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Abstract: To compare the geometry of two or more geometric structures consisting of
N ordered points, and which can be considered as solids in three-dimensional space, we
developed a method based on the minimization of a certain comparison function. This
function is the sum of squared distances between pairs of elements of the two structures
under comparison with the same indices. Distances change when changing the mutual
orientation of the structures with all possible shifts and rotations of the structures as rigid
bodies. The comparison function is minimized with respect to Euler angles, provided
that centers of mass of two compared structures are superposed. The minimization of
the comparison function with respect to Euler angles is carried out numerically by the
Rosenbrock method. The developed method for comparison of geometric structures is
used to solve problems in structural chemistry, that is to compare molecules with the
same structural formula in one crystal.
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1. INTRODUCTION

This paper is devoted to the theoretical and numerical study of a mathematical
model for comparing two molecules in a problem arising in structural chemistry.
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This model reduces to comparing two objects consisting of N ordered points with
rigid geometry, behaving as solids in R3. The principle of comparison in this model
is based on the optimization of the superposition of these two objects using shifts
and rotations. The optimal superposition of these objects involves the minimiza-
tion of a certain function comparing the geometry of the objects with respect to
shifts and rotations. The function is represented as the sum of distance functions
between the points of two objects with the same indices. To study the comparison
function, we use optimization theory [1]–[4] and Rosenbrock zero-order method
[5] to minimize it. The obtained results are used to study the geometry of real
molecules.

Molecules of many substances can exist in the form of conformers [6] (confor-
mation – spatial arrangement of atoms in the molecule), where the substance has
the same structural formula (with the same connection order of atoms) but differ-
ent spatial structure. In this case we have the problem of objective comparison of
their geometry in space, as the standard characteristics-bond lengths (interatomic
distances) and valence angles do not always show differences in the geometry of
molecules. In addition, there is a need to compare fragments of chemically differ-
ent molecules, or the nearest environment of atoms (coordination polyhedra), or
other large or small complexes of atoms. For this purpose, we propose our newly
developed method of quantitative comparison of the geometry of molecules based
on the minimization of a certain comparison function by shifting and rotating
molecules. It is proved that the minimum with respect to shifts is achieved by the
superposition of some characteristic points, conventionally called centers of mass
of molecules. The search for the minimum with respect to angles of rotation is
carried out by the Rosenbrock zero order method.

2. MATHEMATICAL MODEL DESCRIPTION

In the following two sections we will give some definitions and prove a theorem.

Definition 1. A geometric structure, or simply a structure, is a rigid geometric
construction of N ordered points in R3 with coordinates (xi, yi, zi), i = 1, . . . , N ,
whose motion in R3 is the same as that of a solid body.

We assume that to each point of the structure with the number i, corresponds
the weight coefficient wi > 0, and

∑N
i=1 wi = W > 0. Let ik, k = 1, . . . ,K be

indices of non-zero weights wi. Then

W =

N∑
i=1

wi =

K∑
k=1

wik > 0. (1)

Let two geometric structures be given, where each consists of N points with
coordinates (x1,i, y1,i, z1,i) and (x2,i, y2,i, z2,i), i = 1, . . . , N . For each fixed index
i, the point with coordinates (x1,i, y1,i, z1,i) of the first structure corresponds to
the point (x2,i, y2,i, z2,i) of the second structure.
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Let the geometry of the two structures be the same. Take any two points
given by the vectors r1,0 and r2,0, which are equally positioned with respect to
the corresponding geometric structure. In particular, as r1,0 and r2,0, we can
take the points of the corresponding structures with the same indices. Then the
identical points can be matched through the rotations until the two structures
coincide. If the structures under consideration have different geometry, it is natural
to formulate the problem of optimal “superposition” of structures by means of
various shifts and rotations of one structure relative to another as solid bodies.

The criterion of optimal superposition of two geometric structures will be re-
lated to the minimum with respect to shifts and rotation angles (Euler angles [7])
of the comparison function of the form

U(r1,0, r2,0, ϕ, θ, ψ) =

N∑
i=1

wi|r1,i − r1,0 −Q(r2,i − r2,0)|2, (2)

where the vectors r1,i and r2,i determine the position of points in the first and
the second structure; the vectors r1,0 and r2,0 determine the displacement of the
first and the second structures to the corresponding points; Q = Q(ϕ, θ, ψ) is the
rotation matrix cosψ cosϕ− sinψ sinϕ cos θ − cosψ sinϕ− sinψ cosϕ cos θ sinψ sin θ

sinψ cosϕ+ cosψ sinϕ cos θ − sinψ sinϕ+ cosψ cosϕ cos θ − cosψ sin θ
sinϕ sin θ cosϕ sin θ cos θ


corresponding to Euler angles ψ, θ, ϕ (the angle of precession, the angle of nutation,
and the angle of rotation, respectively).

Thus, the function U of the form (2) is the sum of the distances between the
homonymous points of two geometric structures with weights wi after matching
the points determined by the vectors r1,0 and r2,0 and after rotation of the second
structure relative to the first one. We will examine some problems of minimizing
the comparison function of two structures of the form (2).

3. MINIMIZING THE COMPARISON FUNCTION OF
GEOMETRIC STRUCTURES

We show that by superposing some characteristic points of two geometric struc-
tures, it is possible to reduce the problem of minimization of the comparison func-
tion with respect to a full set of variables to finding the minimum of the function
U with respect to rotation angles ϕ, θ, ψ.

Here we give a more complete and rigorous formulation and the proof of the
idea proposed in [8].

Theorem 2. The minimum of the function U is achieved at the point correspond-
ing to “centers of mass” of two geometric structures. “Centers of mass” are de-
termined by the vectors

rj,0 =
1

W

N∑
i=1

wirj,i, j = 1, 2. (3)
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Proof. In function (2) let us fix the angles ϕ, θ, ψ, and therefore we fix the
matrix Q. Thus, we consider the function (2) with respect to the variables r1,0
and r2,0. With respect to these variables, the function is convex and quadratic,
so its minimum on r1,0, r2,0 is achieved at the points where the derivative is zero.
Thus, we obtain the equations

∂U

∂r1,0
= 0,

∂U

∂r2,0
= 0. (4)

Differentiating, we have

−2

N∑
i=1

wi(r1,i − r1,0 −Q(r2,i − r2,0)) = 0, (5)

2QT
N∑
i=1

wi(r1,i − r1,0 −Q(r2,i − r2,0)) = 0. (6)

Due to the non-degeneracy of the matrix QT , the equation (6) is equivalent to (5).
By solving (5) with respect to r1,0, we obtain

r1,0 =
1

W

N∑
i=1

wir1,i −Q
( 1

W

N∑
i=1

wir2,i − r2,0

)
. (7)

For the expression in the bracket (8) to equal zero, we choose vector r2,0 from the
condition

r2,0 =
1

W

N∑
i=1

wir2,i. (8)

Then from (7), it follows

r1,0 =
1

W

N∑
i=1

wir1,i. (9)

As noted above, equations (5) and (6) are equivalent. Therefore, the points
r1,0 and r2,0 obtained from (8) and (9) satisfy equations (4), and the function (2)
with fixed angles ϕ, θ, ψ attains its minimum at r1,0 and r2,0. The theorem is
proved.

Thus, the minimum of the function (2) corresponds to the shift of the “centers
of mass” of geometric structures, determined by the formulae (9) and (8) into the
coordinate center. The function (2) can now be viewed as a function of rotation
angles

U(ϕ, θ, ψ) =

N∑
i=1

wi|r1,i − r1,0 −Q(ϕ, θ, ψ)(r2,i − r2,0)|2, (10)
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where r1,i, r2,i are given as coordinates of geometric structures, and “centers of
mass” r1,0 and r2,0 are calculated by formulae (9) and (8). The minimum of
function (10) is determined by the rotation angles ϕ, θ, ψ.

Let the minimum of function U = U(ϕ, θ, ψ) of the form (10) be attained at
the point (ϕ0, θ0, ψ0). The measure of proximity of two geometric structures will
be represented by the value

s =
(U(ϕ0, θ0, ψ0)

W

)1/2
. (11)

This value can be considered as a quantitative characteristic of the proximity of
geometric structures since it is the average distance between points with the same
indices in two structures after “superposition”.

We call two structures ”approximately equal” if

s =
( 1

W
min
ϕ,θ,ψ

U(ϕ, θ, ψ)
)1/2

=
(U(ϕ0, θ0, ψ0)

W

)1/2
6 s0, (12)

where s0 is a given value (in applications, it is determined by the practical situation
in consideration). We call the inequality s 6 s0 the criterion of proximity of
structures. When carrying out numerical calculations, the value of s may contain
a computational error.

We note that if the minimum point is not unique and there is a point (ϕ1, θ1, ψ1)
such that U(ϕ1, θ1, ψ1) = U(ϕ0, θ0, ψ0), then the value of s does not change and
the nonuniqueness of the minimum point does not affect the criterion of proximity
of structures.

Thus the comparison of the geometry of two geometric structures can now be
split into three stages: 1) the displacement of the center of mass of each of the
geometric structures into the center of the coordinates; 2) minimization of function
(10) with respect to the angles; 3) calculation of function s of the form (12), and
the conclusion about the proximity of the structures.

To compare the two structures in accordance with the algorithm 1)–3), a nu-
merical determination of the minimum of the comparison function U(ϕ, θ, ψ) with
respect to the rotation angles after the superposition of the centers of mass of the
structures is carried out below.

4. NUMERICAL SOLUTION OF THE OPTIMIZATION PROBLEM

This section presents the results of a computational experiment comparing
geometric structures by minimizing the comparison function (10). Since the com-
parison function (10) is not convex, we applied zero-order Rosenbrock method [5]
for its numerical minimization. This method was effectively used to solve problems
in structural chemistry [8]. The program implementing the comparison algorithm
1)–3) uses the optimization library program [9] to minimize the comparison func-
tion (10) by the Rosenbrock method.

We show the effectiveness of the comparison algorithm 1)–3), proposed above,
on the examples used in structural chemistry. We consider a molecule with ordered
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Table 1: Atoms’ coordinates in three molecules of lactide, C6H8O4 in angstroms

No x1,i y1,i z1,i x2,i y2,i z2,i x3,i y3,i z3,i
1 O1 1.766 4.283 0.385 0.200 -0.513 -2.171 6.816 1.823 4.003

2 O2 2.955 2.955 1.996 2.448 -2.053 -2.144 9.027 3.243 3.260

3 O3 2.874 3.825 3.672 3.350 -0.669 -3.593 9.104 2.088 1.387

4 O4 1.522 2.776 -1.187 -0.400 -1.489 -0.297 6.466 3.285 5.606

5 C1 2.066 3.097 -0.164 0.254 -1.527 -1.308 7.233 2.801 4.814

6 C2 3.090 2.264 0.556 1.185 -2.645 -1.687 8.682 3.202 4.678

7 C3 2.817 3.643 2.484 2.352 -1.106 -3.090 8.697 2.182 2.513

8 C4 2.595 4.753 1.482 0.947 -0.650 -3.414 7.819 1.166 3.179

9 C5 1.890 5.940 2.053 0.925 0.679 -4.086 7.087 0.283 2.207

10 C6 2.977 0.803 0.267 1.510 -3.571 -0.548 9.045 4.516 5.263

structure of atoms (points) as a geometric structure. When comparing molecules,
we are be interested in differences in the spatial structure of molecules with the
same structural formula.

In the examples considered below, the results of comparison of molecules with
lactide C6H8O4 structure are shown, investigated in paper [10], consisting of
N = 10 main atoms (4 atoms of oxygen, 6 atoms of carbon). The coordinates
of hydrogen atoms were not taken into consideration in this calculation since the
accuracy of their determination is lower than that of other atoms and their pres-
ence is insignificant for the problem of comparison of molecules. The geometry of
these molecules is shown in Fig. 1. The coordinates of the molecules were obtained
on the basis of X-ray diffraction data. In the experiment, the superposed atoms
in the molecules are assigned the weight wi = 1.

Figure 1: Positions of the C and O atoms in the lactide molecule, C6H8O4.

Example 3. Comparison of three lactide molecules.
In Table 1, the coordinates of oxygen atoms Oj , j = 1, . . . , 4 and of carbon

Cj , j = 1, . . . , 6 in angstroms in three symmetrically independent (they are present
in one crystal) molecules of lactide C6H8O4 are shown.

The application of the comparison algorithm 1)–3) to compare molecules 1 and
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2, 1 and 3, 2 and 3 yields the results given in Table 2. The points of minimum
with respect to the rotation angles obtained for these calculations are also given
in Table 2.

Practical experience in the study of conformation of molecules based on the
results of the comparison of a significant number of structures [11], [12] led to
the following conventional classification of the molecules according to the value
of the proximity measure (in chemistry it is called the proximity characteristic):
s 6 s0 = 0, 1 Å – the molecules are approximately, or substantially, identical, 0, 1 Å
< s 6 0.2 Å – molecules are close, s > 0, 2 Å – the molecules are different.

The analysis of values of the residuals ∆ri = |r1,i − r2,i|, i = 1, . . . , 10, that
is, the distances between atoms with the same indices in both molecules after
the superposition (at the point of minimum of the comparison function U), and
the value s0 = 0.1 Å allows us to conclude that the first and the third molecules,
as well as the second and the third are almost identical in geometry, since in
both cases s < s0. The greatest differences are between the first and the second
molecules (s = 0.11 Å> s0); these molecules can be considered as close. One can
see from Table 2 that the atoms of the substituents (atoms outside the cycle)
have the maximum residuals. To better identify these differences, an additional
calculation was made: when molecules were matched with respect to atoms from
cycles (calculation with weight multipliers wi = 0 for substituents). In this case,
we got s < 0.04 Å. This means that the cycles within the molecules are almost the
same.

Example 4. Identification of the molecule own symmetry.
On the basis of the comparison algorithm 1)–3), the self-symmetry of the lactide

molecule was tested. The assumed second-order axis of symmetry passes through
the center of the cycle vertically. To apply the comparison algorithm 1)–3), a
“second” molecule was formed in which the atomic numbering order was changed
compared to the original molecule. Due to the supposed symmetry, atom No1 of
the second molecule must correspond to atom No2 of the first one, atom No5 must
correspond to atom No7, etc. The total renumbering of atoms in the “second”
molecule is given in Table 3. The results of comparison of “two” molecules are
given in the same table. Since the comparison characteristic in this case is s =
0.009 Å< s0 = 0.1 Å, the molecules are considered equal and therefore, the original
molecule has its own second-order symmetry with high accuracy.
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Table 2: The values of “residuals” ∆ri, characteristics s and rotation angles ϕmin, θmin, ψmin

for the point of minimum of the comparison function

Atom ∆ri ∆ri ∆ri ∆ri
for molecules when combining for molecules for molecules

1 and 2 molecules 1 and 2 1 and 3 2 and 3
wi = 1 by cycles wi = 1 wi = 1

1 O1 0.020 0.009 0.011 0.015
2 O2 0.040 0.021 0.044 0.004
3 O3 0.156 0.138 w = 0 0.076 0.081
4 O4 0.188 0.210 w = 0 0.098 0.090
5 C1 0.040 0.051 0.039 0.011
6 C2 0.056 0.064 0.016 0.043
7 C3 0.046 0.036 0.038 0.009
8 C4 0.059 0.049 0.029 0.038
9 C5 0.149 0.127 w = 0 0.113 0.041
10 C6 0.176 0.196 w = 0 0.139 0.049

s 0.111 0.043 0.073 0.047
ϕmin 73,9◦ 253,6◦ 80,4◦ 27,8◦

θmin 111,0◦ 249.4◦ 157,5◦ 74,8◦

ψmin -42,0◦ 138.6◦ 59,0◦ -51,0◦

Table 3: The value of “residuals” ∆ri, characteristic s and the rotation angles ϕmin, θmin, ψmin

for the minimum value of comparison functions when checking the own symmetry of the molecule

Atom Permutation ∆ri of the molecule 1
of atoms and of the molecule 1

with permutation
1 O1 2 O2 0.008
2 O2 1 O3 0.008
3 O3 4 O4 0.012
4 O4 3 O3 0.012
5 C1 7 C3 0.011
6 C2 8 C4 0.008
7 C3 5 C1 0.011
8 C4 6 C2 0.008
9 C5 10 C6 0.006
10 C6 9 C5 0.006

s = 0.009
ϕmin = 71,6◦

θmin= 216,8◦

ψmin = 108,4◦
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