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Abstract: We analyse the reliability (survival function) of a duplex system charac-
terized by hot standby and sustained by an auxiliary unit in cold standby. The entire
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repair of the failed priority unit during the survival time of the system.
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1. INTRODUCTION

A recent survey [14] on reliability of technical systems in industry citing 138
references observes that ”systems reliability becomes a crucial aspect of intelligent
manufacturing”. Standby provides a powerful tool to increase the reliability and
quality of operational systems, e.g. [2], [6], [9], [17]. A frequently employed standby



390 E. Vanderperre, S. Makhanov / Reliability of an Engeneering System

mode is the so-called ”cold” standby. The notion of cold standby signifies that a
backup unit is kept in reserve with a zero failure rate, until the online unit fails.
The involvement of cold standby redundancy in satellite systems has been cited
by [10]. A crucial variant of cold standby is the so-called ”hot” standby or active
standby redundancy. The notion of hot standby signifies that the backup unit
has the same failure rate in standby as in the operative state. Note that the hot
standby mode is often indispensable to implement a fast automatic replacement
of the failed online unit by the underlying backup unit. An example of a system
with hot standby is the light plant of a tunnel connected with a single operative
generator sustained by a generator in hot standby. Figure 1.1 shows a functional
block-diagram of the operational system. Note that systems with hot standby are
rather scarce in the Literature e.g. [22].

Figure 1: Operational light plant

Standby systems are frequently endowed with priority rules. For instance, an
external power supply station of a technical plant has usually overall (break-in)
priority (called pre-emptive priority) in operation with regard to an internal (local)
power generator in standby, i.e the local generator is only deployed if the external
station is down (or eventually shut off for periodic maintenance). In particular,
a general repairable duplex system characterized by pre-emptive priority in oper-
ation with regard to a cold standby unit, subjected to arbitrary distributions for
failure and repair, has been introduced by [20]. As a preliminary modification,
we first consider a duplex system composed of a priority unit (called the p-unit)
sustained by a different unit in hot standby (called the h-unit).The system (hence-
forth called the H-system) is attended by two heterogeneous repairmen Rp and
Rh. A failure of the p-unit is always directed to repairman Rp , whereas a failure
of the h-unit is always allocated to repairman Rh. Moreover, unit p has (pre-
emptive) priority in operation with regard to the h-unit. Thus the H-system acts
as a closed network evolving in time, i.e. each failed unit goes immediately into
repair and conversely, the repaired p-unit becomes immediately operative, whereas
the repaired h-unit lines up in hot standby if the p -unit is operative or becomes
instantaneously operative if unit p is still under repair. Note that the priority
rule implies that the event ”The h-unit is operative and the p-unit is waiting in
standby” is a P-null set. The H- system is down if both units are under repair,
partially down if only one unit is under repair and completely up is both units are
up(available). Next, we introduce the S-system. The S-system is composed of the



E. Vanderperre, S. Makhanov / Reliability of an Engeneering System 391

H-system sustained by an auxiliary unit (called the s-unit) in cold standby. Both
the p-unit and the h-unit have break-in priority in operation with regard to the
s-unit. Thus the s-unit is only deployed if the H-system is down. The S-system is
up if at least one unit is up. Otherwise, the S-system is down. Finally, we assume
that the s-unit has its own repair facility Rs. A practical example of an s-unit
is the so-called ram air turbine (RAT). The device consists of a small propeller
that, upon request, drops out of the bottom of an aircraft (cf. the landing gear)
converting kinetic energy, induced by the airstream, into electrical power. Thus
the RAT is actually a small wind turbine! Note that this auxiliary power device
can provide almost all vital components with the required amount of power needed
to monitor the plane’s flight control in case of emergency. So, the RAT increases
the reliability of the aircraft. However, note that the device is only deployed if
the global (internal) power generator system (usually a parallel system) is down.
Therefore, the RAT is a non-priority unit designed to operate in the exceptional
case of emergency.

In order to derive the survival function of the S-system, we employ a stochastic
process describing the various states of the S-system and endowed with time-
dependent transition measures satisfying coupled partial differential equations.
The solution procedure of the equations is based on a refined application of the
theory of sectionally holomorphic functions, e.g. [8], [11] combined with the notion
of dual transforms, [18].The main problem is to convert a functional equation into
a boundary value problem on the real line.

Furthermore, we introduce a security interval [0, τ) related to a security level
0 < δ < 1 and satisfying a suitable risk criterion. The security interval ensures a
survival of the S-system up to time τ with probability δ.

As an example, we consider the case of a Coxian repair time distributions.
Some graphs are displaying the survival function jointly with the security interval
corresponding to a security level of 90%.

Finally, we study the total occupational time of repairman Rp during the sur-
vival time of the S-system.Note that our S-system is a statistical variant of the
duplex system introduced by [21].

2. STOCHASTIC PROCESS, STOPPING TIME, SURVIVAL TIME

We now focus on the survival time of the S-system. In order to introduce a
precise definition of the survival time we employ a stochastic process {Nt, t ≥ 0}
with (discrete) state space {A,B,C,Cs, D}, where D is an absorbing state. The
process {Nt, t ≥ 0} is characterized by the following exhaustive set of mutually
independent events:

{Nt = A}: All units of the S-system are up at time t,

{Nt = B}: The H-system is up, repairman Rp is busy and the s-unit is in
cold standby at time t,

{Nt = C}: The H-system is up, repairman Rh is busy and the s-unit is in
cold standby at time t,
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{Nt = Cs}: The H-system is down and the s-unit is operative at time t,

{Nt = D}: The S-system is down at time t,

Note that the absorbing state D signifies that the process {Nt}, once entered state
D at some random time θ, cannot escape state D. Therefore, taking our priority
rule into account, we may assume that a failure of the s-unit is catastrophic, i.e.
terminates the lifetime of the S-system. The inclusion of state D into the state
space of the process {Nt} invokes the introduction of a so-called stopping time,
e.g. [3, 5]. Consequently, we first define the non-Markovian process {Nt} on a
filtered probability space {Ω,A, P,F} where the history F := {Ft, t ≥ 0} satisfies
the Dellacherie-conditions

• F0 contains the P -null sets of A,

• ∀t ≥ 0, Ft =
⋂
u<t Fu i.e.the family F is right-continuous.

Consider the F-stopping time (Markov time)

θ := inf {t > 0 : Nt = D|N0 = A} .

We assume that the S-system starts functioning at some time origin t = 0 in state
A, i.e. let N0 = A with probability one. Thus, from t = 0 onwards, θ is the
survival time (lifetime) of the S-system. The corresponding survival function is
denoted by R(t). Clearly,

R(t) = Pr {θ > t} , t ≥ 0.

It should be noted that θ does not depend on the repair time of the s-unit.
Therefore, the state space of the process {Nt} is sufficient (exhaustive) to describe
the random behaviour of the S-system during the survival time θ. Figure 2.0 dis-
plays the transitions of Nt related to failures and repairs. An upward (downward)
arrow corresponds to a repair (failure) of a unit. Along with the survival function
of the S-system, we now introduce a security interval [0, τ), where

τ := sup
{
t ≥ 0 : R(t−) ≥ δ

}
for some 0 < δ < 1, called the security level. In practice, δ is usually large.
For instance, δ = 0.9. Therefore, we require that the S-system satisfies the risk
criterion limt↑τ R(t) ≥ δ � 0. Note that the security interval, corresponding to
the security level δ, ensures a continuous operation (survival) of the S-system up
to time τ with probability δ. The various states of the S-system are described by
functional block-diagrams in figures 2.1-2.5.

We recall that the p-unit has overall (pre-emptive) priority in operaron with
regard to both the h-unit and the s-unit, whereas the h-unit has only (pre-emptive)
priority in operation with regard to the s-unit. Consequently, the s-unit is only
deployed whenever the H-system is down. See figure 2.4.
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Figure 2: Transition diagram related to failures and repairs.

Figure 3: Functional block-diagram of the S-system operating in state A.

3. ASSUMPTIONS, DEFINITIONS, PROPERTIES

3.1. Assumptions

Consider the S-system satisfying the following assumptions. The operative
p-unit has a failure-free time f with distribution F (·), F (0) = 0 and a constant
repair rate µ. A repair of the failed p-unit is always carried out by repairman
Rp The h-unit has a constant failure rate λ and a repair time r with distribution
R(·), R(0) = 0. A repair of the failed h-unit is always carried out by repairman
Rh. The s-unit has a zero failure rate in standby (cold standby) and a constant
failure rate λs in the operative state. We recall that the s-unit is only deployed
if the H-system is down. Therefore, θ is independent of the repair time rs of the
s-unit. Consequently, the repair time distribution of rs needs no specification. All
underlying random variables are supposed to be independent and a repaired unit
functions as good as new.

3.2. Definitions and properties

• Characteristic functions (and their duals) are formulated in terms of a com-
plex transform variable.
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Figure 4: Functional block-diagram of the S-system operating in state B.

Figure 5: Functional block-diagram of the S-system operating in state C.

For instance,

Eeiωr =

∫ ∞
0

eiωx dR(x), Imω ≥ 0.

Note that

Ee−iωr =

∫ 0

−∞
eiωx d{(1−R((−x)−)}, Imω ≤ 0.

The corresponding Fourier-Stieljes transforms are called dual transforms.
Without loss of generality (see Remarks 6.1), we may assume that F and R
have density functions of bounded variation on [0,∞) with finite mean. In
addition, let Er2 <∞.

• A (vector) Markov characterization of the non-Markovian process {Nt, t ≥ 0},
with absorbing state D, is piecewise and conditionally defined by:

{(Nt, Xt)} if Nt = A, where Xt denotes the remaining failure-free time of
the p-unit being operative at time t,

{Nt} if Nt = B or D,

{(Nt, Yt)} if Nt = Cs, where Yt denotes the remaining repair time of failed
h-unit under progressive repair at time t,

{(Nt, Xt, Yt)} if Nt = C.

The state space of the underlying Markov process is given by

{(A, x)}
⋃
{B}

⋃
{(Cs, y)}

⋃
{(C, x, y)}

⋃
{D} , x ≥ 0, y ≥ 0.

For K = A,B,C,Cs, D let pK(t) := Pr {Nt = K} , t ≥ 0 where∑
K pK(t) = 1.
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Figure 6: Functional block-diagram of the S-system operating in state Cs.

Figure 7: The S-system’s down state D.

Finally, we introduce the measures

pA(t, x)dx := Pr {Nt = A, x−∆x < Xt ≤ x} ,
pCs

(t, y)dy := Pr {Nt = Cs, y −∆y < Yt ≤ y} ,
pC(t, x, y)dxdy := Pr {Nt = C, x−∆x < Xt ≤ x, y −∆y < Yt ≤ y} .

Note that, for instance,

pC(t) =

∫ ∞
0

∫ ∞
0

pC(t, x, y)dxdy.

• The indicator (function) of an event {Nt = K} ∈ A is denoted by 1 {Nt = K}.

• The complex plane and the real line are respectively denoted by C and R
with obvious superscript notations such as C+ and C−. For instance,

C+ := {ω ∈ C : Im ω > 0} .

• The Laplace transform of any locally integrable and bounded function on
[0,∞) is denoted by the corresponding character marked with an asterisk.
For instance,

p∗(z) :=

∫ ∞
0

e−ztp(t)dt, Re z > 0.

Moreover, if p(t) is of bounded variation and right-continuous on [0,∞), we
have

zp∗(z) = p(0) +

∫ ∞
0

e−ztdp(t), Re z > 0.

• Let α(τ), τ ∈ R be a bounded and continuous function.
α(·) is called Γ−integrable if

lim
T→∞
ε↓0

∫
ΓT,ε

α(τ)
dτ

τ − u
, u ∈ R
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exists, where ΓT, ε := (−T, u − ε]
⋃

[u + ε, T ). The corresponding integral,
denoted by

1

2πi

∫
Γ

α(τ)
dτ

τ − u
is called a Cauchy principal value in double sense.

• A function α(τ), τ ∈ R is Lipschitz-continuous (L-continuous) on R if
∀τ1, τ2 ∈ R there exists a constant c such that

|α(τ2)− α(τ1)| ≤ c|τ2 − τ1|.

The function α(τ), τ ∈ R is called L-continuous at infinity if

|α(τ)| = O

(
1

|τ |

)
, |τ | → ∞.

• Note that the L-continuity of α(·) on R and at infinity is sufficient for the
existence of the Cauchy-type integral

1

2πi

∫
Γ

α(τ)
dτ

τ − ω
, ω ∈ C.

See [8] for further details.

• Let F (t) be any probability distribution on [0,∞). The n-fold convolution of
F is denoted by Fn?. For n = 0, Fn? represents the Heaviside step function
with the unit-jump at t = 0, i.e.

F 0? :=

{
1, if t ≥ 0,

0, if t < 0.

• We frequently use the characteristic function

Eeiτν =

{
Eeiτr − 1

iτEr , if τ 6= 0,

1, if τ = 0.
(1)

Note that

Eeiων = (Er)−1

∫ ∞
0

eiωx(1−R(x))dx, Imω ≥ 0. (2)

Property 3.1
The function γ+(ω) := 1 + λErEeiων , Imw ≥ 0, has no zeros in C+⋃R.
Proof Consider an alternating renewal process, e.g. Birolini[2,452-456] with an up
and down state. Let 1− e−λt (respectively R(t)) be the sojourn time distribution
of the process in the up state (respectively in the down state). Furthermore, let
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pR(t) be the probability that the process is up at time t given that it was up at
time t = 0. hlBy renewal theory, e.g.[15],

pR(t) =

∫ t

0−
e−λ(t−u)d

∞∑
n=0

ϕn?(u),

where

ϕ(u) :=

∫ u

0

(1− e−λ(u−v))dR(v)

is the distribution function of a cycle.
The following properties are valid for an arbitrary R.

• pR(0) = 1, 0 < pR(t) ≤ 1, pR(∞) = (1 + λsEr)
−1.

• pR(t) is Lebesque-absolutely continuous on (0,∞) and of bounded variation
and right-continuous on [0,∞).

• p∗R(z) is given by

p∗R(z) =
1

z + λs(1−Ee−zr)
,Re z > 0. (3)

Applying the product rule to Eq. (3.3), reveals that

(1 + λsErEeiων)−1 =

∫ ∞
0−

eiwtdpR(t).

On the other hand∣∣∣∣∫ ∞
0−

eiwtdpR(t)

∣∣∣∣ ≤ ∫ ∞
0−
|dpR(t)| = var[0,∞]pR(t),

where the notation var[0,∞)pR(t) stands for the total variation of pR(·) on [0,∞).
See [1])(page 128) for an appropriate definition. Note that the bounded variation
property of pR(·) on [0,∞) implies that var[0,∞)pR(t) < ∞. Hence, the function

1 + λsErEeiων is free from zeros in C+⋃R.

• Property 3.2
The function γ−z (ω) := z + iω + λ(1 − Ee−i(ω−i(z+λs))rh) , Imω ≤ 0 has no
zeros in C−

⋃
R.

A straightforward proof based on Rouché’s theorem, e.g. [12] of property
3.2 is similar to the proof of a property in Vanderperre and Makhanov [20,
Lemma 7.1] and therefore omitted.

• Corollary 3.1
The function 1/γ+(ω) (respectively 1/γ−z (ω)) is bounded on C+⋃R (re-
spectively on C−

⋃
R).
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• Property 3.3
The function

Eeiτr

γ+(τ)γ−z (τ)
, τ ∈ R

is L-continuous on R and at infinity.

Proof
First note that ∣∣∣∣ ∂∂τ Eeiτr

∣∣∣∣ ≤ Er

whereas Eq.(3.2) entails that∣∣∣∣ ∂∂τ γ+(τ)

∣∣∣∣ ≤ (Er)−1

∫ ∞
0

x(1−R(x))dx =
1

2

Er2

Er
.

Moreover, ∣∣∣∣ ∂∂τ γ−z (τ)

∣∣∣∣ ≤ 1 + µEf.

The mean value theorem for derivatives, e.g. [1](page 110), implies that each
of the functions Eeiτr,1/γ+(τ), 1/γ−z (τ) is a bounded L-continuous function.
Consequently, the function, Eeiτr/(γ+(τ)γ−z (τ)) being a product of bounded
L-continuous functions is also L- continuous on R.

Finally, the maximun modulus theorem, e.g. [1](page 454), applied to γ−z (τ)
entails that

γ−z (τ) = O(
1

|τ |
), τ →∞

whereas
lim
|τ |→∞

γ+(τ) = 1.

Hence, the function Eeiτr/(γ+(τ)γ−z (τ)) is L-continuous on R and at infinity.

• A probability distribution R(·), R(0) = 0 of a random variable r is called a
Coxian distribution if

Eeiτr =
Am(τ)

Bn(τ)
, m < n, τ ∈ R,

where Am(τ), Bn(τ) are polynomials of degree m, n.[4] has shown that this
exclusive family of distributions is surprisingly large.
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4. DIFFERENTIAL EQUATIONS

In order to derive a set of differential equations, we observe the behaviour of
the S-system in some time interval [t, t+ ∆], ∆ ↓ 0. Applying a general birth and
death technique, e.g. [19] and taking the absorbing state D into account, yields
the balance equations

pA(t+ ∆, x−∆) = pA(t, x)(1− λ∆) + µpB(t)
dF

dx
∆ + pC(t, x, 0)∆ + o(∆),

pB(t+ ∆) = pB(t)(1− (λ+ µ)∆) + pA(t, 0)∆ + pCs(t, 0)∆ + o(∆),

pC(t+ ∆, x−∆, y −∆) = pC(t, x, y) + µpCs(t, y)
dF

dx
∆ + λpA(t, x)

dR

dy
∆ + o(∆),

pCs
(t+ ∆, y−∆) = pCs

(t, y)(1− (µ+ λs)∆) + λpB(t)
dR

dy
∆ + pC(t, 0, y)∆ + o(∆),

pD(t+ ∆) = pD(t) + λspCs
(t)∆ + o(∆),

where the notation o(∆), ∆ ↓ 0 stands for any function K(·) such that

lim
∆↓0

K(∆)

∆
= 0.

Taking the definition of directional derivative into account, for instance,(
∂

∂t
− ∂

∂x
− ∂

∂y

)
pC(t, x, y) := lim

∆↓0

pC(t+ ∆, x−∆, y −∆)− pC(t, x, y)

∆

entails that for t > 0, x > 0, y > 0,(
λ+

∂

∂t
− ∂

∂x

)
pA(t, x) = µpB(t)

dF

dx
+ pC(t, x, 0), (4)

(
µ+ λ+

d

dt

)
pB(t) = pA(t, 0) + pCs

(t, 0), (5)

(
∂

∂t
− ∂

∂x
− ∂

∂y

)
pC(t, x, y) = µpCs

(t, y)
dF

dx
+ λpA(t, x)

dR

dy
, (6)

(
λs + µ+

∂

∂t
− ∂

∂y

)
pCs

(t, x) = pC(t, 0, y) + λpB(t)
dR

dy
, (7)

d

dt
pD(t) = λspCs(t). (8)

Note that the initial condition N0 = A,X0 = f with propability one, entails
that pA(0, x) = dF

dx . Moreover, Pr{θ ≤ t} = pD(t). Finally, observe that the
equations (4.1)-(4.5) are consistent with the probability law

∑
K pK(t) = 1 and

that pA(0) = 1.
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5. FUNCTIONAL EQUATION

First we remark that our set of differential equations is well-adapted to a trans-
formation by means of Laplace-Fourier transforms of the underlying transition
functions. As a matter of fact, the transition functions are bounded on their
appropriate regions and locally integrable with respect to t. Consequently, each
Laplace transform exists for Re z > 0. Moreover, the obvious integrability of the
density functions and the transition functions with regard to x, y also implies
the integrability of the corresponding partial derivatives. The advantage of the
proposed Laplace-Fourier methodology is the possibility to represent the Laplace
transform of the survival function explicitly in terms of a particular Cauchy inte-
gral. Applying a Laplace-Fourier transform technique to equations (4.1)-(4.4) and
taking the initial condition into account, yields the equations

(z + λ+ iω)

∫ ∞
0

e−ztE(eiωXt1 {Nt = A})dt+ p∗A(z, 0) =

µp∗B(z)Eeiωf +

∫ ∞
0

eiωxp∗C(z, x, 0)dx+ Eeiωf , (9)

(z + λ+ µ)p∗B(z) = p∗A(z, 0) + p∗Cs
(z, 0) (10)

(z + iω + iη)

∫ ∞
0

e−ztE(eiωXteiηYt1 {Nt = C})dt+

∫ ∞
0

eiωxp∗C(z, x, 0)dx+∫ ∞
0

eiηyp∗C(z, 0, y)dy = µEeiωf
∫ ∞

0

e−ztE(eiηYt1 {Nt = Cs})dt

+λEeiηr
∫ ∞

0

e−ztE(eiωXt1 {Nt = A})dt, (11)

(z + λs + µ+ iη)

∫ ∞
0

e−ztE(eiηYt1 {Nt = Cs})dt+ p∗Cs
(z, 0) =

∫ ∞
0

eiηyp∗C(z, 0, y)dy + λp∗B(z)Eeiηr, (12)

zp∗D(z) = λsp
∗
Cs

(z). (13)

Adding Eqs. (5.1)−(5.4) yields the functional equation

(z + λ(1−Eeiηr) + iω)

∫ ∞
0

e−ztE(eiωXt1 {Nt = A})dt+
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(z + λ(1−Eeiηr) + µ(1−Eeiωf ))p∗B(z)+

(z + iω + iη)

∫ ∞
0

e−ztE(eiωXteiηYt1 {Nt = C})dt+

(z + λs + µ(1−Eeiωf ) + iη)

∫ ∞
0

e−ztE(eiηYt1 {Nt = Cs})dt = Eeiωf , (14)

valid for Re z > 0, Imω ≥ 0, Im η ≥ 0.

6. A COMPOUND SOKHOTSKI-PLEMELJ PROBLEM,
SURVIVAL FUNCTION

Inserting ω = iz, η = 0 in Eq.(5.6) reveals that

(z + µ(1−Ee−zf )p∗B(z) + (z + λs + µ(1−Ee−zf ))p∗Cs
(z) = Ee−zf . (15)

On the other hand, applying the product rule for Lebesgue-Stieltjes transforms to
Eq.(5.5) shows that

Ee−zθ = λsp
∗
Cs

(z). (16)

Eliminating p∗Cs
(z) in Eq.(6.1) by means of Eq.(6.2) entails that

1−Ee−zθ

z
=

(
1 + µ 1−Ee−zf

z

)
(1 + λsp

∗
B(z)) + λs

1−Ee−zf

z

z + λs + µ(1−Ee−zf )
. (17)

Note that R∗(z) is uniquely determined by the relationship

1−Ee−zθ

z
=

∫ ∞
0

e−ztR(t)dt = R∗(z),Re z > 0.

Hence, in order to derive R∗(z), we first have to derive the unknown p∗B(z) ap-
pearing in Eq.(6.3). Substituting η = τ, ω = −τ + iz, τ ∈ R,Re z > 0 into Eq.
(5.6) and noting that z + iω + iη = 0, yields the boundary value equation

γ−z (τ)

∫ ∞
0

e−ztE(eiτYt1 {Nt = C})dt−iτγ+(τ)

∫ ∞
0

e−ztE(ei(−τ+iz)Xt1 {Nt = A})dt =

Eei(−τ+iz)f − [z + λ(1−Eeiτr) + µ(1−Eei(−τ+iz)f ]p∗B(z). (18)

Next, dividing Eq.(6.4) by the factor γ+(τ)γ−z (τ) (an operatiion justified by Prop-
erties 3.1 and 3.2) reveals that

ψ+(z, τ)− ψ−(z, τ) = ϕ(z, τ), τ ∈ R (19)
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where

ψ+(z, τ) =

∫∞
0

e−ztE(eiτYt1 {Nt = C})dt
γ+(τ)

,

ψ−(z, τ) =

∫∞
0

e−ztE(ei(−τ+iz)Xt1 {Nt = A})dt
γ−z (τ)

,

ϕ(z, τ) :=
Eei(−τ+iz)f

γ+(τ)γ−z (τ)
− z + λ(1−Eeiτr) + µ(1−Eei(−τ+iz)f )

γ+(τ)γ−z (τ)
p∗B(z).

Note that the extended function ψ+(z, ω), Imω ≥ 0 (respectively ψ−(z, ω),
Imω ≤ 0) is analytic in C+ (respectively in C−) whereas the compound ”neutral”
term ϕ(z, τ) only exists on the real line. In addition, Property 3.3 implies that the
component functions of ϕ(z, τ) are all L-continuous on R and at infinity.

Consequently, Eq.(6.5) constitutes a (compound) Sokhotski-Plemelj boundary
value problem on the real line solvable by the theory of sectionally holomorphic
functions. For direct reference we have compiled some basic definitions and prop-
erties located in the Appendix. We obtain

Property 6.1
The unique solution of Eq.(6.5) is given by

1

2πi

∫
Γ

ϕ(z, τ)
dτ

τ − ω
, ω ∈ C.

In addition

ψ+(z, ω) =
1

2πi

∫
Γ

ϕ(z, τ)
dτ

τ − ω
, ω ∈ C+. (20)

Observe that Eq.(6.6) is not valid for ω = 0. Indeed, on the one hand, we have by
continuity

lim
ω→0

ψ+(z, ω) = ψ+(z, 0) =
p∗Cs

(z)

1 + λEr
. (21)

On the other hand, an application of Sokhotski-Plemelj formulas reveals that

lim
ω→0
ω∈C+

1

2πi

∫
Γ

ϕ(z, τ)
dτ

τ − ω
=

1

2
ϕ(z, 0) +

1

2πi

∫
Γ

ϕ(z, τ)
dτ

τ
. (22)

However, evaluating the Cauchy-type integrals in Eq.(6.6) by means of the al-
gorithm elaborated in Vanderperre and Makhanov [20] and taking Eq.(6.7) into
account, generates an additional equation in terms of p∗B(z), p∗Cs

(z) independent
of Eq.(6.1). Hence, the required p∗B(z) follows from the solution of a simultaneous
pair of linear equations. Consequently, having determined p∗B(z), we obtain R∗(z)
from Eq.(6.3). Note that Properties 3.1.3.2 and 3.3 are also valid for general dis-
tributed variables f, r, ν with finite mean. Consequently, the bounded variation



E. Vanderperre, S. Makhanov / Reliability of an Engeneering System 403

assumptions imposed on F and R in Section 3.2 are totally superfluous for the
existence of R∗(z). Unfortunately, the explicit form of R∗(z) is surprisingly com-
plicated, even if one of the distributions F or R represents a Coxian distribution.
The following example shows the details.

7. NUMERICAL EXAMPLE, COXIAN DISTRIBUTION

Recall that a probability distribution is called Coxian if its Laplace-Stieltjes
transform is a quotient of two polynomials, [4].
Further, Sokhotski-Plemelj formulas are rather theoretical. In applications, we
first try to elaborate the Cauchy-type integrals and perform the limit procedure
thereafter. Hence, we are faced (see Eq.(6.7)-(6-8)) with elaborating the equation

p∗Cs
(z)(1 + λEr)−1 = lim

ω→0
ω∈C+

1

2πi

∫
Γ

ϕ(z, τ)
dτ

τ − ω
. (23)

In order to obtain computational results, we assume that R(·) is a Coxian distri-
bution. The simplest case is a constant repair rate ρ, i.e.

Eeiωr = ρ/(ρ− iω), ω 6= −iρ.

Applying the algorithm elaborated in Vanderperre and Makhanov [20] to Eq.(7.1)
yields the additional equation

λp∗B(z)T (z)− ρp∗Cs
(z)(T (z) + λs) = λEe−(z+ρ+λ)f , (24)

where
T (z) := z + ρ+ λ+ µ(1−Ee−(z+ρ+λ)f ), Re z ≥ 0

From Eqs.(6.1) and (7.2) we finally obtain

p∗B(z) =

∣∣∣∣ Ee−zf z + λs + µ(1−Ee−zf )
λEe−(z+ρ+λ)f) −ρ(T (z) + λs)

∣∣∣∣∣∣∣∣z + µ(1−Ee−zf ) z + λs + µ(1−Ee−zf )
λT (z) −ρ(T (z) + λs)

∣∣∣∣ (25)

The value p∗B(0) has an interesting probabilistic interpretation, i.e. let Bθ be the
total occupational time of repairman Rp during the survival time θ of the S-system.
Clearly Bθ has the same distribution as the total sojourn time of {Nt} in state B
during θ. Hence,

Bθ =

∫ θ

0

1{Nt = B}dt.

Applying Fubini-Tonelli’s theorem, e.g. [7](page 239), entails that

EBθ = E

∫ θ

0

1{Nt = B}dt =

∫ ∞
0

pB(t)dt = p∗B(0).
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From Eqs. (6.3) and (7.3) we obtain
Property 7.1

EBθ =
1

λ

(
ρ

λs
+

ρ+ λEe−(ρ+λ)f

ρ+ λ+ µ(1−Ee−(ρ+λ)f )

)
,

Eθ = (1 + µEf)

(
1

λs
+ EBθ

)
+ Ef.

We recall that the S-system fails whenever the s-unit fails. Therefore it is of
interest to study the impact of the failure rate λs of the s-unit on the survival
function R∗(·).
As a numerical example we consider the Erlang-2 distribution

F (t) = 1− e−t(1 + t), t ≥ 0

to model the failure-free time f of the p-unit. Note that Ee−zf = (1+z)−2 whereas
Ef = 2. The various numerical values of the parameters (Case 1-3) are shown in
Table 7.1. The data is synthetic. It is selected in order to analyze numerically
the sensitivity of the model to the parameter λs (failure rate of the s-unit in the
operative state), which is one of the most important characteristics of the system.

Table 7.1 Values of the input parameters
Case λ ρ µ λs

1 1.0 0.5 1.5 0.5
2 1.0 0.5 1.5 1.5
3 1.0 0.5 1.5 2.0

A an illustration, we first deal with Case 1. The required laborious technical
manipulations performed in an entirely automatic mode using the symbolic engine
of Mathematica 12([16]) show that

R∗(z) =
N(z)

D(z)
, Re z > 0,

where N(z) = 43.0 + 516.719z + 1281.69z2 + 1513.75z3 + 1033.44z4 + 433.5z5 +
111.0z6 + 16.0z7 + 1.0z8 and
D(z) = 2.875+74.625z+569.219z2 +1317.94z3 +1525.5z4 +1034.94z5 +433.5z6 +
111.0z7 + 16.0z8 + 1.0z9.
The equation D(z) = 0 has the roots z1 = −3.32225 − 0.940162i, z2 = z̄1, z3 =
−1.94535−0.889027i, z4 = z̄3, z5 = −1.87055−0.918955i, z6 = z̄5, z7 = −1.54241, z8 =
−0.109295, z9 = −0.0719968.
Clearly, R(t) is continuous on (0,∞) and of bounded variation on [0,∞). Hence,
by the inversion theorem, e.g. [1])(page 342)

R(t) = lim
T→∞

1

2πi

∫ iT

−iT
ezt

N(z)∏9
k=1(z − zk)

)dz.
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Finally, applying the residue theorem, e.g. [1](page 468, Th. 16.39), omitting
numerically negligible terms and using the identity

(u+ iv)e(a+ib)t + (u− iv)e(a−ib)t = 2eat(u cos bt− v sin bt)

reveals that

R(t) = 2e−3.32225t(0.0215172 cos 0.940162t+0.01939 sin 0.94016t)−

2e−1.87055t(0.03627 cos 0.91896t+ 0.01667 sin 0.91896t)− 0.05140e−1.54241t

+1.08089e−0.072t.

In a similar way we obtain
Case 2

R(t) = 2e−3.52217t(0.0923 cos 0.73108t+0.0964 sin 0.731078t)+

2e−2.0727t(−0.11317 cos 0.7277t+ 0.0041 sin 0.7277t)− 0.15027e−1.64204t+

1.192e−0.16823t.

Case 3

R(t) = 2e−3.6307t(0.1705 cos 0.3787t+ 0.3631 sin 0.3787t)+

2e−2.1604t(−0.17 cos 0.5692t+ 0.069 sin 0.5692t)− 0.23238e−1.7163t+

1.23096e−0.20148t.

Figure 7.1 shows the graph ofR(t), case 1-3 with the security interval [0, tsec,i] , i =
1, 2, 3 corresponding to the security level δ = 0.9. The graph illustrates that the
security interval is a nonlinear function of the failure rate of the s-unit. Figure 7.2
displays the security interval as a function of λ, λs on [0.1] × [0.1]. The security
interval decreases faster in the λs-direction. In particular,

||∂tsec
∂λs
||2 ≈ 6.79, ||∂tsec

∂λ
||2 ≈ 5.12.
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Figure 8: Graph of R(t), case 1-solid line, case 2-dashed line, case 3- dotted line, [0, ti] is the
security interval for σ = 0.9, t1 = 2.53131, t2 = 1.83898, t3 = 1.43351.

Figure 9: Security interval tsec as a function of λ and λs

8. CONCLUSIONS

The Laplace transform of the survival function related to the S-system can
be derived by solving a set of coupled partial differential equations corresponding
to a stochastic process with an absorbing barrier. The important case of Coxian
distributions shows how to obtain computational results for the survival function
by a numerical analysis based on the inversion formula for Laplace transforms.
Therefore, the proposed methodology provides a tangible contribution to statisti-
cal reliability engineering and its ramifications. Further, there exists a variety of
extensions and generalizations of the proposed model. In particular, finding the so-
lution for arbitrary distributions such as Weibull distribution requires a numerical
method. Further, the model is closely related to the modified Gnedenko-Ushakov
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system[9] characterized by a preemptive priority rule and sustained by an auxiliary
unit in cold standby. The system is attended by two heterogeneous repairmen. We
conjecture that the proposed methodology combined with numerical inversion of
the Laplace transform is applicable to the Gnedenko-Ushakov model in case of the
Coxian and Erlang repair.
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9. APPENDICES

For direct reference, we propose to state some particular properties of sec-
tionally holomorphic functions and their ramifications for the solution of some
boundary value problems on the real line. See [8] (pp. 1-360), [11] (pp.1-73), [13]
(pp. 118-242) for proofs and details.
Let ϕ(τ) be a function satisfying the Hölder (Lipschitz) condition on R and at
infinity. In addition, let

L+(u) := lim
ω→u
ω∈C+

1

2πi

∫
Γ

ϕ(τ)
dτ

τ − ω
, u ∈ R,

L−(u) := lim
ω→u
ω∈C−

1

2πi

∫
Γ

ϕ(τ)
dτ

τ − ω
, u ∈ R.

We have

L+(u) =
1

2
ϕ(u) +

1

2πi

∫
Γ

ϕ(τ)
dτ

τ − u
. (26)

L−(u) = −1

2
ϕ(u) +

1

2πi

∫
Γ

ϕ(τ)
dτ

τ − u
, (27)

Hence, for u ∈ R,

L+(u)− L−(u) = ϕ(u), (28)

L+(u) + L−(u)

2
=

1

2πi

∫
Γ

ϕ(τ)
dτ

τ − u
. (29)

The relations (A.1)−(A.4) are called the Sokhotski-Plemelj formulas on the real
line. The functions L+(u), L−(u) are continuous on R and infinity. The function
ϕ(τ) has a unique decomposition and the resulting boundary value Eq.(A.3) has
a unique regular solution

1

2πi

∫
Γ

ϕ(τ)
dτ

τ − ω
, (30)

valid for all ω ∈ C and the Cauchy-type integral generates a regular sectionally
holomorphic function in C cut along the real line. Furthermore

L+(ω) =

∫
Γ

ϕ(τ)
dτ

τ − ω
, ω ∈ C+, (31)

L−(ω) =

∫
Γ

ϕ(τ)
dτ

τ − ω
, ω ∈ C−. (32)
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