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Abstract: The aim of our paper is to obtain efficient solutions to the interval multi-
objective linear programming (IMOLP) models. In this paper, we propose a new method
to determine the efficient solutions in the IMOLP models by using the expected value
and variance operators (EVV operators). First, we define concepts of the expected value,
variance, and uncertainty distributions, and present some properties of the EVV opera-
tors. Then, we introduce the IMOLP model under these operators. An IMOLP model
consist of separate ILPs, but using the EVV operators and the uncertainty distributions,
it can be converted into the interval linear programming (ILP) models under the EVV
operators (EVV-ILP model). We show that optimal solutions of the EEV-ILP model
are the efficient solutions of IMOLP models with uncertainty variables. The proposed
method, which is called EVV, is not hard to solve. Finally, Monte Carlo simulation is
used to show its performance assessment.
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1. INTRODUCTION

Multi-objective models play a very important role in real-world decision mak-
ing problems. Hence, these models are interesting for many researchers who work
in statistical fields, engineering sciences, mathematics, and seek to calculate and
find optimal and efficient solutions to such models. One method for modelling
problems under uncertainty is the interval linear programming (ILP). Generally,
for solving ILP models, two sub-models are proposed. Solution region of the ILP
is determined by solving these two sub-models. One of these sub-models obtains
the best value (optimistic model), and the other gives the worst value (pessimistic
model) for the objective functions.

All methods used in multi-objective linear programming (MOLP) and ILP can be
used for solving the interval multi-objective linear programming (IMOLP) mod-
els, such as interactive approaches, optimization methods, goal programming, and
fuzzy method, which have been used for determining efficient solutions and optimal
solutions of these models [18, 20, 31, 33]. There are some methods for obtaining
possible and necessary efficient solutions, efficient solutions and weak efficient so-
lution in the IMOLP models [12, 13, 17, 20]. Some methods have been proposed
which use the concept of regret and the weighted sum of maximum regrets for
obtaining efficient solutions. These are the criteria for finding possible and neces-
sary efficient solutions in the IMOLP. Thereafter, some modified maximum regret
approaches were presented to find a necessarily efficient solution in the IMOLP
model [14, 21, 34, 35, 36].

A methodology for solving the IMOLP models is extended through a fuzzy set
based approach by Razavi Hajiagha [33]. The other methods to solve the IMOLP
models include the e-constraint, Lexicographic and WILP methods [2]. Dechao et
al. [9] employed an admissible order and interval ordered weighted aggregation op-
erator to transform a IMOLP problem into an interval weighted sum scalarization
multiobjective optimization problem whose solution can be derived by solving sev-
eral related real-valued programming problems, and the Pareto optimal solution
of this IMOLP problem can likewise be obtained. Bharati and Singh developed
a new method for obtaining the solution of the MOLP models based on interval-
valued intuitionistic fuzzy sets [7].

Uncertainty theory was founded by Liu in 2007, and a branch of mathematics for
modelling under uncertainty was introduced [24]. Also, using the definitions in
the field of expected value, he established a new concept of this operator to uncer-
tainties and modelling. The applications of uncertainty theory were investigated
by Jiao and Yao [22], Wang et al. [39, 40] and [41], Guo et al. [11], Liu and Yao
[30], and Li et al [29] and Zheng et al. [44].

In this paper, we discuss the IMOLP models under the expected value and variance
operators (EVV operators) using the uncertainty theory [24, 26, 27, 28]. Then,
we obtain the efficient solutions using EVV operators and the uncertainty distri-
butions that can convert the IMOLP models into the interval linear programming
(ILP) models (that we call EVV-ILP model). The efficient solutions are found
by solving the EVV-ILP models. This method, which is called EVV method, is
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Figure 1: Difference of uncertainty and probability

considered as a suitable tool in decision making problems.

Our paper is organized as follows. Section 2 reviews some basic results of the
uncertainty theory. Section 3 presents the IMOLP model and defines different
efficient solution concepts. Section 4 establishes efficient solutions in the IMOLP
under the EVV operators by uncertainty theory. In section 5, Monte Carlo sim-
ulation is reviewed to demonstrate the performance assessement of the proposed
method, where it is supposed that all coefficients are random samples with normal
contributions. Section 6 presents two examples solved by using EVV method and
Monte Carlo simulation.

2. UNCERTAINTY

Real-world decisions are usually made in a state of uncertainty. To rationally
deal with uncertainty, there exist two mathematical systems: probability theory
[23], and uncertainty theory [24]. Uncertainty theory is a branch of mathematics
demonstrating belief degrees. A belief degree presents the degree which at we
believe the event will happen. If we believe that the estimated uncertainty dis-
tribution is close enough to the belief degrees hidden in the mind of the domain
experts, then we may use uncertainty theory to deal with our own models on
the basis of the estimated uncertainty distributions. This section provides axioms
of uncertainty theory and fundamental concepts and uncertainty distribution in
uncertainty theory (here, we just study linear distribution). As shown in Fig.
1, probability theory is only applicable to modelling frequencies, and uncertainty
theory to modelling belief degrees [27]. From the strictly mathematical viewpoint,
uncertainty theory is an alternative theory of measure. Thus uncertainty theory
starts with a measurable space. So, we will have the following definitions.

Definition 1. [44] Let (T', L) is a measurable space, I' a nonempty set, and L a
o-algebra over I'. FEach element A in L is called an event. A set function M from
L to [0, 1] is called an uncertain measure if it satisfies the following azioms:

Axiom 1 (Normality axiom) M {I'} =1 for the universal set I.
Axiom 2 (Duality axiom) M {A} + M {A°} =1 for any event A.
Axiom 3 (Sub-additively axiom) For every countable sequence of events A1, As, .

“ey

we have M { U Az} < > M{A;}. The triplet (T, £, M) is called uncertainty
i=1 i=1
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space.

Axiom 4 (Product axiom) Let (T, L, M) be uncertainty space for k = 1, 2, ....
A product uncertain measure is defined as follows:

M{ﬁAi} = KMI@{AI@};
k=1

k=1

where Ay are arbitrarily chosen events from Ly for kK =1, 2, .... Indeed, a product
uncertain measure is defined for rectangles, and the notation A is the minimum
operator.

The set function M is called an uncertain measure if it satisfies normality,
duality, and subadditivity axioms. An uncertain measure is interpreted as the
personal belief degree of an uncertain event that may happen.

Definition 2. [27] The smallest o-algebra B containing all open intervals is called
the Borel algebra over the set of real numbers, and any element in B is called a
Borel set. An uncertain variable £ is a measurable function from an uncertainty
space (I', L, M) to the set of real numbers i.e., for any Borel set B of real numbers,
the set following is an event.

{{eBy={yel{(yv)eB}.

Note that an uncertainty distribution presents incomplete information of uncertain
variable. Therefore, it is very important to know the uncertainty distribution. So,
we will have the following theorems and definitions.

Definition 3. [28] For any real number x, the uncertainty distribution ® of an
uncertain variable £ is defined as follows:

@ (x) = M{¢ < o}

Theorem 4. [32] A function ® (z) : ® — [0, 1] is an uncertainty distribution if
and only if it is a monotone increasing function except ® () =0 and ® () = 1.

Definition 5. [25] An uncertain variable & is reqular if its inverse function ®~! ()
exists and is unique for each 0 < a < 1.

Definition 6. [25] Assume that £ is an uncertain variable with regular uncertainty
distribution ® . Then the inverse function ® 1 is called the inverse uncertainty
distribution of &.

Theorem 7. [25] Let &1, &, ..., &, be uncertain variables and f is a real-valued
measurable function then, f(&1, &2, ..., &) s an uncertain variable.
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Definition 8. [2/] Let & be an uncertain variable. Then the expected value of &
is defined by

[e's) 0
Blg= [ Migzoo- [ Mie<o)an
0 —00
Theorem 9. [25] Let us have &1, &3, ..., &, and f be a real-valued measurable func-

tion then, f(&1, &, ..., &) 18 an uncertain variable. Let ¢ be a reqular uncertainty
distribution. If the expected value ewists, then, E[£] = fol ¢~ (a)da.

If € and 7 are independent with finite expected values, then for any real numbers
a and b, we have FE [a€ + bn] = aE [§] + bE [n)].

Theorem 10. [42] Let f and g be comonotonic functions. Then for any &, we
have E[f(§) +9(&)] = E[f(&)] + E[g(§)]. If e is a finite expected value, then the

variance of £ is Var[§] = FE [(f - 6)2:|.

Theorem 11. [41] If e is a finite expected value, a and b are real numbers, then
Var [a& +b] = a*Var [¢].

Theorem 12. [43] Let ¢ be a regular uncertainty distribution and finite expected
value e. Then Var[¢] = fol (671 () — ) dov.

Now, we define linear uncertainty distribution as follows.

Definition 13. [24] £ is called linear if it has a linear uncertainty distribution

0 ifx<a
blr)=4 $=2 a<a<y
1 ifx>b

denoted by L (a,b), where a and b are real numbers with a < b.

Definition 14. The linear uncertain variable & € L (a,b) has an expected value

E[¢] = “t and a variance Var [£] = “’]5)2-

3. INTERVAL MULTI-OBJECTIVE LINEAR PROGRAMMING

In this section, we define fundamental concepts about the ILP and IMOLP
models. An interval number [X~, X*] is shown as X* where X~ < X+. If
X~ = X7, then X% is degenerate. If A~ and A" are two matrices in R™*™ such
that A~ < A%, then the set of matrices A* = [A~, AT] = {A| A= < A< AT} is
called an interval matrix and the matrices A~ and A" are called its bounds. Centre
and radius matrices are defined as: A+ = 2 (AT — A7) and A° = (A~ + A™),
A special case of an interval matrix is an interval vector x* = {x|x~ <x <x*t}
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where x 7, xt € R™ [1].
Consider the following IMOLP where k is the number of objective functions:

max 2% = OFxF = (cfx*, eFx*, ..., cixH)T
s.t.
At < pt (1)

x* > 0.
The characteristic model of model (1) is:

max z=Ox = (¢1X, ..., cxx )T

s.t.
Ax <b (2)
x > 0,

where C € C*, A € A*, b€ b*, and x € x*. Model (2) is referred to as a MOLP.

Definition 15. Let X be the feasible space of MOLP (2). X € X is efficient if
and only if there is no x € X such that Cx > CX, Cx # CX.

In each MOLP, there is rarely a point that can simultaneously maximize all objec-
tive functions. Also, we can define a given point as efficient for the IMOLP model
if it is efficient for at least one characteristic MOLP. Consider the following ILP
model:

max zt = cFx*
st.  Arx* <p*t (3)
x* > 0.

The characteristic model of ILP model (3) is:

max 7z — CX
st. Ax<b (4)
x>0,

where ¢ € ¢*, A € A, b e b+, and x € x*.

To solve the ILP model, the point x is feasible if x € S = {x: A™x < b+, x > 0}
and it is optimal if there exists at least one characteristic model (4) such that x is
the optimal solution. There are many methods for solving the ILP models. One
of the methods is the BWC method which determines optimistic and pessimistic
values for the objective function, proposed by Tong [37]. In this method, the ILP
model is converted into two sub-models. One sub-model has the largest feasible
space (the best model), and the other has the smallest feasible space (the worst
model) [37]. The sub-models are respectively as follows:

max zt =ctx
s.t. A—x <b*t (5)
x >0,
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max 7z =C X
st.  ATx<b~ (6)
x > 0.

The BWC method was extended by Chinneck and Ramadan for ILP models with
equality constraints [8]. A novel ILP method was proposed by Huang and Moore
[16], and Huang and Cao [15] who analyzed the principals of the two-step method
(TSM). Some solutions obtained through the BWC, ILP, and TSM may be in-
feasible. For solving ILP models, new solving methods named three-step method
(ThSM) and robust two-step method (RTSM) were developed [10],[15]. To guar-
antee that the given solutions of ILP method are completely feasible, Zhou et
al. [45] proposed the modified ILP method (MILP). Since the obtained solutions
from the MILP may be non-optimal, then two improved ILP and MILP (IILP
and IMILP) methods were proposed [5],[6]. The solutions to these methods are
completely feasible and optimal [4].

4. EFFICIENT SOLUTIONS IN THE IMOLP WITH THE
EXPECTED VALUE AND VARIANCE

Uncertainty programming is a type of programming which involves uncertainty

variables. Assume that x and £ are decision variable and uncertainty vector re-
spectively. Using the described concepts, definitions, and theorems, we examine
the IMOLP model under EVV operators. Then we convert the IMOLP into the
EVV-ILP model and obtain efficient solutions of the IMOLP model.
In [44], the authors have defined the expected value and variance efficient solutions
for the MOLP models. Since a characteristic model of the IMOLP is a concrete
realization of interval values, we can generalize these definitions for the IMOLP,
which is a family of the MOLPs.

Model (7) displays the MOLP with interval coefficients and uncertainty vari-
ables.

max Ci(xia 6) = (Cit(xiv 51)’ Cg:(xivéé)a ceey C]::;:(X:tv gk))T

s.t.
Atxt < pt (7)
xt >0,
where x* is a decision vector and ¢ is a known uncertain vector which is continuous

and defined on the uncertainty space (I'y, Lx, My ). Since an uncertain objective
function C* (x, ¢) cannot be directly maximized, we maximize the expected value
and minimize the variance value[24], i.e.,

max FE[C* (x*, €)]

s.t.
Arxt < pt (8)
xt >0,
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min  Var [CF (xF, €)]
.z
T et <t 9)

x* > 0.

Note that if model (7) is a minimization model, then we minimize both expected
value and variance models.

Also, in section 4.1, we apply the expected value operator on the MOLP with
interval coefficients and uncertainty variables using the uncertainty theory and
introduce EV-ILP model. Then in section 4.2, we apply the variance operator
on the MOLP with interval coefficients and uncertainty variables, and introduce
V-ILP model. Finally, we introduce EVV-ILP model.

4.1. Expected value operator in the IMOLP

The expected value is the average value of an uncertain variable and represents
the size of an uncertain variable [24]. Also, we apply the expected value operator on
the IMOLP under uncertainty variables as follows. Indeed, the objective functions
are the expected value of the interval objective functions of model (7). Also, we
have:

max E(C*(x*,€)) = (BE(c*] (xF,6)), B(cF) (x*,6)), .., (T} (x5, &)))T
s.t.

A¥xE < b*
xE >0,
(10)
where C’li = (cﬁ,..., clj;)T,l = 1,..., k are objective functions and x € R™.
& =(&,...,€&),j =1,..,n is a continuous uncertain vector such that its com-

ponents are defined uncertain variables on the space (I', £, M). The uncertain
distribution of variables &; is known. Also, the feasible space for the model is
nonempty, convex, and compact. Model (10) is called EV-ILP model. Indeed, in
this model, we have:

+ +
C1,1 il‘%‘: 61,2i$§: Cl,nimi:
C2.1 il'l 0212:&1'2 Cgﬁnil'i:
C*tx* =
+, .+ + ..+ +,.+

Ck,17 X7 Ck,2™ Ty Ckon™ Ty
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Also, E(C*x*,¢) can be written as follows:

E(ci %2t &) E(aiosi &) .. E(c1,Fat, &)

E(c21 ifﬁia&) E(02,2i$2i,§2) E(cooFat &)
E(C*x*,¢) = ' ' ’

E(criFat,&) Elekot23,&) .. ElernTzri, &)

In [44], the authors have defined the expected value efficient solutions for the
MOLP models. Since an IMOLP is a family of the MOLPs, we can generalize this
definition for the IMOLPs.

Definition 16. The solution x* € S is an expected value efficient solution (EV
efficient solution) for model (7) if it is an optimal solution of EV-ILP model (10),
in this case, there is no X € S such that E [C* (X,€)] < E[CT (x*,€)].

So we will have E [cli X&) < E [cli (x*,&)] for 1 = 1,..., k and for at least
onel <lp<p, FE [clio (X, &O)} <FE [clio (x*,flo)],

4.2. Variance operator in the IMOLP

The variance of an uncertain variable is a degree of the spread of the distri-
bution around its expected value. A small value of variance shows the uncertain
variable is firmly concentrated around its expected value; and a large value of vari-
ance indicates the uncertain variable has a widespread around its expected value.
Variance is an important tool in the sciences, where some concepts use it including
statistics and Monte Carlo simulation. By considering a variance operator on the
IMOLP under uncertainty variables, we have:

min  Var(CEx*,€) = (Var(c*1 x*, &), Var(cty x*, &), ..., Var(ct, x*,&))7
s.t.
Arxt < bt
x* >0,
(11)

such that the objective functions are the variance of the interval objective functions
of model (7). Model (11) is called V-ILP model. Also, we have:

Var(cl,lixli,fl) Var(clygixzi,gl) Var(cl’nixf,fl)

Var(ca il‘{t,fg) VCLT(Cg,gi.Z‘Qi,fg) Var(cznimff,«fg)
Var(CHx®,¢) =

Var(ck ixli,ﬁk) Va’l“(Cin a:Qi,ﬁk) Var(ck,nix,il@k)

In [44], the authors have defined the variance efficient solutions for the MOLP
models. Since an IMOLP is a family of the MOLPs, we can generalize this defini-
tion for the IMOLPs.



104 A. Batamiz, M. Allahdadi / Efficient Solutions in the IMOLP

Definition 17. The solution x* € S is a variance efficient solution (V efficient
solution) to model (7) if it is an optimal solution for V-ILP model (11), and there
is no X € S such that Var [cli (x, &)] <Var [cl:t (x*,ﬁl)] , 1=1,..., k and for at
least one, 1 <ly <k, Var [ci (X,&,)] < Var [ci (x*,&,)]-

Consider the following model in which the objective function of model (7) is min-
imization. Therefore, we minimize the expected value and variance.

min  {E[C* (x*, §)], Var [CF (x*, €]}
s.t.

AxxE < bpE

x* >0

(12)

In order to establish the relation between the expected value efficient solutions set
and variance efficient solutions set, we use the following definitions and theorems.

Definition 18. The solution x* € S is an EVV efficient solution for model (7) if
it is an optimal solution to EVV-ILP model (12). In this case, there is no X € S
such that

Bl (®&)] <Elg (x,&)], =1,k
or
Var [cli (X, §l)] <Var [cli (x’ﬂ&)] , l=1,.., k,

and for at least one, 1 <ly <k,

E[cf (%,&,)] < E [ (x*,&,)]
or

Var [ci (%, flo)] < Var [ci (x*,flo)] .

Theorem 19. If Spy is a set of expected value efficient solutions, Sy is the set of
variance efficient solutions and Sgyy is the set of expected value-variance efficient
solutions, then

Sepv U Sy = Sgvv.

Proof. First, suppose that x* € Sgy U Sy and x* ¢ Sgyy. So, by the definition
of EVV efficient solution, there exists X € S such that

Ecf (%,&)] < Ecf (x*,&)] or Var[cf (%,&)] < Var[cf (x*,&)], 1=1,..., k,
and there exists at least one, 1 < Iy < k such that

E [ (X,&0)] < E [ci5 (x*,&0)] or Var[cf5 (X, &0)] < Var [cf (x*,&0)] -

If Ecf (X o) < E[cf (x*,&0)], then 2* ¢ Spy, and if Var [cf (%, &0)] <

Var [cfg (x*,flo)], then x* ¢ Sy. In both cases we have x* ¢ Sgy U Sy, which
contradicts the assumption.
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To show the converse, suppose x* € Sgyv. Therefore, there is no X € S such that

Bl (®%&)] <E[qf x,&)], I=1,..k

Var [cli (%, 51)] <Var [cli (x*,{l)] , =1,k
and for at least one 1 <[y <k,

E [Clio (i? 510)] <E [Clio (X*7€lo)]
or
Var [cj; (%,&,)] < Var [} (x*.&,)],

which results x* € Sgy or x* € Sy, and hence, x* € Sgy USy. O

Now, according to the above definitions and theorems, the interval multi-
objective linear programming model under uncertainty variables and EVV op-
erators can be converted into the following EVV-ILP model:

min {E (¢;),E(q), Var(c)), Var(¢f)}, 1=1,... k
s.t.

Atxt <p*

xE >0

(13)

This model arises from the construction of a model with 4k objective functions
involving the expected value and the variance of uncertain objective functions.

5. MONTE CARLO SIMULATION

Monte Carlo methods are an expansive class of computational algorithms that
depends on repeated random sampling to get numerical results. The essential idea
in Monte Carlo methods is randomness to solve problems that might be deter-
ministic on a fundamental level. A Monte Carlo method is applied for assessment
solving methods [38]. A Monte Carlo simulation can be used to describe any
technique that approximates solutions to quantitative models by using statistical
sampling, or describe a method with uncertainty in model parameters. Also, it is
a type of simulation that represents uncertainty in problems.

In Monte Carlo simulation, the model is simulated a large number (e.g., 1000)
of times. In each simulation, all of the uncertain parameters are sampled (i.e., a
single random value is selected from the specified uncertainty distribution describ-
ing each parameter). Then, the model is simulated through time (with respect
to given parameters) such that the performance of the system can be computed.
This results in large number of separate and independent results.

Different examples for using Monte Carlo method include modelling data sources
with uncertainty in information sources, in math, in physics, and, in assessment of
multi-dimensional definite integrals with hard boundary condition. Also, Monte
Carlo simulation has been used to explore the values of the objective function in
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the IMOLP with equality constraints by considering some distribution functions
including normal, uniform, and beta [3].

In this paper, we use Monte Carlo simulation for the examples based on the nor-
mal distribution function and compare the solutions obtained with the solution
obtained by the EVV method to show the performance assessment of our method.
Indeed, by using Monte Carlo simulation, we transform the IMOLP to the MOLP
such that we generate 1000 random samples from intervals by using the normal
distribution, in which the IMOLP model is converted into the MOLP. In this case,
by using the weighted sum method, we transform the MOLP to LP model, and
solved them by using matlab. Actually, optimal solutions of the LP model and
the efficient solutions in the MOLP, and hence the IMOLP are equivalent.

6. NUMERICAL EXAMPLES

In this section, we solve two examples by using the EVV method.
Example 6.1. Consider an IMOLP as follows:

min 2F = [-3, ~2] 21 + [~2.5, —1.5] 2o

min  z5 = [—4, —3] z1 + [-0.8, —0.5] 29

s.t.
3x1 +4xg < 42 (14)
3x1+ a9 <24

17120, OSCEQSQ

The feasible region of model (14) is given in Fig. 2.

Figure 2: The feasible region of model (14)

Solving by using the EVV method

First, we apply the expected value operator for obtaining efficient points:
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[—3,-2] [-2.5,—L1.5] o\
E( (—4,-3] [~0.8,—0.5] ) < v ) =
<E([3,2]x1) E([=25,—1.5]2») >:

E(=4,—3] 21)  E([~0.8,—0.5] 23)

E([—?)l‘l — 2.5$2, —21‘1 — 1.51‘2])
E([—4a:1 — 0.8],‘2, —3331 — 05332])

Therefore, we have:

E(:f) = [E(21), E(2) | = E([—321&1 — 252281, —231&1 — 1.5221]),
E(zF) = [E(2zy), E(z5) ]| = B([~4x165 — 0.822&2, —321& — 0.52285)),
and hence:

E(Zl_) = E(—3J)1§1 — 2.51‘251) = —3£1E(£1) — 2.53;‘2E(§1)
E(z) = BE(—231& — 1.522&) = =231 E(&1) — 1522 E(&)
E(zy) = B(—4z1& — 0.8228) = —4a1E (&) — 0.822E(&2)

E(z3) = E(—331& — 0.5226) = =321 E(&2) — 0.522E(&)

The expected value and variance are calculated with respect to the uncertainty
distributions. For example, suppose that &1 and & have the following distributions
(we can use another uncertainty distributions).

51 ~ ‘C(lv 3)a §2 ~ ‘C(2a 4)

Also:
0 z<1 0 x <2
p1(z) =4 1 <2z<3, ¢o(z)=¢ %52 2 <z<4
1 >3 1 x>4

So, o7 (a) = 14 2, ¢5'(a) = 2+ 2a. Now, by using Theorems 9 and 12
or definition 14, we have:

E(&) = [y o7 (a)da = [ (1 +2a)da = 2,
E (&) =3,

Var[ey] = [ (617() — El&)) da = [} (1+ 20— 2)%da = 1,
Var ] = %7

In this case, we substitute F (£;) and F (&); therefore, we have:

E(zy) = =321E(&) — 2.522E(&) = —6x1 — 522
E(z]) = =201 B(&) — 1522 E (&) = —4a1 — 312
E(ZQ_) = —4.731E(§2) — 081’2E(§2) = —12.131 — 24.732
B(zy) = =321 E(&) — 0.522E(€2) = —921 — 1525
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Also, the IMOLP model is converted into the following model:

min  {E(27), B(]), E(23), B(23) }
s.t.

3£C1 + 4(E2 S 42

3x1+ 129 <24

2120, 0<22<9

In other words:
min {—6 xrp — 5$2, —4 xr1 — 3.732, —12 xr1 — 2.4562, -9 xr1 — 1.5I2}
s.t.
3£C1 + 4(E2 S 42

3r1 +x9 <24
.’1?120, 0§x2§9

Now, by using the variance operator:

Var(z) = Var(z; ), Var(z) | = Var([-3z1& — 252261, —221& — 1.522&1]),
Var(zéc) = [Var(z;), Var(z;)} = Var([—4z1& — 0.822&2, —321&2 — 0.52283)),

and so:

Var(z;) = Var(—3w1& — 2.52261) = 9212Var(&1) — 6.25222Var(&) =
33?12 — 6.25/33?22,

Var(zf') = Var(—2x1& — 1.529&) = 4212Var (&) — 2.252:2Var(&) =
4/30:2 = 2.25/3152,

Var(zy ) = Var(—4z1& — 0.812&) = 16212 Var(&3) — 0.64x92Var(&) =
16/3 212 — 0.64/3152,

Var(z;) = Var(—3z1& — 0.522&) = 9212 Var (&) — 0.252:2Var (&) =
3212 —0.25/3x9°.

Also, we have:

min {3212 — 6.25/3x2%, 4/331% — 2.25/3w9%, 16/3 1% — 0.64/3x52,321% — 0.25/3x2% }

s.t.
3r1 + 4dxy < 42
31‘1 + Z9 S 24
120, 0<2y<9,

finally, by using model (13), we have:
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—61’1 - 51’2, —4£U1 - 3$2, —121’1 - 2.41’2, —9%1 - 1.51’2,
min 3212 — 6.25/3292, 4/3x1% — 2.25/3152,
16/3 212 — 0.64/3222, 3212 — 0.25/322>
s.t.
31?1 + 4132 S 42
31’1 + X9 § 24
21>0, 0<23<9

Therefore, it can be said, the two-objective models with interval coeflicients are
converted into eight models, by solving them separately, the efficient solutions are
obtained as: (6,6),(8,0), (0,9) .

Solving by using Monte Carlo simulation

In this case, we use Monte Carlo simulation when the interval coefficients of the
ILP can be replaced by a random variable with uncertainty distributions. Also, for
example, we only determine the optimal solutions under the normal distribution,
and then we compare the solutions obtained through the Monte Carlo simulation
and the solutions obtained by our method.

First, we generate 1000 random samples with normal distribution for coeflicients
€11, €12, C21, 22 in IMOLP model (14), then the IMOLP is converted into the
MOLP. We solve the MOLP through the weighted sum method. This process
is repeated 1000 times and solved by using matlab. Fig. 3 shows generated
random samples and the range of the optimal values of the objective function
that is [—28, —18]. Also, for example, we show generated samples in the interval
c11 = [—3, —2] with respect to wy = 0.1, wgy = 0.9. The results are shown in Fig.
3 and Fig. 4. It is noteworthy that the obtained efficient solution with respect to
wy = 0.1, we = 0.9 is the point (0, 9).

The results are shown in Fig. 5 and Fig. 6 for ¢;; = [—3, —2] with respect to
w1 = 0.6, wy = 0.4, in this case, the obtained efficient solution is point (8, 0).
The other solution is (6,6).

The solutions obtained through Monte Carlo simulation are the same as our
method. The results are given in Table 1.

Note that the results obtained by Monte Carlo simulation are got by using matlab.
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Figure 3: Values of the objective function resulted from Monte Carlo simulation for normal
distribution of IMOLP model (14)
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Figure 4: Values of c11 resulted from Monte Carlo simulation for normal distribution of IMOLP
model (14)

Example 6.1 has been discussed in [2, 19, 31, 35]. Note that the results obtained
are stated briefly in Table 2. The solutions obtained in our method are (6,6)7,
(8,0)7 and (0,9)” and generalized ¢ -constraint are (6,6)7, (8,0)7. Solutions
in the WILP method obtained (6,6)7, (2,9), and the solution in the admissible
order, modified maximum regret and weighted sum of maximum regrets methods
is (6,6)7.
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Figure 5: Values of the objective function resulted from Monte Carlo simulation for normal
distribution of IMOLP model (14)
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Figure 6: Values of c11 resulted from Monte Carlo simulation for normal distribution of IMOLP
model (14)

Example 6.2. Consider the IMOLP as follows:

min zli =[1,3]x1 +[-1,1.5] 24

min  z5 = [0.5,2] 1 + [~1.5, —1] z,

min 25 = [1,2] 2 + [~2, —1.5] 29

min 2 = [2,4] 2 + [-2.5, 2] 29 (15)
s.t.

[1,2] 21 + [1.5,3] 22 < [4, 6]
[1,3] 21 + [2.5,3.5] 22 < [12,12]
x1,x2 > 0.

Solving by using the EVV method

First, we apply the expected value operator for obtaining the efficient solutions.
Therefore, we have:
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Table 1: Efficient solutions obtained by Monte Carlo with respect to different weights for example
6.1

Weights Efficient solutions
w1 = 0.1, Wo = 0.9 (O, 9)
w; =0.6, wy =04 (8,0)
w1 =05, we =05 (6,6)

Table 2: Numerical results obtained by using different methods for example 6.1.

Methods Efficient solutions
Our method (6,6)T, (8,0)T, (0,9)T

WILP (6,6)7, (2,9)7

Generalized ¢ -constraint (6,6)T, (8,0)T
Generalized lexicographic (6,6)T
Admissible order (6,6)
Modified maximum regret (6,6)T
Weighted sum of maximum regrets (6,6)T

E(z) = [E(21), E(z) ]| = E([161 — w261, 30181 + L52281)),
E(zy) = (E(23), E(23) | = E([0.521& — 1.522&0, 221& — 2265)),
B(z5) = [E(23), E(23) | = B([v1€3 + 22283, 20163 — 1.522&3)),
E(zy) = |E(z7), E(z]) | = E(221&4 — 253284, 43184 — 2x2&4]),

E(z1) = 31 E(&1) — 22E(&), E(2) = 321 E(&) + 1522 E (&),
E(z3) = 0531 E(&) — 1.5a2E(&), E(23) = 221 E(&) — 22E(&2),
E(z3) = 21E(&3) — 202 E(&3), E(29 ) = 221 E(&3) — 1532 E(&3),

BE(z]) = 201E(&) — 2.522E(&4), E(2]) = 421 E(&4) — 222 E(&s).

The expected value and variance are calculated with respect to the uncertainty
distributions. For example, suppose that &1, &, €3 and &4 have the following dis-
tributions (we can use the other uncertainty distributions).
gl ~ ‘C(]w 3)u 62 ~ £(2u 4)7 63 ~ 5(37 5)764 ~ £(47 6)

So, o7 () =1+2a, ¢y (a)=2+2a, ¢3'(a) =342, ¢y (a) =4+ 2.

Also, we have:

E(&) = [y 7' (a)da = [} (1+2a)da =2, E(&) =3, E(&) =4, E (&) = 5,
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Var[&] = f; (61" (o) = [Eﬂ) daffo (14 20— 2)*do = i,
Var [52] 3 Var [53] = 3a Var [54} g

Therefore, by using E (&), E (&), F (&3), and E (&4), we have:
2£C1 — 2%2, 61’1 + 31’2, 1.5 1 — 4.5%2,

min 6x1 — 3x2,4x1 — 8x3, 81 — 629,
10 T, — 12.5332, 20 T, — 10332

s.t.
[1 3|z + [2 5 3. 5] xg [12 12]
1,72 20

Now, by using the variance operator:

Var(z;)=Va (xlfl —x9&1) = 212V ar(&1) — 222Var(&) = 1/3 112 — 1/3252,
Var(z]) = 32,2 + 2. 25/3:02 ,
Var(zy ) = 0.25/3 112 — 2.25/3222,
Var(zf) =4/3 112 — 1/3x52,
Var(zy) =1/3x1% — 4/322,
Var(z§) =4/3 112 — 2.25/3z42,
(21) ?

=4/321% — 6.25 /32,2,

Also, we have:

1/3%12 - 1/?)5U227 3(E12 + 2.25/3%22,
0.25/3 2,2 — 2.25/3292,4/3 1% — 1/31,2,

MY 173202 — 4/3252, 4/3 2,2 — 2.25 /33,2,
4/3 1‘12 — 6.25/31‘22, 16/3 1‘12 — 4/31‘22
s.t.
[1,2] 21 + [1.5,3] 2 < [4, 6]
1,3z, + [2.5, 35]x2 12,12]
T1,x2 Z 0.

Also, by using model (13), we have:

2x1 — 2xo, 621 4+ 322,1.527 — 4.529, 621 — 322,
41‘1 - 8I2,8I1 - 65627 10I1 - 12.5$2720I1 - 10932,
1/3%12 - 1/3$22,3$12 + 2.25/3‘%22,

MY 0.25/3202 — 2.25/3202,4/3 212 — 1/32,2,
1/3 212 — 4/329%,4/3 212 — 2.25/3242,
4/3.7312 — 6.25/3.7322, 16/3 1‘12 — 4/31)22,
s.t.

[1,2] 21 + [1.5, 3] 2 [4 6]
[1,3] 21 + [2.5,3.5] 2o < [12,12]
T1,T2 >0
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Since constraints are interval, by using the BWC method we convert into two
sub-models with the optimistic and pessimistic constraints and then we solve sub-
models as follows.

Sub-model 1

2x1 — 229,621 + 329, 1.5217 — 4.529, 621 — 329,421 — 89,
Sl‘l — 6I2, 10.%‘1 — 12.51‘2,20.%‘1 — 101‘2, 1/31‘12 — 1/31‘22,
min 3x12 +2.25/3252,0.25/3 112 — 2.25/3x52,
4/3I12 - 1/35822, 1/31‘12 - 4/31‘22,4/31312 - 2.25/313227
4/3x1% — 6.25/3222,16/3 212 — 4/3x5°
s.t.
1+ 1.525 <6
T1 4 2.519 < 12
T1,T2 Z 0
The solution obtained is the point (0,4).

Sub-model 2

21’1 — 2%2,6.%1 + 31’2, 151’1 — 4.5$2,6$1 — 3$2,
4x17 —8x9,8x1 — 629,102 — 12.529,2021 — 1024,
1/31‘12 — 1/31’22,3.’1}12 + 2.25/33}22,

i 0.25/3 112 — 2.25/3152,4/3 2,2 — 1/3252,
1/3%12 - 4/35822,4/3 1‘12 - 2.25/31‘22,
4/3x1% — 6.25/3122,16/3 212 — 4/3x5°

s.t.

2r1 + 322 < 4
3z, + 3.510 <12
T1,T2 Z 0.

The solution obtained is the point (0, 1.33). Therefore, we have the range of the so-
lutions obtained by the BWC method as ([0,0] , [1.33, 4])7, that ([0,0] , [1.33, 4])"
includes optimal solutions and the best and the worst solutions for model (15).

Solving by using Monte Carlo simulation

Since objective functions and constraints are interval, we generate 1000 random
samples with normal distribution for ¢;;, 7 = 1,..., 4,7 = 1,2 and a5, b;, i =
1,2, 7 =1,2 in IMOLP model (15), then the IMOLP is converted into the MOLP
model. Now, by the weighted sum method, the MOLP model is solved. This
process is repeated 1000 times and solved by using matlab. For example, we show
generated samples in the interval a1l = [1, 2], c11 = [1, 3], b1 = [4, 6] and values
of the objective function with respect to wy; = 0.1, ws = 0.9.

The results are given in Fig. 7, Fig. 8, Fig. 9, and Fig. 10.
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Figure 7: Values of all resulted from Monte Carlo simulation for normal distribution of IMOLP
model (15)
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Figure 8: Values of c11 resulted from Monte Carlo simulation for normal distribution of IMOLP
model (15)

The obtained efficient solution with respect to wy; = 0.1 and ws = 0.9 is the
point (0, 1.8346) and lies in the interval ([0,0] , [1.33, 4])T, which has beeb ob-
tained by the EVV method. The other efficient solutions are obtained with respect
to the other different weights. See Table 3.

Note that if weights change, then we can obtain different efficient solutions that
all of them lic in the interval ([0,0] , [1.33, 4])”. Indeed, we assessed the solutions
obtained by EVV method by using Monte Carlo simulation, and the results are
good.
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Figure 9: Values of bl resulted from Monte Carlo simulation for normal distribution of IMOLP
model (15)

sample numbers
N
5]

R -5.5 5 4.5 -4 -3.5 -3 -2.5 2 -5 A
objective function

Figure 10: Values of the objective function resulted from Monte Carlo simulation for normal
distribution of IMOLP model (15)

Example 6.2 has been discussed in [33]. Note that the results obtained are stated
briefly in Table 4.

The solutions obtained in our method are ([0,0] , [1.33, 4])”, and solutions in the
Fuzzy set based approach are (3,3)7, (0,0)7.
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Table 3: Efficient solutions with respect to different weights
Weights Efficient solutions

Wi =01, wy =09 (0, 1.8346)

wi =02, wy =038 (0, 3.4862)

w =03, ws =07 (0, 1.8963)

w1 =04, wy =06 (0, 1.83%0)

Table 4: Numerical results obtained for example 6.2.

Methods Efficient solutions
Our method ([0,0] , [1.33, 4])T
Fuzzy set based approach (3,3)T, (0,0)T

7. CONCLUSION

In this paper, we discuss interval multi-objective linear programming (IMOLP)
models. First, we define the expected value and variance operators (EVV oper-
ators), and then we study the IMOLP models under these operators. In this
method (EVV method), the IMOLP models are converted into the interval linear
programming (ILP) models under the EVV operators, which are called EVV-ILP
models. Then, Monte Carlo simulation is used to the performance assessment of
the obtained efficient solutions by considering uncertainty distribution functions
(in this paper, we used the linear uncertainty distribution). The proposed method
is applicable for large scale models, too. Although the number of objective func-
tions increases remarkably and some of objective functions have similar solutions,
it is suitable for multi-objectives and real-world problems with interval coeflicients
and uncertainty variables in the objective functions and constraints. Finally, to
illustrate the performance of the proposed method, numerical examples are solved.
Acknowledgments: We would like to thank the anonymous referee for construc-
tive comments and suggestions that have helped to improve this paper.
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