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1. INTRODUCTION

Mathematical program with equilibrium constraints (MPEC) includes the bi-
level programming problem (see[6, 33]) as its special case and has wide range of ap-
plications such as engineering design, traffic control, and economic modeling(see[2,
12]). Some feasibility issues for MPEC are presented by Fukushima and Pang[8]
later, Scheel and Scholtes [31] introduced several stationary concepts and pre-
sented a mathematical program with complementarity constraints(MPCC). In
2011, Henrion and Surowiec [13] compared two distinct calmness conditions on
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MPEC and derived first order necessary optimality conditions by using tools of
generalized differentiation introduced by Mordukhovich[25]. Moreover, Gfrerer [9]
introduced the concept of strong M-stationarity, which makes a bridge between
S-stationarity and M-stationarity for MPEC. For more literature on MPEC we
refer to [32, 14, 1, 36, 19] and references therein.

In order to solve many practical problems, there have been many attempts to
weaken the convexity assumptions. Therefore, a number of concepts on general-
ized convexity have been introduced and applied to mathematical programming
problems in the literature[30]. Hanson[11] generalized the Karush-Kuhn-Tucker
(KKT) type sufficient optimality condition with the help of a new class of gener-
alized convex function for differentiable real valued functions which are defined on
Rn. Later, this class of functions was named by Craven[5] as the class of “invex”
functions due to its property of invariance under convex transformations. The
class of invex functions preserves many properties of the class of convex functions
and has shown to be very useful in a variety of applications [21, 15, 16, 17].

For the last three decades, duality and optimality conditions in generalized
convex optimization theory have been discussed by several authors[21, 4, 22, 23],
especially due to the modern work in optimization such as economic science, the-
oretical physics, mathematical programming, critical point theory, game theory,
nonconvex-nonsmooth analysis, variational analysis and in many other areas. In
nonlinear programming problems, Wolfe[34] and Mond-Weir[24] type dual mod-
els are most popular. By using generalized convexity assumptions Pandey and
Mishra[27], and Guu et al.[10] studied Wolfe and Mond-Weir type dual models for
MPEC and presented weak and strong duality results. For recent developments
in duality theory for MPEC, we refer to [28, 18] and references therein.

The organization of this paper is as follows: in Section 2, we give some pre-
liminary, definitions and results, which are used in the sequel. In Section 3, we
show that M-stationary condition is sufficient for global or local optimality under
some MPEC generalized convexity assumptions. In Section 4, we formulate Wolfe
and Mond-Weir type dual models for the MPEC and establish weak and strong
duality theorems relating to the MPEC and the two dual models under generalized
convexity assumptions. In Section 5, we conclude the results of this paper.

2. PRELIMIARIES

In this section, we give some preliminaries and definitions which will be used
throughout the paper.

We consider the mathematical program with equilibrium constraints of the
form:

(MPEC) min F (v)

subject to : g(v) 6 0, h(v) = 0,

φ(v) > 0, θ(v) > 0, 〈φ(v), θ(v)〉 = 0,

where F : Rn → R, g : Rn → Rk, h : Rn → Rp, φ : Rn → Rl and θ : Rn → Rl,
assume that, F, g, h, φ, and θ are continuously differentiable on Rn. Note that,



Joshi et al. / Generalized Invexity and Mathematical Programs 457

if we take h(v) := 0, φ(v) := 0, θ(v) := 0, then MPEC becomes the standard
nonlinear programming problem, which is studied in the literature[20].

The feasible set of the problem (MPEC) is denoted by X, that is

X := {v ∈ Rn : g(v) 6 0, h(v) = 0, φ(v) > 0, θ(v) > 0, 〈φ(v), θ(v)〉 = 0}.

Based on the definitions of generalized invex functions [3], we are introducing
following definitions for higher order case.

Definition 2.1. Let X ⊆ Rn be an open set. The differentiable function F : X →
R is said to be higher order strongly p-invex at ṽ ∈ X with respect to the kernel
functions η : X×X → Rn, and γ : X×X → Rn, such that, there exist µ > 0, and

F (v) > F (ṽ) +
1

p
〈∇F (ṽ), epη(v,ṽ) − 1〉+ µ‖γ(v, ṽ)‖σ,∀v ∈ X,σ > 0, p 6= 0.

Definition 2.2. Let X ⊆ Rn be an open set. The differentiable function F : X →
R is said to be higher order strongly p-pseudoinvex at ṽ ∈ X with respect to the
kernel functions η : X × X → Rn, and γ : X × X → Rn, such that, there exist
µ > 0, and

1

p
〈∇F (ṽ), epη(v,ṽ) − 1〉+ µ‖γ(v, ṽ)‖σ > 0⇒ F (v) > F (ṽ), ∀v ∈ X,σ > 0, p 6= 0.

Definition 2.3. Let X ⊆ Rn be an open set. The differentiable function F : X →
R is said to be higher order strongly p-quasiinvex at ṽ ∈ X with respect to the
kernel functions η : X × X → Rn, and γ : X × X → Rn, such that, there exist
µ > 0, and

F (v) 6 F (ṽ)⇒ 1

p
〈∇F (ṽ), epη(v,ṽ) − 1〉+ µ‖γ(v, ṽ)‖σ 6 0,∀v ∈ X,σ > 0, p 6= 0.

Now, we provide following examples in support of the above definitions.

Example 2.4. Let f : R → R be given by f(v) = v2 then at the point ṽ = 0
the function is higher order strongly p-invex with respect to the kernel functions
η(v, ṽ) = log sin v and γ(v, ṽ) = sin vṽ.

Example 2.5. Let f : R → R be given by f(v) = v2 then at the point ṽ = 0 the
function is higher order strongly p-pseudoinvex with respect to the kernel functions
η(v, ṽ) = log cos v and γ(v, ṽ) = v + ṽ.

Example 2.6. Let f : R→ R be given by f(v) = −v2 then at the point ṽ = 0 the
function is higher order strongly p-quasiinvex with respect to the kernel functions
η(v, ṽ) = logv2 and γ(v, ṽ) = ṽev.



458 Joshi et al. / Generalized Invexity and Mathematical Programs

Given a feasible vector ṽ ∈ X for the problem (MPEC), we define the following
index sets:

Ig := Ig(ṽ) := {i = 1, 2, . . . , k : gi(ṽ) = 0},
δ := δ(ṽ) := {i = 1, 2, . . . , l : φi(ṽ) = 0, θi(ṽ) > 0},
ζ := ζ(ṽ) := {i = 1, 2, . . . , l : φi(ṽ) = 0, θi(ṽ) = 0},
α := α(ṽ) := {i = 1, 2, . . . , l : φi(ṽ) > 0, θi(ṽ) = 0}.

Here the set ζ is known as degenerate set and if ζ is empty, the vector ṽ is said to
satisfy the strict complementarity condition.

In 1999, Outrata[26] introduced the following concept of M-stationary point.

Definition 2.7. (M-stationary point) A feasible point ṽ of MPEC is said to be
Mordukhovich stationary point if, ∃ ξ = (ξg, ξh, ξφ, ξθ) ∈ Rk+p+2l, such that fol-
lowing conditions hold:

0 = ∇F (ṽ) +
∑
i∈Ig

ξgi∇gi(ṽ) +

p∑
i=1

ξhi ∇hi(ṽ)−
l∑
i=1

[ξφi ∇φi(ṽ) + ξθi∇θi(ṽ)], (1)

ξgIg > 0, ξφα = 0, ξθδ = 0, (2)

∀i ∈ ζ, either ξφi > 0, ξθi > 0 or ξφi ξ
θ
i = 0.

Definition 2.8. (see [29]) (S-stationary point) A feasible point ṽ of MPEC is
said to be strong stationary point if, ∃ ξ = (ξg, ξh, ξφ, ξθ) ∈ Rk+p+2l, such that,
the following condition along with (1) and (2) hold:

∀i ∈ ζ, ξφi > 0, ξθi > 0.

Definition 2.9. (see [31]) (C-stationary point) A feasible point ṽ of MPEC is
said to be Clarke stationary point if, ∃ ξ = (ξg, ξh, ξφ, ξθ) ∈ Rk+p+2l, such that the
following condition along with (1) and (2) hold:

∀i ∈ ζ, ξφi ξ
θ
i > 0.

Definition 2.10. (see [7]) (A-stationary point) A feasible point ṽ of MPEC is
said to be alternatively stationary point if, ∃ ξ = (ξg, ξh, ξφ, ξθ) ∈ Rk+p+2l, such
that the following condition along with (1) and (2) hold:

∀i ∈ ζ, ξφi > 0 or ξθi > 0.

Remark 2.1 Strong stationarity implies M-, A- and C-stationarity and the inter-
section of A-stationarity and C-stationarity give M-stationarity.
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Definition 2.11. (Definition 2.10 [35]) Let ṽ be a feasible point of MPEC and
all functions are continuously differentiable at ṽ. We say that the No Nonzero
Abnormal Multiplier Constraint Qualification (NNAMCQ) is satisfied at ṽ, if there
is no nonzero vector ξ = (ξg, ξh, ξφ, ξθ) ∈ Rk+p+2l, such that

0 =
∑
i∈Ig

ξgi∇gi(ṽ) +

p∑
i=1

ξhi ∇hi(ṽ)−
l∑
i=1

[ξφi ∇φi(ṽ) + ξθi∇θi(ṽ)],

ξgIg > 0, ξφα = 0, ξθδ = 0,

∀i ∈ ζ, either ξφi > 0, ξθi > 0 or ξφi ξ
θ
i = 0.

The next theorem gives the Fritz-John type M-stationary condition for a feasible
solution to be a local solution of the MPEC.

Theorem 2.12. (Theorem 2.1 [35]) (Fritz-John type M-stationary condition) Let
ṽ be a local solution of MPEC, where all functions are continuously differentiable
at ṽ. Then there exists r > 0, ξ = (ξg, ξh, ξφ, ξθ) ∈ Rk+p+2l, not all zero, such
that

0 = r∇F (ṽ) +
∑
i∈Ig

ξgi∇gi(ṽ) +

p∑
i=1

ξhi ∇hi(ṽ)−
l∑
i=1

[ξφi ∇φi(ṽ) + ξθi∇θi(ṽ)],

ξgIg > 0, ξφα = 0, ξθδ = 0,

∀i ∈ ζ, either ξφi > 0, ξθi > 0 or ξφi ξ
θ
i = 0.

Suppose r 6= 0, and let us consider r = 1, then the following Kuhn-Tucker type
M-stationary condition holds.

Corollary 2.13. (Corollary 2.1 [35]) (Kuhn-Tucker type necessary M-stationary
condition) Let ṽ be a local optimal solution for MPEC where, all the functions are
continuously differentiable at ṽ and consider that NNAMCQ is satisfied at ṽ, then
ṽ is M-stationary.

In the next section, it can be seen that M-stationary condition turns into a suffi-
cient optimality condition under certain MPEC generalized invexity condition.

Note Throughout the paper {} will denote an empty set.

3. SUFFICIENT M-STATIONARY CONDITION

Theorem 3.1. Let ṽ be a feasible point of MPEC and M-stationary condition
holds at ṽ, i.e., ∃ ξ = (ξg, ξh, ξφ, ξθ) ∈ Rk+p+2l, such that

0 = ∇F (ṽ) +
∑
i∈Ig

ξgi∇gi(ṽ) +

p∑
i=1

ξhi ∇hi(ṽ)−
l∑
i=1

[ξφi ∇φi(ṽ) + ξθi∇θi(ṽ)], (3)
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ξgIg > 0, ξφα = 0, ξθδ = 0,

∀i ∈ ζ, either ξφi > 0, ξθi > 0 or ξφi ξ
θ
i = 0.

Let

j+ := {i : ξhi > 0}, j− := {i : ξhi < 0},

ζ+ := {i ∈ ζ : ξφi > 0, ξθi > 0},

ζ+φ := {i ∈ ζ : ξφi = 0, ξθi > 0}, ζ−φ := {i ∈ ζ : ξφi = 0, ξθi < 0},

ζ+θ := {i ∈ ζ : ξθi = 0, ξφi > 0}, ζ−θ := {i ∈ ζ : ξθi = 0, ξφi < 0},

δ+ := {i ∈ δ : ξφi > 0}, δ− := {i ∈ δ : ξφi < 0},
α+ := {i ∈ α : ξθi > 0}, α− := {i ∈ α : ξθi < 0},

and assume that for p 6= 0, F is higher order strongly p-pseudoinvex at ṽ, with
respect to the kernel η. Also assume that gi (i ∈ Ig), hi (i ∈ j+), −hi (i ∈
j−), φi (i ∈ δ− ∪ ζ−θ ), −φi (i ∈ δ+ ∪ ζ+θ ∪ ζ+), θi (i ∈ α− ∪ ζ−φ ) and −θi (i ∈
α+ ∪ ζ+φ ∪ ζ+) are higher order strongly p-quasiinvex at ṽ, with respect to the

common kernel η. If, δ− ∪ α− ∪ ζ−φ ∪ ζ
−
θ = {}, ṽ is a global optimal solution of

MPEC; if, ζ−φ ∪ ζ
−
θ = {} or when ṽ is an interior point relative to the set,

X ∩ {v : φi(v) = 0, θi(v) = 0, i ∈ ζ−φ ∪ ζ
−
θ },

i.e., for any feasible point v which is close to ṽ, one has

φi(v) = 0, θi(v) = 0, ∀i ∈ ζ−φ ∪ ζ
−
θ ,

then ṽ is a local optimal solution of MPEC, where X is the set of feasible solutions
of MPEC.

Proof. Assume that v is any feasible point of MPEC, i.e., for any i ∈ Ig,

gi(v) 6 0 = gi(ṽ).

Using higher order strongly p-quasiinvexity of gi at ṽ with respect to the common
kernel η, it follows that

1

p
〈∇gi(ṽ), epη(v,ṽ) − 1〉+ µgi ‖γ(v, ṽ)‖σ 6 0, ∀i ∈ Ig. (4)

Similarly, we have

1

p
〈∇hi(ṽ), epη(v,ṽ) − 1〉+ µhi ‖γ(v, ṽ)‖σ 6 0, ∀i ∈ j+, (5)

−1

p
〈∇hi(ṽ), epη(v,ṽ) − 1〉+ µhi ‖γ(v, ṽ)‖σ 6 0, ∀i ∈ j−. (6)
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Since, for any feasible point v,−φ(v) 6 0,−θ(v) 6 0, one also have

−1

p
〈∇φi(ṽ), epη(v,ṽ) − 1〉+ µφi ‖γ(v, ṽ)‖σ 6 0, ∀i ∈ δ+ ∪ ζ+θ ∪ ζ

+, (7)

−1

p
〈∇θi(ṽ), epη(v,ṽ) − 1〉+ µθi ‖γ(v, ṽ)‖σ 6 0, ∀i ∈ α+ ∪ ζ+φ ∪ ζ

+. (8)

Case 3.2. First, we take δ− ∪ α− ∪ ζ−φ ∪ ζ
−
θ = {}, multiplying (4)-(8) by ξgi ≥

0 (i ∈ Ig), ξhi > 0 (i ∈ j+),−ξhi > 0 (i ∈ j−), ξφi > 0 (i ∈ δ+ ∪ ζ+θ ∪ ζ+), ξθi >
0 (i ∈ α+ ∪ ζ+φ ∪ ζ+) respectively and adding (4)-(8), we obtain

1

p

〈∑
i∈Ig

ξgi∇gi(ṽ) +

p∑
i=1

ξhi ∇hi(ṽ)−
l∑
i=1

[ξφi ∇φi(ṽ) + ξθi∇θi(ṽ)], epη(v,ṽ) − 1

〉
+µgi ‖γ(v, ṽ)‖σ + µhi ‖γ(v, ṽ)‖σ + µφi ‖γ(v, ṽ)‖σ + µθi ‖γ(v, ṽ)‖σ 6 0.

Using equation (3), the above inequality, it follows that

1

p
〈∇F (ṽ), epη(v,ṽ) − 1〉+ µ‖γ(v, ṽ)‖σ > 0.

Applying, higher order strongly p-pseudoinvexity of F at ṽ with respect to the kernel
η and for the same real number p 6= 0, we get F (v) > F (ṽ) for all feasible point v.
Hence ṽ is a global optimal solution of MPEC.

Case 3.3. Now, we take δ− ∪ α− 6= {} and ζ−φ ∪ ζ
−
θ = {}. For v sufficiently close

to ṽ, one has
φi(v) = φi(ṽ), ∀i ∈ δ.

Applying, higher order strongly p-quasiinvexity of φi(i ∈ δ−) at ṽ with respect to
the common kernel η, i.e., for v sufficiently close to ṽ, it holds that,

1

p
〈∇φi(ṽ), epη(v,ṽ) − 1)〉+ µ‖γ(v, ṽ)‖σ 6 0, ∀i ∈ δ−. (9)

In the same manner, for v sufficiently close to ṽ, one has

1

p
〈∇θi(ṽ), epη(v,ṽ) − 1)〉+ µ‖γ(v, ṽ)‖σ 6 0, ∀i ∈ α−. (10)

Now, multiplying (4)-(10) by ξgi > 0 (i ∈ Ig), ξ
h
i > 0 (i ∈ j+), −ξhi > 0 (i ∈

j−), ξφi > 0 (i ∈ δ+ ∪ ζ+θ ∪ ζ+), ξθi > 0 (i ∈ α+ ∪ ζ+φ ∪ ζ+), −ξφi > 0 (i ∈
δ−),−ξθi > 0 (i ∈ α−) respectively and adding, we get

1

p

〈∑
i∈Ig

ξgi∇gi(ṽ) +

p∑
i=1

ξhi ∇hi(ṽ)−
l∑
i=1

[ξφi ∇φi(ṽ) + ξθi∇θi(ṽ)], epη(v,ṽ) − 1

〉
+µgi ‖γ(v, ṽ)‖σ + µhi ‖γ(v, ṽ)‖σ + µφi ‖γ(v, ṽ)‖σ + µθi ‖γ(v, ṽ)‖σ 6 0.
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Using (3), for v sufficiently close to ṽ, the above inequality follows that

1

p
〈∇F (ṽ), epη(v,ṽ) − 1)〉+ µ‖γ(v, ṽ)‖σ > 0.

Now applying higher order strongly p-pseudoinvexity of F at ṽ with respect to the
kernel η and for the same real number p 6= 0, we get F (v) > F (ṽ), i.e., ṽ is a local
optimal solution of MPEC.

Suppose that ṽ is an interior point relative to the set X∩{v : φi(v) = 0, θi(v) =
0, i ∈ ζ−φ ∪ ζ

−
θ }. Then for any feasible point v sufficiently close to ṽ, it holds that

φi(v) = 0, θi(v) = 0, ∀i ∈ ζ−φ ∪ ζ
−
θ ,

and hence by higher order strongly p-quasiinvexity of φi (i ∈ ζ−θ ) and θi (i ∈ ζ−φ ),

1

p
〈∇φi(ṽ), epη(v,ṽ) − 1)〉+ µ‖γ(v, ṽ)‖σ 6 0, ∀i ∈ ζ−θ (11)

1

p
〈∇θi(ṽ), epη(v,ṽ) − 1)〉+ µ‖γ(v, ṽ)‖σ 6 0, ∀i ∈ ζ−φ . (12)

Again multiplying (4)-(12) by ξgi > 0 (i ∈ Ig), ξ
h
i > 0 (i ∈ j+), −ξhi > 0 (i ∈

j−), ξφi > 0 (i ∈ δ+ ∪ ζ+θ ∪ ζ+), ξθi > 0 (i ∈ α+ ∪ ζ+φ ∪ ζ+), −ξφi > 0 (i ∈
δ−),−ξθi > 0 (i ∈ α−) − ξφi > 0 (i ∈ δ−∪ ζ−θ ), −ξθi > 0 (i ∈ α−∪ ζ−φ ), respectively
and adding, we have

1

p

〈∑
i∈Ig

ξgi∇gi(ṽ) +

p∑
i=1

ξhi ∇hi(ṽ)−
l∑
i=1

[ξφi ∇φi(ṽ) + ξθi∇θi(ṽ)], epη(v,ṽ) − 1

〉
+µgi ‖γ(v, ṽ)‖σ + µhi ‖γ(v, ṽ)‖σ + µφi ‖γ(v, ṽ)‖σ + µθi ‖γ(v, ṽ)‖σ 6 0.

By virtue of (3), for v sufficiently close to ṽ, the above follows

1

p
〈∇F (ṽ), epη(v,ṽ) − 1〉+ µ‖γ(v, ṽ)‖σ > 0.

By the higher order strongly p-pseudoinvexity of F at ṽ, we have F (v) > F (ṽ) for
v sufficiently close to ṽ. That is, ṽ is a local optimal solution of MPEC and this
completes the proof.

4. DUALITY

In this section, we formulate a Wolfe type dual problem and a Mond-Weir type
dual problem for the MPEC under higher order strongly p-invexity assumptions.

WDMPEC max
v,ξ

F (v) +
∑
i∈Ig

ξgi gi(v) +

p∑
i=1

ξhi hi(v)−
l∑
i=1

[ξφi φi(v) + ξθi θi(v)]
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subject to:

0 = ∇F (v) +
∑
i∈Ig

ξgi∇gi(v) +

p∑
i=1

ξhi ∇hi(v)−
l∑
i=1

[ξφi ∇φi(v) + ξθi∇θi(v)], (13)

ξgIg > 0, ξφα = 0, ξθδ = 0,

∀i ∈ ζ, either ξφi > 0, ξθi > 0 or ξφi ξ
θ
i = 0,

where, ξ = (ξg, ξh, ξφ, ξθ) ∈ Rk+p+2l.

Remark 4.1. If we take h(v) := 0, φ(v) := 0, and θ(v) := 0, then Wolfe type
dual problem WDMPEC for MPEC coincides with the classical Wolfe type dual
problem for nonlinear programming given by Wolfe [34].

Theorem 4.2. (Weak Duality) Let ũ be feasible for MPEC, (v, ξ) be feasible for
WDMPEC and index sets Ig, δ, ζ, α defined accordingly. Suppose that F, gi (i ∈
Ig), hi (i ∈ j+),−hi (i ∈ j−), φi (i ∈ δ− ∪ ζ−θ ),−φi (i ∈ δ+ ∪ ζ+θ ∪ ζ+), θi (i ∈
α− ∪ ζ−φ ), and −θi (i ∈ α+ ∪ ζ+φ ∪ ζ+) are higher order strongly p-invex functions
at v with respect to the common kernel η and for the same real number p 6= 0. If
δ− ∪ α− ∪ ζ−φ ∪ ζ

−
θ = {} then, for any u feasible for the MPEC, we have

F (u) > F (v) +
∑
i∈Ig

ξgi gi(v) +

p∑
i=1

ξhi hi(v)−
l∑
i=1

[ξφi φi(v) + ξθi θi(v)].

Proof. Let us consider that u be any feasible point for MPEC. Then, we get

gi(u) 6 0, ∀i ∈ Ig,

and
hi(u) = 0, i = 1, 2, . . . , p.

Since, F is higher order strongly p-invex at v, with respect to the kernel η, then

F (u)− F (v) >
1

p
〈∇F (v), epη(u,v) − 1〉+ µ‖γ(u, v)‖σ. (14)

Similarly, we get

gi(u)− gi(v) >
1

p
〈∇gi(v), epη(u,v) − 1〉+ µgi ‖γ(u, v)‖σ, ∀i ∈ Ig, (15)

hi(u)− hi(v) >
1

p
〈∇hi(v), epη(u,v) − 1〉+ µhi ‖γ(u, v)‖σ, ∀i ∈ j+, (16)

−hi(u) +hi(v) > −1

p
〈∇hi(v), epη(u,v)−1〉+µhi ‖γ(u, v)‖σ, ∀i ∈ j−, (17)

−φi(u)+φi(v) > −1

p
〈∇φi(v), epη(u,v)−1〉+µφi ‖γ(u, v)‖σ, ∀i ∈ δ+∪ζ+θ ∪ζ

+, (18)
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−θi(u)+θi(v) > −1

p
〈∇θi(v), epη(u,v)−1〉+µθi ‖γ(u, v)‖σ, ∀i ∈ α+∪ζ+φ ∪ζ

+. (19)

If δ−∪α−∪ζ−φ ∪ζ
−
θ = {}, multiplying (15)-(19) by ξgi > 0 (i ∈ Ig), ξhi > 0 (i ∈

j+), −ξhi > 0 (i ∈ j−), ξφi > 0 (i ∈ δ+ ∪ ζ+θ ∪ ζ+), ξθi > 0 (i ∈ α+ ∪ ζ+φ ∪ ζ+),
respectively and adding (14)-(19), it follows that

F (u)− F (v) +
∑
i∈Ig

ξgi gi(u)−
∑
i∈Ig

ξgi gi(v) +

p∑
i=1

ξhi hi(u)−
p∑
i=1

ξhi hi(v)

−
l∑
i=1

ξφi φi(u) +

l∑
i=1

ξφi φi(v)−
l∑
i=1

ξθi θi(u) +

l∑
i=1

ξθi θi(v)

>
1

p

〈
∇F (v) +

∑
i∈Ig

ξgi∇gi(v) +

p∑
i=1

ξhi ∇hi(v)−
l∑
i=1

[ξφi ∇φi(v)

+ ξθi∇θi(v)], epη(u,v) − 1

〉
+ µ‖γ(u, v)‖σ + µgi ‖γ(u, v)‖σ

+ µhi ‖γ(u, v)‖σ + +µψi ‖γ(u, v)‖σ + µθi ‖γ(u, v)‖σ.

Using (13), we get

F (u)− F (v) +
∑
i∈Ig

ξgi gi(u)−
∑
i∈Ig

ξgi gi(v) +

p∑
i=1

ξhi hi(u)−
p∑
i=1

ξhi hi(v)

−
l∑
i=1

ξφi φi(u) +

l∑
i=1

ξφi φi(v)−
l∑
i=1

ξθi θi(u) +

l∑
i=1

ξθi θi(v) > 0.

Using the feasibility of u for MPEC, that is gi(u) 6 0, hi(u) = 0, φi(u) > 0, and
θi(u) > 0, we obtain

F (u)− F (v)−
∑
i∈Ig

ξgi gi(v)−
p∑
i=1

ξhi hi(v) +

l∑
i=1

[ξφi φi(v) + ξθi θi(v)] > 0.

Hence,

F (u) > F (v) +
∑
i∈Ig

ξgi gi(v) +

p∑
i=1

ξhi hi(v)−
l∑
i=1

[ξφi φi(v) + ξθi θi(v)],

and the proof is complete.

Theorem 4.3. (Strong Duality) If ũ is a global optimal solution of MPEC, such
that NNAMCQ is satisfied at ũ and index sets Ig, δ, ζ, α defined accordingly. Let
F, gi (i ∈ Ig), hi (i ∈ j+), −hi (i ∈ j−), φi (i ∈ δ− ∪ ζ−θ ), −φi (i ∈ δ+ ∪ ζ+θ ∪
ζ+), θi (i ∈ α− ∪ ζ−φ ) and −θi (i ∈ α+ ∪ ζ+φ ∪ ζ+) fulfill the assumption of the

Theorem 4.2. Then, there exists ξ̃, such that (ũ, ξ̃) is a global optimal solution of
WDMPEC and corresponding objective values of MPEC and WDMPEC are equal.
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Proof. Since, ũ is a global optimal solution of MPEC and NNAMCQ is satisfied
at ũ, therfore, there exist ξ̃ = (ξ̃g, ξ̃h, ξ̃φ, ξ̃θ) ∈ Rk+p+2l, such that M- stationarity
conditions are satisfied for MPEC, i.e.,

0 = ∇F (ũ) +
∑
i∈Ig

ξ̃gi∇gi(ũ) +

p∑
i=1

ξ̃hi ∇hi(ũ)−
l∑
i=1

[ξ̃φi ∇φi(ũ) + ξ̃θi∇θi(ũ)], (20)

ξ̃gIg > 0, ξ̃φα = 0, ξ̃θδ = 0,

∀i ∈ ζ, either ξ̃φi > 0, ξ̃θi > 0, or ξ̃φi ξ̃
θ
i = 0.

Therefore, (ũ, ξ̃) is feasible for WDMPEC. By Theorem 4.2, we get

F (ũ) > F (v) +
∑
i∈Ig

ξgi gi(v) +

p∑
i=1

ξhi hi(v)−
l∑
i=1

[ξφi φi(v) + ξθi θi(v)], (21)

for any feasible solution (v, ξ) for WDMPEC. Now, using the feasibility condition
of MPEC and WDMPEC, i.e, for i ∈ Ig(ũ), gi(ũ) = 0, also hi(ũ) = 0, φi(ũ) =
0,∀i ∈ δ ∪ ζ and θi(ũ) = 0,∀i ∈ ζ ∪ α, then, it follows that

F (ũ) = F (ũ) +
∑
i∈Ig

ξ̃gi gi(ũ) +

p∑
i=1

ξ̃hi hi(ũ)−
l∑
i=1

[ξ̃φi φi(ũ) + ξ̃θi θi(ũ)]. (22)

Using (21) and (22), we get

F (ũ) +
∑
i∈Ig

ξ̃gi gi(ũ) +

p∑
i=1

ξ̃hi hi(ũ)−
l∑
i=1

[ξ̃φi φi(ũ) + ξ̃θi θi(ũ)]

> F (v) +
∑
i∈Ig

ξgi gi(v) +

p∑
i=1

ξhi hi(v)−
l∑
i=1

[ξφi φi(v) + ξθi θi(v)].

Therefore, (ũ, ξ̃) is a global optimal solution for WDMPEC. Moreover, the corre-
sponding objective values of MPEC and WDMPEC are equal.

Now, we establish the duality relation between the MPEC and the following Mond-
Weir type dual.

MWDMPEC max
v,ξ

F (v)

subject to:

0 = ∇F (v) +
∑
i∈Ig

ξgi∇gi(v) +

p∑
i=1

ξhi ∇hi(v)−
l∑
i=1

[ξφi ∇φi(v) + ξθi∇θi(v)], (23)
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∑
i∈Ig

ξgi gi(v) > 0,

p∑
i=1

ξhi hi(v) > 0,

l∑
i=1

ξφi φi(v) 6 0,

l∑
i=1

ξθi θi(v) 6 0,

ξgIg > 0, ξφα = 0, ξθδ = 0,

∀i ∈ ζ, either ξφi > 0, ξθi > 0 or ξφi ξ
θ
i = 0,

where, ξ = (ξg, ξh, ξφ, ξθ) ∈ Rk+p+2l.

Theorem 4.4. (Weak Duality) Let ũ be feasible for MPEC, (v, ξ) be feasible
for MWDMPEC and the index sets Ig, δ, ζ, α defined accordingly. Suppose that
F, gi (i ∈ Ig), hi (i ∈ j+),−hi (i ∈ j−), φi (i ∈ δ− ∪ ζ−θ ), −φi (i ∈ δ+ ∪ ζ+θ ∪
ζ+), θi (i ∈ α− ∪ ζ−φ ), −θi (i ∈ α+ ∪ ζ+φ ∪ ζ+) are higher order strongly p-invex
functions at v with respect to the common kernel η and for the same real number
p 6= 0. If δ− ∪α− ∪ ζ−φ ∪ ζ

−
θ = {}, then, for any u feasible for the MPEC, we have

F (u) > F (v).

Proof. Let us consider that u be any feasible point for MPEC. Then, we have

gi(u) 6 0, ∀i ∈ Ig,

and
hi(u) = 0, i = 1, 2, . . . , p.

Since, F is higher order strongly p-invex at v with respect to the kernel η, we have

F (u)− F (v) >
1

p
〈∇F (v), epη(u,v) − 1〉+ µ‖γ(u, v)‖σ. (24)

Similarly, we have

gi(u)− gi(v) >
1

p
〈∇gi(v), epη(u,v) − 1〉+ µgi ‖γ(u, v)‖σ, ∀i ∈ Ig, (25)

hi(u)− hi(v) >
1

p
〈∇hi(v), epη(u,v) − 1〉+ µhi ‖γ(u, v)‖σ, ∀i ∈ j+, (26)

−hi(u) + hi(v) > −1

p
〈∇hi(v), epη(u,v) − 1〉+ µhi ‖γ(u, v)‖σ, ∀i ∈ j−, (27)

−φi(u)+φi(v) > −1

p
〈∇φi(v), epη(u,v)−1〉+µψi ‖γ(u, v)‖σ, ∀i ∈ δ+∪ζ+θ ∪ζ

+, (28)

−θi(u)+θi(v) > −1

p
〈∇θi(v), epη(u,v)−1〉+µθi ‖γ(u, v)‖σ, ∀i ∈ α+∪ζ+φ ∪ζ

+. (29)
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If δ− ∪ α− ∪ ζ−φ ∪ ζ
−
θ = {}, multiplying(25)-(29) by ξgi > 0 (i ∈ Ig), ξhi > 0 (i ∈

j+), −ξhi > 0 (i ∈ j−), ξφi > 0 (i ∈ δ+ ∪ ζ+θ ∪ ζ+), ξθi > 0 (i ∈ α+ ∪ ζ+φ ∪ ζ+),
respectively and adding (24)-(29), we obtain

F (u)− F (v)+
∑
i∈Ig

ξgi gi(u)−
∑
i∈Ig

ξgi gi(v) +

p∑
i=1

ξhi hi(u)−
p∑
i=1

ξhi hi(v)

−
l∑
i=1

ξφi φi(u) +

l∑
i=1

ξφi φi(v)−
l∑
i=1

ξθi θi(u) +

l∑
i=1

ξθi θi(v)

>
1

p

〈
∇F (v) +

∑
i∈Ig

ξgi∇gi(v) +

p∑
i=1

ξhi ∇hi(v)

−
l∑
i=1

[ξφi ∇φi(v) + ξθi∇θi(v)], epη(u,v) − 1

〉
+ µ‖γ(u, v)‖σ + µgi ‖γ(u, v)‖σ + µhi ‖γ(u, v)‖σ

+ µψi ‖γ(u, v)‖σ + µθi ‖γ(u, v)‖σ.

Using (23), it follows that

F (u)− F (v) +
∑
i∈Ig

ξgi gi(u)−
∑
i∈Ig

ξgi gi(v) +

p∑
i=1

ξhi hi(u)−
p∑
i=1

ξhi hi(v)

−
l∑
i=1

ξφi φi(u) +

l∑
i=1

ξφi φi(v)−
l∑
i=1

ξθi θi(u) +

l∑
i=1

ξθi θi(v) > 0.

Using the feasibility of u and v for MPEC and MWDMPEC, respectively, we
obtain

F (u) > F (v),

and the proof is complete.

Theorem 4.5. (Strong Duality) If ũ is a global optimal solution of MPEC such
that the NNAMCQ is satisfied at ũ and index sets Ig, δ, ζ, α defined accordingly.
Let F, gi (i ∈ Ig), hi (i ∈ j+), −hi (i ∈ j−), φi (i ∈ δ− ∪ ζ−θ ), −φi (i ∈
δ+ ∪ ζ+θ ∪ ζ+), θi (i ∈ α− ∪ ζ−φ ) and −θi (i ∈ α+ ∪ ζ+φ ∪ ζ+) fulfill the assumption

of Theorem 4.4. Then, there exists ξ̃, such that (ũ, ξ̃) is a global optimal solution
of MWDMPEC and corresponding objective values of MPEC and MWDMPEC are
equal.

Proof. The proof is similar to the proof of Theorem 4.3.
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