Two Meta-Heuristics for Solving the Multi-Vehicle Multi-Covering Tour Problem With a Constraint on the Number of Vertices


Manel Kammoun, Houda Derbel, Bassem Jarboui




In this work we deal with a generalized variant of the multi-vehicle covering tour problem (m-CTP). The m-CTP consists of minimizing the total routing cost and satisfying the entire demand of all customers, without the restriction of visiting them all, so that each customer not included in any route is covered. In the m-CTP, only a subset of customers is visited to fulfill the total demand, but a restriction is put on the length of each route and the number of vertices that it contains. This paper tackles a generalized variant of the m-CTP, called the multi-vehicle multi-covering Tour Problem (mm-CTP), where a vertex must be covered several times instead of once. We study a particular case of the mm-CTP considering only the restriction on the number of vertices in each route and relaxing the constraint on the length (mm-CTP-p). A hybrid metaheuristic is developed by combining Genetic Algorithm (GA), Variable Neighborhood Descent method (VND), and a General Variable Neighborhood Search algorithm (GVNS) to solve the problem. Computational experiments show that our approaches are competitive with the Evolutionary Local Search (ELS) and Genetic Algorithm (GA), the methods proposed in the literature.