x).
Proor. The idea used to prove (1) [2] is the following: construct in an appropriate way

a set of ]—[::I [log; @; | boxes covering P,(a, b), and show that each of them contains

not more than one vertex of Pyla,b). We will show here that the sizes of these boxes
can be enlarged, preserving the property “not more one vertex in a box".

Let /3 be a set of boxes with length of the edgings — powers of 2 + ¢ where £ > 015
a parameter:

"
pe={xeR!:xe[]l,.,kj-integers,1<sk;<N; for j=1,..n]
=17
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(here ]I denotes Cartesian Product), where Nj' (j=1,..,n) are such that

S U A :
e <b/a, <Xpyes ij. =[*’:k;-1-xk; )y Xys =2+’ ", x,=0 (if £=0 we obtain the
boxes from [2]). We have
4b :
Pyla,b)c |JB, Njsllogg,,—1 J=1,...,a.
Bep* a;

It is enough to show that there exists £ > 0 such that every box of ¢ contains not

more than one vertex of P,(a, b).

Let us suppose the obverse, ie. for every &£>0 there exists a box

B=[]_, I,. p® (for some set of numbers k¢ with 1<kf<N?), containing two
j=1 "k J J J

vertices v and w of P,la,b). Because the boxes are "open from the right", v,

1

w_,:e[?-:»g}k;' for j=1,..,n. Now, following [2], we consider the hyperplane

H = {xeR":ax=>5}. Let u be the normal vector to H, directed to the halfspace non-
containing P,(a, b), and let « € R be such that ux = afor allx € H. Let uv <uw. We will
show that for some & > 0 the vector 2w - v € P,(a, b). Really, 2w - v is integer, and from
uv < a, uv<uw follows (2w - v) u € a. It remains to show that for some £> 0 ij —y;2

k-1

0 is true for all j = 1,..,n. Having in mind that v; <[(2+&) ], we consider two

cases:

1. Let w;=(2+ &% be integer. Setting m:= kf — 2, we obtain

2w;=2(2M + i M=l o} e B) = QAL L i e 4 o " S o
J 1 1 m-—1
U__f s[{2+£]m+] ]=[2m+1 +[Iﬂ:1]2ms*'”+(fﬂ+1]2{," +Eﬂl+l ]
m

Then 2 wj=v;22w;~| (2+&™*1 ]2 0 if, for example,

[m+1)2"‘£+--- +[m+1)2£’" e P |
1 m

which is true for £ enough small (let us mention also that m is restricted by a number

not dependingon ¢, e. g m=~k§-2< Nj-2x< NE -2<logg(4b/a;)-2 forj =1, ... ,n).

20 w;:tl2+¢:)kjv2.then wj21{2+zjk:_2]+1.Fnr m:=kj -2 we have
2w;-v;22((2+™ [+)-[(2+"™ |=

2+2( 2" +eAi(e,m) )= [2" + oAy (6,m) ] =250
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for small enough £ (it is set Aﬂﬁ;ﬂ)::(?]?"'l+(I;]2""2£+-“+£""1.

1
Ayls, mJ:=(ml+ )2”‘ +[m2+1]2""15+---+s’" ).

So we received that for small enough &> 0 v and w are points of P,(a, b). Then,
for some such & we obtain w=1/2 (v + (2w -v)), i.e. w is not a vertex of Pyla,b) -
contradiction.

In addition, we will mention a sufficient condition for £ in order (2) to be the case.

THEOREM 2. (2) is true if

£< : 5 oy vg=1ml
0 _ JH
(Nj 1)] 3 ]

The proof is based on the following:

mn

LEMMA 3. The function f :{1,..,m} = Z_, ftk}:(!.

]2""" (1 = natural number) has

a maximum for k=[m/3 ]

Let us also mention that <1 (fors=1,n=2a,=4,0a,=5,b=47, the box
B=[3,9)x[3,9) contains two vertices v'V) = (3,7) and v'*) = (8,3) of P,(a,b) ).

The rest of this section gives a proof of the following:
THEOREM 3.
N(P,(a,b)) <C(n) [ log, @ i (3)
where @ = 4b/a,, and C(n) is a constant for fixed n.

Proor. First, we will modify the method for generating the set of boxes, covering
P,(a,b). For this purpose, let us define n sequences of rational numbers

(1) y w (n) =
{IJ }J'—_.ul"#{'xi }Jﬂu

where xé‘”=b£uk, x}“=(bfa,,)2'-"' for k=1, M5 = 1,2 ...
For each of these sequences we determine an integer P, with Uf:x}f.:}cl.

xg"‘}_] 20. We have F, = NE -12|log,(2b/ay) ], where NE 1s a number defined as in
the proof of Theorem 1.

Let us consider the set of boxes

n
ﬂ:lxe[_[fkj,kj - integer,1sk; < P;, j=1,...,n)
j=1
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Each of these boxes contains not more than one vertex of Pyla,b). (Really, let
Be g and v,weB be vertices of Pyla,b). Let H={xeR":ax=b} =
{xe R":ux =a) where u is the normal vector to H directed to the halfspace not
containing P, la,b). The vector 2w -v is integer, and if uvzuw then 2w -viusa.

Besides, |w, - v,,lﬁx“'” “h =(b/ag) 2" -"l-lb!a}Z"'-x“" and 2w,-v,=

wy = —wp) 2w, — v —w, |2 :”" 3-’” = 0. Then, w = 1/2 (v + (2w - v)), and hence

w is not vertex of P, (a, b) - cunt.radu:tmn-)

It is easy to check that the point x* = (8/(2"a,), ... b/ (2™a,)) satisfies ax"<b if
and only if m2[log,n]+ 1 for non-integer log,n, and m2[log,n| for log,n -
integer. Let us consider the first case (the another is analogical), and let mn, be the
minimal integer with this property. It is clear that all the vertices of Pyla, b) belong to

the area determined by the inequalities ax<b and a x2b, where @ =(ay,...,8s);

a;=[blay]..[bla;,_;1[bla; ;) [bla,] (i=1,..,n), §=I_I?=1[br'a,- ]. We consider
two cases:

1. ax <b.

For geometrical considerations, it is clear that in the set of boxes f" whose points

are majorated by x° there is no one containing a vertex of Pyla,b) different from
O(x = (x,, ... x,) is said to be majorated by y = (y,, ... ) if x;<y; for i =1,.. n).

The number of boxes in " is l_[ll[ logs(4b/(2™a;)) |. Then, the number of
boxes in '\ " which, eventually, could contain vertices, is

[101082 22 1~ [T logs —o2— )= [ ] logz 22 - ﬂllﬂgz—b-fnul'

; ] ﬂI :l 2"l I'—! u" l‘

nl lﬂgzﬂ— l'n(l 1032—*1 my) =

[ i=1

mﬂ(n[l"gi'—]"' +I_[IIGE2-;IJ-
= a; 1
n-2

mg ( n[lug2—1+ +1_I[lng3?|}+ :tmu'IZ{lugﬂ—]'-qu <

1=] a; =3 (1 i=l a;

4b . n
mﬂ[n ][ log, Pt mg[n ‘2][ log,

Cmin

4b .-
-

min

]““2 +-kmg S

min

Clﬂll lug2

where C(n) is a function of n.
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9. Letnowax 2b.

Let the straight lines through x™ and parallel to the co-ordinate axes intersect the
hyperplane H in the points MV, ., M It is not hard to calculate that if

%x: >x; -M"  for i=1,..,n, (4)

then all boxes, whose points are majorated by 1/2x", do not contain vertices of P,(a, b)

different from O (here x; and Mf” denote the i-th co-ordinates of x° and MY
respectively). We have

b b b b
Ml‘”=lﬂ£1—ilf-|{“T‘+-~ . Tt e m SRR )
duo el S R e
ﬂi a;-l ﬂl-,,l ﬂ"
and x; = e
2”!@0_‘_

After substitution in (4) and some trivial simplifications, we get that the condition
b/la,22(n-1) fori=1,..,n is sufficient one for (4), Under this condition, we can
obtain (3) in analogical manner as in the case 1. Otherwise, (ie. if b/a,;<2(n-1) for
some indexes i), we trivially have the result of the theorem.

Combining the results of the Theorems 1 and 3, we receive
COROLLARY 3. For every n-dimensional knapsack polytope Pyla,b) there exists a
positive number &, such that N(P,(a, b)) < C(n) [ log,, @ ]*!, where C(n) is a constant
for fixed n,

It-is shown in [8] that if the condition

b2 auux(Omax = 1) Gpax = Maxa; (5)
1

takes place, then the following bound, depending only on the coefficients, is the case:
nld+n-2
N(Pyla, b}}£1+Z[ ' ]
i\ n-l

where o, = 1 + [logya, | fort =1, .. ,n.

Obviously, for fixed n this bound is a polynomial of n-1 degree of the input
length. From Theorem 3 we can conclude that such bound is true, too, if the conclition
(5) 1s not satisfied.

COROLLARY 4. If b=<a, _ (a . -1), then N(P,la,b))<Cin)|[log,a, . =1, Cn) -

constant for fixed n.

i i

3. THE ALGORITHM

In this section we propose an improvement of the Haies-Larman algorithm for
generating the vertices of the knapsack polytope, based on the Theorems 1 and 3.
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Let us consider the following procedure:

1. Determine & > 0 so that (2) is fulfilled (see Theorem 1);

2. For every box B e [ such that ax 2b. (see the proof of Theorem 3) solve the
Integer Linear Programming Problem
maxax subjectto ax<b, xeB, x-integer (6)

(it could be done in quasi-polynomial time; e.g. see [5]);

After O(C(n)[log,, (4b/a,, )]"! steps (see Corollary 3) we obtain a list L of
vectors vV, ... v, The vertices of Pyla, b) are among these vectors (see the proof of (1)
i [2]).

3. Check which of the vectors in L are vertices of P,(a,b). For this purpose, the
solvability of not more than t-1 systems of linear equations (determined in
appropriate way) is to be checked (see again [2]). Each of these examinations could be
done by the polynomial Khachiyan's algorithm (see [4]).

So we see that for fixed dimension n, the vertices of P,(a,b) can be generated in
O([log,, 4b/a, )" g(n,ab) hin,ab) time, where g(n,a,bd) denotes the

complexity of the quasi-polynomial algorithm for (6), and h(n, @, b) is the complexity of
the Chachian's algorithm performed on step 3.

The described algorithm can be applied for solving the knapsack problem with
arbitrary convex objective function. More precisely, it is the case:

COROLLARY 5. Let f be a convex function such that the value of f for every x € Z§ can

be calculated in polynomial time Tdn) for fixed n. Then, there exists a quasi-
polynomial algorithm with complexity

O([logy , ,(4b/a,, . ) 1" ' T{n)g(n,a,b)h(n,a,b)
for solving the problem

max f(n)  subjectto ax<b, xeZ].
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