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A QUASI-I'OLYNOMIAL ALGOIUTIIM FOIt
TIlE KNAPSACK I'ROBLEM

Valentin E. BRL\lKOV
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Abstract: The main result of the paper is a quasi- polynom ial algorithm for ge nerating
the extremal points (vertices) of the Knapsack Polytope . The co mplexity of this
a lgor ithm tfor fixed dimension) is better than the complexity of all the known quasi­
polynomial algorithms for t his problem. The idea is s imilar to this one used by Haies
and Larman 12). Ou r improvement is based on obtaining of new upper bou nds for the
number of th e vertices of the Knapsack Polytope .

T he algorithm ca ll he applied direct ly to solve the Kn apsa ck Problem with erbu rury
convex ubiecuve function .
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J. INTRODUCTION

The Kna psack Problem

(KP) max ex subject to a x s b, X e Zn
c

where a,e E Z:' , b e Z + is one of the most inte nsively explored combinuto rtal

opt imization problems. It is II model of important real pr oblems uud, lit the slime time,
because of its s implicity , is often used us u model one for sellrchill~ lind testing uf new
ideus uml up prouches for solving other NP- h urd problems. Moreover, some a lgorith ms
for rucru ge neral integer progruuuuing problem s usc a lgorith ms for KP us II

sub ro uuue .

T h e KP is a mong ti ll' ~P-hard problems for whose sulvin g m ust nutublo successes
are reached : pseudopolynomial algorithms \6), fully polynomialapproximut ioll schemes
131, hi gh e ffec t ive heurist ic a lgorithms 171, etc. Amidst the basic theoret ical
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} s 11 1 i-I lYI 1 i 1 19 ri I In c( b in lie e , wh
C m pl .. i 'Y i polynomi: I if th prcblerns dimensi n n i fixed.

n in .er s ting' nd impor tan object of research, co 1 cted th is th
knr p '- cl lyt P ) de . 1 ed as a c 1 V x hull 11· lrni si le olu ior s f th pr le ,
" 1 " n al elen ent vertic f h kn p ack olyto] 11' of sp ecial i portance. It
.s cl . r th· a me hod for g 11 r t ing he vertices is al 0 111 thod fa s lvin the KP,
eve r wi 1 . '1' rary cony x bj ·tiv fun ti n.

'l' l n ain re ul f his pap r ' ketehed : the s sect' n qu i-pol 0 u
• 19 ri 1 m for finding th vertices of the kns psack polytope . rd, CI S uent y or
solvii t G ), who se complexity for fix d im nsi 11 • b tt . than t . mplexity

II kn wn qu a i- lyn .al . 19 rithms.

I'h alg ri hn I i Ie ' i . ih t hi on , us y Hies n rrn n ' 1 [ ]. The
r v mon t i 1a e l on obtai .in g of new upper bout ds or he numbe of v rices f

h 1 rap t ck polytop (sect ion 2.2). TI e bound r prov il t rr 11y: y
. c 'cu~ing he lug ·ritlu 1 1 · e in he ev, lu: ion fu cti J , ar d y d' C1' ~' sing } e deg
f hi p< lyn I i I ft I ctir n .

In . f h e r su l s ar pre 11 e . [1).

A { OL TEKNE 02.

n hi sec i 1 we I r nt s 1 e finiti ns and u icli y r ul hig ligh ing the
<- nd 1 . in n W I I r b unds fo th nurnbe of he v r tices 0 th 1 l ' ps ck

2.. DE IN TlONS AND UBSIDIARY RESUL S

lityq. I . i ) itrary kn psack po ytope, it C 1 e pr nt d y an
se 1 iinim 1coe fi .ien t am 'n = mini ai is arbitrary larg ,

~v ry k s ck polytope can be gIV n y arbitrary large input
n he dimension of the polytop ).111

E 1A

ox sb w

Le us d 11 t Pz(a, b) = onu {x eZ8 :ax 5. b an let P an arbitrary

zr-rlirnen 1011 1kn psack olyt pe. We def e a c ass

K (P) = {(a,b) :a eZIl,b EZ GCD(al) ' " a,pb) = , = z (a,b )}

r l 0 n Divisor) f knapsack input d tel' ining P ( 0 viously,
K ) is non emp y) .

U u 11y n ret individual n- ' ensional knapsa k polyt pe P is given by
C ncre pl (a , b) E K CP, d it is n turally to evalu e the num r f the ve tic
by unction 0 the f ' 1 eters a b nd n,
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,

Let S tP) denotes the nu mber of the vort ices of u knapsack polytupe 1'. We say
that the funct ion ({n .a.b) is an upper bound for l\'(P) , if for every a -dime nsional
knapsack polytope P and every (a , b) e K(P) N (P) S{{n, a, b).

LE~1~lA 2. Let n <?: 2 be a rued natural number. Then, for every natural number I z n ... l
there exist n-dimensional knapsack polytopes with I vertices.

The proof can be done in constructive way, by induction on n and I .

COROLLARY 2 . There is no funct ion f :Z ,+- -+ Z '+- such that for every fixed n z 2 and for
every n - dimensional knapsack polytope P to be fulfilled N(P) :=;ftn l.

In 121. [8), [9) and [10) bounds are obtained for the number of vertices of the
polytope of Integer Linear Programming Problem Pz (A , b ) ::: conti (x e 2" :A x ::: b I.
wh ere A is 11 mil n matrix with integer elements, and b is II n - dimensionul in teger
vector. In pa rticular, for tho knapsack polytope , the best bounds are po lynomials of
power II of log2 (b Ia"",,), i.e . quasi-polyn omials. For example. it is shown inl21that

N (Pz(o,bHs(JOg"2 4b )". whe re amin "'mma, .
°mlO •

Further. we will im prove this resu lt .

2 .2 . NEW UPPER BOUNDS FOR THE NU~mER OF TilE

KNAPSACK P OLYTOPE VERTICES

(1 )

First , we will show th at the bound (1 ) ca n be improved by increasing the base of
the logarit hm in the evaluating function .

T1 1r.()nE~! 1. For every a -dimensional knapsack polytope Pz(a ,b) there exists It

positive number e. such thilt

"N(Pz(a, b) S n I log2<e o, I,
f : 1

·Ibwhere Q :: - for j:: 1, . ,n.
J a

J

(2 )

(he re und fu r ther rx ] denotes the gr ea test in teger in x }.

Puoor. T he idea used to pro ve ( 1) (21 is the following: construct in uu upproprkue way

a set of nil IIog2 Q I boxes cove ring PZ(a, b) , and show that each of them contains
1',1 J

nut more than one vertex of Pz (a , b ). We will show here thut the s izes of these boxes
can be en larged. preserving the property "not more olle vertex in 8 box".

Let p&be a set of boxes with lengt h of the edgmgs - powers of 2 -e- s, where c > 0 is

a par.uneter:

"P&:: I x e R': :x E n1. .. 1<; - i.ntege rs,I S k; :::; X; for J '" 1, .. , tl l
r 1 J
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(he re n denotes Cartes ian Product ), where N'} (j = 1, ... ,11 ) are suc h that

XN' _1 S b / a) < x N' , Jk, <Ixk' _l 'xk, ),
J J J J J

boxes from [2]). We have

II' - 1
x.., = (2 +&) J ,xo = O, (if & = 0 we obtain the

l'z (a, b) c un,
BF.p'

j = I , ... •f1.

It is enough to show that there exists & > 0 such that every box of p~ con ta in s not
more than one vertex of Pz(a ,b).

Let us su ppose the obverse, i.e . for every c > 0 there exists a box

It = n;=1lk; Ept (for some se t of nu mbers 115 with 1SIlj SN j ), containing two

vertices U lind w of Pz(a, b). Because the boxes are "open from the l'ight~, v
J

,

II)J #. (2 + f:)k;- 1 for j = 1, ... ,n . Now, following (2], we consider the hyperplane

H = I x e R " :ax = b I. Let u be the normal vector to H , directed to the halfspace non ­
con taining Pz(a, b), lind let a € R be such that u X = a for ull x e 11. Let Ill' S; II w. We will
show that for some e > 0 the vector 2w - u e l'z(a,b). Really . 2w - u is in teger, and from
«u s c . /l u :5lt W follows (2w- u) u S a. It rcmuins to show that for some e > 0 2wj - uj 2:

o is t rue for all j = 1, ... ,n o Having in mind that UJ :s: [ (2 + ..:/;- 1 J, we consider two

cases:

1. Let wj= (2+d; - 2 be integer. Sctt ing m: :: IIj - 2 , we obtain

2wJ = 2(2'" +[ '")2"1 - 1&+ ,.. +£,") = 2",+1 + ['" )2111 &+ " '+ [ '" ) 4 £,"- 1 +2 £''"' ,
1 1 m- l

wh ich is t rue for & enough small (let us mention also that In is restricted by 11 number

not depending Oil c, e. g. In = h) - 2 :5 NJ - 2 :sNj - 2 s log2(4b I aJl - 2 for j = 1, ... ,n ).

2. k' -2 k' - 2
I f wJ #. (2 + &) J , t hen wj 2: !(2 +&) J ]+ I . For m:=1' 5 -2 we have

2w
J
-u

J2:
2(1<2 + d " ] + 1) - ( (2+ &)"1+ 1 ] =

2 +2 [ 2m + cA1( 0/:, m ) 1- 1211I
+

1 + &A 2{c, m ») = 2 > 0
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for sma ll enough f: (it IS set Al ( c.m ) : :: ('~1 )2"' - I + ('; ) 2m - :.! c + .. +1'.-1 ,

A2 ( c, m ) : '"r1+ 1)2'" +(/112+1)2"' -1 c + ... + E!" ).

So we received that for small enough e > 0 1I and w are points of Pz(o . b ). Then ,
for some such c. we obtain w '" 1/2 (ll + (2 W- v », i.e . w is not II vertex of Pz(o, b) ­
contradictiun .

Iu addition, we will mention II sufficien t condition for c in orde r (2) to be t he case.

l )I Eo R EM 2. (2) is true if

1
r c-----'-:-:,,--:­

N O- 1
(N~ - I~ J 1

/ 3

for i - 1. .... rl.

The pruof is based on the following:

Lf:l\I:\lA 3 . The function { : ( 1, ... ,m 1- Z+ , flk ) "'('~)2'''-.(m - natu rul number] bus

II maximu m for h = 1In 13 J.

Let us also mention tha t s « 1 ( for s » 1, II =2, 01 =4, 02=5. b = ·17 , tho box
B = 13 ,9 )" (3 , 9 ) con tains two vertices Vll l '" (3.7) and V(2' = (8 ,3) of I'z(o ,b» .

The rest of th is sect ion b';ves u proo f of the following:

'l)n,:o UE:\t 3 .

N (Pz (a ,s» s C(n ) [ log2 Q1"- 1, (3)

where Q = 4b 1ami" and C(n ) is 8 constant for fixed n ,

Puoo r. First . we will modify the method for generuting the se t uf hexes, covenng
Pz(o. b). For this purpose , let us define n se quences of rutionul numbers

U ) W { (II)'"
{ xJ 1;=.0' " ' ' x J lpo

xtk J ::(bl o /t ) 2-J for k '" 1• ... •n. j = 1, 2. ... .
/

For euch of these sequences we determine /111 illt C'gl'r PI< wit h 0 e; x~ ) c 1,

X~)_1 2: 0 . W~ have Pit = N2 - 1 ~ ( log~ ( 2b l o.) I , where N 2 is u number defined es in

the proof of Theorem 1.

Let us consider the set of boxes

"/J = { xe n h J, kJ . integer,l ~kj ~PJ . j =I , ... . /11

s»1
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Each of these boxes contains not more than une vertex of Pz (a, b). (Re ally, le t
B e /l and v,w e B be ve rt ices of Pz(o ,b ). Let H "' l x e R" :a x = b l =
I x e R" : IIX '" o} where II is the nurmul vector to H directed to the halfsplice not
cuntuuung Pz(a ,b ). The vector 2w -/.I is integer , and if ll/.l~ /l W then (2w - /.I) II ~ u ,

Besides. Iwt - /.It I s xj"!l - X\j l • lb 1at ) 2- ) · 1 - lb 1at ) 2-) .. xli I, and 2w" - /.I.t '"

w.t - {/.It -w...)~ w,, - I /.It- wtl a xjtl_x~.t l '" O. Then.w '" 1/2 ( /.1. (2w- /.I», aud he nce

tv is not vertex of Pz (a ,b ) - contrudiction.)

It is easy to check thut the point x · '" ( b1(2ma I)' ... ,b1(2"' a ll ) ) sat isfies a x· ~ b If
and un ly if m ;::(1ob";t n I + 1 for non-integer IOS"2n , and m ~( lob2n) for IOS"2n ­
in teger. Let u s cons ider the first C!ISC (the another is anal(J~..ical), and let mo be the
minimal integer with this property. It is clea r thnt nil the ve rtices of Pz{a ,b ) belong to

the Hum determined by the inequ alities ax ~ b lind ax ~ b , where a '" (ai' ... ,a,,),

a , '" [b 1a l J ... [b1a ' _1II b1a, + 1 I ... rbI an J (i '" I , ... ,11), b '" n ;. 1[ b1a , I . We conside r

two cases:

1. ax' ~ b.

For geometr ical considerat ions, it is clea r that in the set of boxes /l' whose points
nrc majorated by x ' there is no one contaming a vertex of Pz ta , b) different frum
Ou '" (x I ' ... .x,,) is said to be mnjorated by y = (Y I' ... .Y,, ) if x, S"y, for i'" I , ... .n}.

The number of boxes m p" is n :", t llog2(4b l t2'''oa ) ) I· Then, the number of

boxes in /l \ P" which . eve ntually, cou ld contain ve rtices, is
•

.....here Cln ) is II functi on of n,
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_. -
Let now a x e b ,

"5

Let the s t raigh t lines th rough x ' and pnrullel to the cu- urdinnte axel; intersect the
hype rplane H in the points MOl, ... , AIl" l. It is 1I0t hard to calcu late that if

I . • ( j)- x ' > x, - At ,2 I I I
for j : 1, . . . ,n, (4)

then all boxes, whose points lire majoruted by 1/2 x · , do not contain ver t ices of Pz(a,b)

different from a (he re x; a nd Mii) denote the i-th co-ordinates of .r " and M(j),

respect ively ). We have

b

M~" "" [ .!!... I __l_ I .!. I( ° 1 +
0 , mo 0, I .!!... I

",
lind

• b
Xi = C27.,,~,.-"­,

b b b

" " I+ b '
I -I
""

(51

After su bs t itu t ion in (4 ) a nd some t r ivial s implifica t ions, we get that the condition
b la i <!: 2 (n - 1) for j =: I , ... ,n is su fficient one for (4). Unde r this cond it ion, we ca n
ob ta in (3) ill analogical manner us ill the ca se 1. Otherwise, (I.e. if bI (J , $ 2 (n - 1) for
some indexes i ), we trivially huve the result of the theorem.

Combin ing the resu lt s of the T heorems 1 and 3, we receive

C OHOLI..AHY :I. For every a - dimensional knapsack polytope Pzlo,b) there exists a
positive number c, su ch that N (Pz(o ,b)) s C(n ) [ log2 +t Q )"- I, where C(n ) is a constant

for fixed n,

It- is sh own in [81 that if the condit ion

b 2: amax (0 m"" - I) , a m",, : max 0,,

ta kes place , then the following bound, depending only on the coe fficien ts, is the cuse:

/'I/ (Pz (a, e»s1+ f (J,+ n - 2J'
~ n - l
I" 1

where 0i = 1 + i log2 a j I for i =: 1, ... ,no

Obviously , for fixed n this bou nd is a po lynom ial of n - 1 degree of the input
lengt h. From T h eorem 3 we ca n concl ude th at suc h bound is true , too, if the condit ion

(5) is 1I11t sa t isfied.

C II J(IILI...\J(y .1 . lf b s a",a.. (a /Hll-l- l), then /'I/(Pz ta , b) s C(n ) ! IClg :l 0 '''cu 1,,- 1, C(n ) ­

consta nt for fixed n .

3, THE ALGORITH~I

In this sect ion we propose an improvement of the Heies- La rmun elgor ithm for

generating" the vertices of t he knapsack polytope, bused on the T heorem s lund 3.
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Let us consider the following procedure :

1. Determine I: > 0 so that (2) is fulfilled (see Theorem I) ;

2. For every box B e ~ & such t hat a ::c
o

a b. (see the proof of Theorem 3) solve the

In teger Linear Programming Problem

max a x subject to a ::c s.b , x e B, e - Integer (6 )

(it could be done in quasi- polynomial time; e.g. see (5) ;

After O(C(n) [ log2H (4b l a"' i,,) )11- 1 steps (see Corollary 3) we obtain a list L of

vectors u ( II, ... ,v(/l. The vertices of Pz(a ,b) are among these vectors (see the proof of (1)
in [2]).

a . Check which of the vectors in L are vertices of Pz(a , b). For this purpose, the
solvability of not more than t - 1 systems of linear equations (determine d in
upprc priute way) is to be checked (sec again [2]). Ea ch of these examinations cou ld be
done by the polynomial Khachiyan' s algorithm (sec 14 ]) .

So we see that for fixed dimension n, the vertices of Pz la , b) can be generated in
0 ([ log2+c (4b 1ami,, ) ),,- 1g{n, a , b) h en, a,b) time, where g in ,a, b) denotes the

complexity of the qu as i-polynomial algorithm for (6) , a nd h(n , a , b) is the complexity of
the Chaehian' s algorithm performed on ste p 3.

The described algori thm can be applied for solving the knapsack problem with
arbit ra ry convex objective function. More precisely, it is the case:

C oROLLAlt¥ 5. Let f be u convex function such that the value of (for every x e Z8 can

be calcu lated in polynomial t ime Tin) for fixed n. Then, the re exists a Quasi­
polynomial algorithm with complexity

0(1log-2+c(4blamin>1"-1Tin )g(n ,a,b)h (n ,a,b)

for solving the problem

max { (II ) subject to a::cs.b, x eZ; .
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