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Abstract: In this paper, a descent line search scheme is proposed to find a local min-
imum point of a non-convex optimization problem with simple constraints. The idea
ensures that the scheme escapes the saddle points and finally settles for a local minimum
point of the non-convex optimization problem. A positive definite scaling matrix for
the proposed scheme is formed through symmetric indefinite matrix factorization of the
Hessian matrix of the objective function at each iteration. A numerical illustration is
provided, and the global convergence of the scheme is also justified.
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1. INTRODUCTION

The non-convex optimization problem is always an area of keen interest for
mathematicians and engineers. Even finding a local minimum of a non-convex
function is not an easy task. On the other hand, studying different properties
of saddle points and escaping from the same is also an area of interest for the
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researchers in recent times ([1], [2]). In 1982, Bertsekas ([3]) proposed the pro-
jected Newton method for simple constraints and it had been widely studied in
[4], [5], [6], [7] etc, so far. These schemes are applied to convex functions for which
the Hessian matrix is positive semi-definite. We modify the projected Newton
method by introducing a positive definite scaling matrix to find a local minimum
of the optimization problem involving non-convex objective function with simple
constraints. The global convergence of the scheme is also established under mild
assumptions. The advantage of the proposed scheme is illustrated through exam-
ples, which justify the fact that the scheme escapes from a saddle point utilizing a
slight perturbation and finally settles for a local minimum point. Another advan-
tage of the scheme is that the second-order sufficiency test at the solution point is
also not required in this process.

Consider the following optimization problem:

(P ) min
x∈Rn

f(x)

subject to x ≥ 0, (1)

f : Rn → R is a twice continuously differentiable function and the vector inequal-
ity x ≥ 0 is componentwise.

Consider the following iterative process for solving (P ) due to [3]:

xk+1 = [xk − αkDk∇f(xk)]+, k = 0, 1, 2, . . . , (2)

where αk is a positive scalar, Dk is a positive definite symmetric matrix and for a
vector z = (z1, z2, . . . , zn) ∈ Rn,

[z]+ =

 max (0, z1)
. . .

max (0, zn)

 .
For x ≥ 0 denote I+(x) =

{
i : xi = 0, ∂f(x)∂xi > 0

}
.

Theorem 1. (Prop. 1, [3]) Let x ≥ 0 and D be a positive definite symmetric
matrix which is diagonal with respect to I+(x) and denote

x(α) = [x− αD∇f(x)]+ ∀α ≥ 0

(a) x is a critical point w.r.t. problem (P ) if and only if x = x(α) for all α ≥ 0.
(b) If x is not a critical point w.r.t. problem (P ), then there exists a scalar ᾱ > 0
such that

f(x(α)) < f(x) ∀α ∈ (0, ᾱ].

Based on the above theory, Bertsekas ([3]) proposed a practical algorithm as fol-
lows.
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� Consider a small real number ε > 0 and a fixed diagonal positive definite
matrix M and two parameters β = 0.9 and σ = 0.4, that will be used in
connection with an Armijo-like step-size rule.

� An initial vector x0 ≥ 0 is chosen and at k-th iteration of the algorithm we
have a vector xk ≥ 0. Denote wk = |xk−[xk−M∇f(xk)]+|, εk = min{ε, wk}.

(k + 1)st iteration of the algorithm is explained in the following algorithm.

Algorithm 1 (k + 1)st iteration of Newton projection scheme

Select two parameters β = 0.9 and σ = 0.4 and a positive definite matrix Dk

which is diagonal with respect to the set I+k , where

I+k =
{
i : 0 ≤ xik ≤ εk,

∂f(xk)

∂xi
> 0
}

pk =Dk∇f(xk),

xk(α) =[xk − αpk]+ ∀α ≥ 0 (3)

Then xk+1 is given by xk+1 = xk(αk), where αk = βmk and mk is the first non-
negative integer m such that

f(xk)− f(xk(βm)) ≥ σ
{
βm

∑
i/∈I+

k

∂f(xk)

∂xi
pik +

∑
i∈I+

k

∂f(xk)

∂xi
pik(xik − xik(βm))

}
(4)

Theorem 2. ([3]) Under the following assumptions, (A) and (B), every limit
point of a sequence {xk} generated by (3) is a critical point of problem (P ).

Assumption A: ∇f is Lipschitz continuous on each bounded set of Rn.
Assumption B: There exist positive scalars λ1 and λ2 and non-negative integers
q1 and q2 such that

λ1w
q1
k |z|

2 ≤ z′Dkz ≤ λ2wq2
k |z|

2 ∀z ∈ Rn, k = 0, 1, 2, . . . (5)

wk = |xk − [xk −M∇f(xk)]+|.

The following theorem demonstrates an important fact that under mild condition
the sequence {xk} is attracted by a local minimum x∗ satisfying Assumptions C
and identifies the set of active constraints at x∗ in a finite number of iterations.

Assumption C: f is twice continuously differentiable in the open ball B(x∗) =
{x : ‖x− x∗‖ < δ1} for δ1 > 0, x∗ as local minimum point of (P ) and there exists
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positive scalar m1, m2 such that

m1|z|2 ≤ ∇2f(x)z ≤ m2|z|2 ∀x
satisfying |x− x∗| < δ1 and z 6= 0 such that zi = 0 ∀i ∈ B(x∗). (6)

Theorem 3. (Prop. 3, [3]) Let x∗ be local minimum of problem (P ) satisfying
Assumption C. Assume also that Assumption B holds in the stronger form, where
in addition to (5) the diagonal elements dkii of the elements of the matrices Dk

satisfy for some scalar λ̄1 > 0, λ̄1 ≤ dkii, ∀k = 0, 1, 2, . . . , i ∈ I+k .

Then there exists a scalar δ̄1 > 0 such that if {xk} is a sequence generated by
iteration (3) and for some index k̄, we have |xk − x∗| ≤ δ̄1, then {xk} converges
to x∗ and we have I+k = B(xk) = B(x∗) for all k ≥ k̄ + 1.

2. MODIFIED PROJECTED NEWTON SCHEME

The algorithms described in the previous section hold for a convex program-
ming problem. Here we modify the scheme for the optimization problem involving
non-convex objective function with simple constraints. We extend the new scheme
over box constraints, which is discussed in Subsection 2.3. Since box-constraint
gives a closed bounded domain, then obtaining the local minimum is ensured. This
scheme aims to reach some local minimum and not to get stuck at a saddle point.

Since f is non-convex, ∇2f(xk) may not be positive definite in general, and so
∇2f can be replaced by a symmetric positive definite matrix, as close as pos-
sible to the original matrix. A real symmetric matrix A can be expressed as
PAPT = LBLT , where L is a lower triangular matrix, P is a permutation matrix,
and B is a block diagonal matrix that allows at most 2× 2 blocks. This requires a
pivot block initially. There are several pivoting strategies available [8] to preserve
the sparsity of the matrix. The symmetric indefinite factorization [9] allows us to
determine inertia of the matrix A and inertia of B remains equal to the inertia of
A. An indefinite factorization can be modified to ensure that the modified factors
are the factors of a positive definite matrix. This idea is briefed in the following
Algorithm (See [10]), and for this purpose, MATLAB in-built command ldl() is
used in this paper since it is less expensive. This algorithm can be found in [11],
given as follows.
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Algorithm 2 Modifying symmetric indefinite matrix to a positive defi-
nite matrix

1: Compute the factorization PAPT = LBLT .
2: Perform the spectral decomposition of B as B = QΛQT .
3: Construct a modification matrix F such that LBLT is sufficiently positive
definite as follows.
Suppose λi are the eigenvalues of B. Choose parameter δ = 0.000001 and define
F as F = Qdiag(τi)Q

T , where

τi =

{
0, if λi ≥ δ
δ − λi, if λi < δ

4: A matrix E has to be added to A to make it positive definite. P (A+E)PT =
L(B + F )LT provides E = PTLFLTP . So λmin(A+ E) ≈ δ.
Output:Ā , A+ E is the positive definite matrix.

Using idea of the logic of positive definite approximation given above, we can
get a positive definite approximate of ∇2f(xk) as ∇2f(xk) + Ek at the current
iteration point xk. Let Gk = [∇2f(xk) + Ek]−1. Choose Dk, which is used in (3)
as

Dij
k =

{
0 if i 6= j and either i ∈ I+k or j ∈ I+k ,
Gij

k otherwise .
(7)

With this choice of above Dk, if we apply Algorithm 1 to generate {x(k)}, then the
algorithm produces a critical point x̄ ∈ Rn of (P ). Consider the following example.

Example 1: min
x1≥0,x2≥0,x3≥0

φ(x1, x2, x3) = (x1 − 1)2 − (x2 − 1)2 + x33

Take the starting point as (2, 1, 0). Using Dk from (7), Algorithm 1 is executed
and the next iteration point (1, 1, 0) is obtained. The gradient vector at (2, 1, 0)
lies parallel to x1 axis. Hence, the increasing directions do not affect determining
the next direction vector at (2, 1, 0). So the algorithm reaches the critical point
(1, 1, 0), which is, in fact, the saddle point of φ. The iteration process with Algo-
rithm 1 cannot be progressed further due to the presence of this saddle point. Now
to escape from this saddle point, we modify the scheme as follows with rational
analysis.

2.1. Modification to escape the saddle point

In the previous section, it is justified that the projected Newton scheme (3)
with positive definite modification Dk, provided in (7), converges to a critical point
x̄ at kth iteration, i.e., xk = x̄. This point is either a saddle point or a minimum
point. A small perturbation is considered at x̄ in the following way.

First, we take a point x̄k as x̄k = λxk + (1 − λ)xk−1 for some small positive
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λ . Let v1 = xk − xk−1.
Suppose v1 is written in the explicit form as v1 = (v11, v12, . . . , v1n). Now at x̄k,
we consider two cases.
• In the first case, let at least two entries of v1 are non-zero, without loss of
generality, say v11, v12. Then the perturbed point is taken simply as xk+1 =
x̄k + ε(−v12, v11, 0, . . . , 0), with ε being a small positive number.
• In the second case, let exactly one entry of v1 be non-zero, without loss of
generality, say v11. Then the perturbed point is taken in the direction xk+1 =
x̄k + ε(0, 1, 1, . . . , 1, 1), with ε being a small positive number.
In both of the cases, the perturbed point, viz. xk+1 lies in the orthogonal to v1 at
x̄k.

Now if the critical point x̄ is a local minimum point, the descent scheme (3) at the
perturbed point xk+1 drags it back to x̄ due to its local attraction using Theorem
3. But, if x̄ is a saddle point, the Hessian matrix at x̄ possesses both positive and
negative eigenvalues. Since eigenvalue varies continuously on the variables of the
matrix and f ∈ C 2, there exists a neighbourhood in which the eigenvalue retains
its sign (neighbourhood property). Since we can choose the perturbed point xk+1

sufficiently close to x̄, ∇2f(xk+1) has both positive and negative eigenvalues. Also
we note that, since x̄ is a saddle point, the vector v1 must be an eigenvector of
∇2f(xk−1) corresponding to its positive eigenvalue. Since xk+1 is chosen from the
orthogonal complement of v1, the descent direction computed at xk+1 will have
the effect of both positive and negative curvature. As a result of the negative
curvature, the next iteration point is repelled from x̄. In a nutshell, once a crit-
ical point is reached, we store it in memory. Then applying Algorithm 1 at the
perturbed point, if the same critical point is reached, it can be concluded that the
same is a local minimum point and hence, we stop.

2.2. Algorithm of the proposed scheme

Algorithm 3 Modified projection Newton Scheme for the non-convex
objective function and simple constraints

1: At current iteration point use Algorithm 1 to reach a critical point x̄.
2: The perturbation is computed by the logic of subsection 2.1 and apply Algo-
rithm 1 on the perturbed point to reach next critical point.
3: Stop if the next critical point is again x̄. Else Go to step 2.
Output: x̄ is a local minimum point of the problem.

2.3. Extension to box constraints

This idea can be now extended in case of problems with box constraints.

min f(x)
subject to b1 ≤ x ≤ b2,
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where b1 and b2 are given vectors of lower and upper bounds with b1 ≤ b2. Hence,
the set I+k becomes

I]k =
{
i : bi1 ≤ xik ≤ bi1 + εk,

∂f(xk)

∂xi
> 0
}

or I]k =
{
i : bi2 − εk ≤ xik ≤ bi2,

∂f(xk)

∂xi
< 0
}

and the definition of xk(α) is changed to

xk(α) = [xk − αDk∇f(xk)]], (8)

where for all z ∈ Rn we denote by [z]] the vector with co-ordinates

[z]]
i

=

 bi2 if bi2 ≤ zi,
zi if bi1 ≤ zi ≤ bi2,
bi1 if zi ≤ bi1.

The scalar εk is given by min{ε, |[xk −M∇f(xk)]]|}. The matrix Dk is positive

definite by (7) and diagonal with respect to I]k and M is fixed diagonal positive
definite matrix. The iteration is given by

xk+1 = xk(αk),

where αk is chosen by (4) with [xik − xik(βm)]+ replaced by [xik − xik(βm)]].
The perturbation will be given to the inactive constraints, and similarly, the next
iteration will be repelled if the critical point is a saddle point. So it (box constraints
case) is a natural extension of x ≥ 0 case.

3. NUMERICAL ILLUSTRATIONS

Choose Example 1 with box constraints. The bounds of the coordinates are
taken as 0 ≤ xi ≤ 5, for i = 1, 2, 3. With this starting point, Algorithm 3 ini-
tially produces the critical point (1, 1, 0). Next, we select a point (1.001, 1, 0) in
a close neighbourhood of (1, 1, 0). The gradient vector at this point is (1, 0, 0).
Now employing the method described in Subsection 2.1 and choosing ε = .001,
the next perturbed point becomes (1.001, 1.001, 0.001). In a nutshell, we perform
a perturbation of (0.001, 0.001, 0.001) at the saddle point (1, 1, 0) along the coor-
dinates. Next, by Step 2 of Algorithm 3, we reach another critical point (1, 5, 0), a
desired local minimum point. We have used MATLAB R2015a with user defined
tolerance limit for the numerical computations as 10−6. The details of numerical
computations are summarized in Table 1. Moreover, Figure 1 shows the iteration
points’ movement starting from the initial guess to the local minimum point.
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Figure 1: Movements of the iteration points for Algorithm 3 on Example 1

Table 1: Iteration points for Algorithm 3 on Example 1
k xk −αkpk xk+1 = xk − αkpk
0 (2, 1, 0) (−1, 0, 0) (1,1,0)

. . . Perturbation . . . . . .
1 (1.001, 1.001, 0.001) (−0.002,−0.002, 0) (0.9990, 1.003, 0.000997)
2 (0.9990, 1.027, 0.000997) (0.002,−.017999,−0.000003) (1.001, 1.008999, 0.000994)
3 (1.001, 1.008999, 0.000994) (-0.002,0.017999, -0.00000299) (0.999, 1.026999, 0.000991)
4 (0.999, 1.026999, 0.000991) (0.000003, 3.973,−0.000002) (0.999003381, 5, 0.000989)
5 (0.999, 5, 0.000989) (0.000999, 0,−0.000494) (1, 5, 0.000494)
6 (1, 5, 0.000494) (0, 0,−0.000247) (1, 5, 0.000247)
7 (1, 5, 0.000247) (0, 0,−0.000123) (1, 5, 0.00012)
8 (1, 5, 0.00012) (0, 0,−0.00006) (1, 5, 0.00006)
9 (1, 5, 0.00006) (0, 0,−0.00003) (1, 5, 0.00003)
10 (1, 5, 0.00003) (0, 0,−0.000015) (1, 5, 0.000001)
11 (1, 5, 0.000001) (0, 0,−0.000001) (1, 5, 0)
. . . Perturbation . . . . . .
12 (1.001, 5.001, 0.001) (−0.001,−0.001, 0.00024) (1, 5, 0.00025)
13 (1, 5, 0.00025) (0, 0,−000129) (1, 5, 0.00012)
14 (1, 5, 0.00012) (0, 0,−000059 (1, 5, 0.00006)
15 (1, 5, 0.00006) (0, 0,−0.00003) (1, 5, 0.00003)
16 (1, 5, 0.00003) (0, 0,−0.000015) (1, 5, 0.000001)
17 (1, 5, 0.000001) (0, 0,−0.00001) (1, 5, 0)

3.1. Advantages of the scheme

� Escapes from a critical point if it is a saddle point.

� Finally, a local minimum is ensured to be attained.

� Second-order sufficiency test is not required.

4. CONCLUSIONS

This paper proposes a projected Newton-like descent scheme, which searches
for a local minimum of a non-convex optimization problem. This scheme never
sticks to the saddle point even in the slightest possibility; rather, it reaches a
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local minimum point. At the solution point, a second-order sufficiency test for
constrained optimization is also not required. One may further use this concept
to escape the saddle point in the existing non-convex optimization schemes.
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