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1. INTRODUCTION

A pair of dual problems is called symmetric if the dual of the dual is the orig-
inal problem, i.e., if we remodel the dual program in the form of the primal, its
dual is the primal. The concept of symmetric dual programs was introduced and
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developed by Dorn [9] and Dantzig et al. [8].

Mond and Hanson [18] extended symmetric duality to variational problems. Since
then, many authors [2, 3, 4, 11, 16, 19, 21] have worked on variational problems.
Bector and Husain [6] formulated Wolfe and Mond-Weir type dual variational
problems and established various duality results to relate properly e�cient solu-
tions of the primal and dual problems. Kim and Lee [15] constructed a pair of
multiobjective symmetric dual variational programs and proved duality results for
e�cient solutions under invexity.

Mangasarian [17] introduced the concept of second and higher order duality for
nonlinear problems. Since then, many authors [1, 5, 10, 13, 20] have worked in
this area. Second-order duality for variational problems has been discussed in
[7, 12, 14]. Husain et al. [14] formulated the following pair of the variational
problem (CP) and its second-order dual (CD):

(CP) Minimize
b∫
a

f(t, x, ẋ)dt

Subject to
x(a) = 0 = x(b),

g(t, x, ẋ) 5 0, t ∈ I,

(CD) Maximize
b∫
a

(f(t, u, u̇)− 1
2β(t)TFβ(t))dt

Subject to
u(a) = 0 = u(b),

fu + y(t)T gu −D(fu̇ + y(t)T gu̇) + (F +H)β(t) = 0, t ∈ I,

b∫
a

{y(t)T g(t, u, u̇)− 1

2
β(t)THβ(t)}dt ≥ 0,

y(t) ≥ 0, t ∈ I,

where f : I × Rn × Rn → R, g : I × Rn × Rn → Rm, x : I → Rn, y : I →
Rm, β(t) : I → Rn, t ∈ I, F = fuu − Dfuu̇ + D2fu̇u̇ and H = (y(t)T gu)u −
D(y(t)T gu)u̇ +D2(y(t)T gu)u̇.

Gulati and Mehndiratta [12] modi�ed the above dual as below:

(ĈD) Maximize
b∫
a

(f(t, u, u̇)− 1
2β(t)TFβ(t))dt
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Subject to
u(a) = 0 = u(b),

fx(t, u, u̇) + gx(t, u, u̇)y(t)−D(fẋ(t, u, u̇) + gẋ(t, u, u̇)y(t))

+(F +H)β(t) = 0, t ∈ I,

y(t)T g(t, u, u̇)− 1

2
β(t)THβ(t)dt = 0, t ∈ I,

y(t) = 0, t ∈ I,

where

H(t, u, u̇, ü,
...
u ,

....
u , y(t), ẏ(t), ÿ(t),

...
y(t)) = (gx(t, u, u̇)y(t))x−2D(gx(t, u, u̇)y(t))ẋ

+D2(gẋ(t, u, u̇)y(t))ẋ −D3(gẋ(t, u, u̇)y(t))ẍ, t ∈ I

and

F (t, x, ẋ, ẍ,
...
x ,

....
x ) = fxx(t, x, ẋ)− 2Dfxẋ(t, x, ẋ)

+D2fẋẋ(t, x, ẋ)−D3fẋẍ(t, x, ẋ), t ∈ I

The symbols are as de�ned above.

In this work, we introduce a pair of multiobjective second-order symmetric dual
variational problems. Weak, strong and converse duality theorems for this pair
are established under the assumption of η-bonvexity/η-pseudobonvexity. At the
end, the static case of our problems has also been discussed.

2. PREREQUISITES

Let K = {1, 2, ..., k} and for r ∈ K, the set Kr = K − {r}. The following conven-
tion for vector inequalities will be used:
for a, b ∈ Rn,

a = b⇔ ai = bi, i = 1, 2, ..., n;
a > b⇔ a = b and a 6= b;
a > b⇔ ai > bi, i = 1, 2, ..., n.

We consider the following multiobjective variational problem (P) :
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(P) Minimize (
b∫
a

φ1(t, x, ẋ)dt,
b∫
a

φ2(t, x, ẋ)dt, ...,
b∫
a

φk(t, x, ẋ)dt)

Subject to x(a) = α, x(b) = β,

g(t, x, ẋ) 5 0, t ∈ I,

where I = [a, b] is a real interval and x(t), t ∈ I is an n-dimensional piecewise
smooth continuous function with derivative ẋ. φi : I × Rn × Rn → R (i ∈ K)
and g = (g1, g2, ..., gm)T : I × Rn × Rn → Rm are continuously di�erentiable
functions. The symbols φix and φiẋ denote the column vectors of partial deriva-

tives with respect to x and ẋ, respectively, i.e., φix =

(
∂φi

∂x1
,
∂φi

∂x2
, ...,

∂φi

∂xn

)T
and

φiẋ =

(
∂φi

∂ẋ1
,
∂φi

∂ẋ2
, ...,

∂φi

∂ẋn

)T
. Similarly φixx denotes the n×n matrix with respect

to x, i.e.,

∂2φi

∂x1∂x1
∂2φi

∂x1∂x2
. . .

∂2φi

∂x1∂xn
∂2φi

∂x2∂x1
∂2φi

∂x2∂x2
. . .

∂2φi

∂x2∂xn
. . . .
. . . .
. . . .

∂2φi

∂xn∂x1
∂2φi

∂xn∂x2
. . .

∂2φi

∂xn∂xn



and gx denotes the m× n Jacobian matrix with respect to x, i.e.,



∂g1
∂x1

∂g1
∂x2

. . .
∂g1
∂xn

∂g2
∂x1

∂g2
∂x2

. . .
∂g2
∂xn

. . . .

. . . .

. . . .
∂gm
∂x1

∂gm
∂x2

. . .
∂gm
∂xn



The partial derivatives φixẋ, φ
i
ẋx and gẋ are de�ned similarly.

Let
M i(t, x, ẋ) = φixx − 2Dφixẋ +D2φiẋẋ −D3φiẋẍ, t ∈ I.
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De�nition 1. [14] The functional
b∫
a

φi(t, x, ẋ)dt is said to be η-bonvex at u(t) ∈

Rn if there exists a function η : I × Rn × Rn → Rn such that for all x(t) ∈
Rn, qi(t) ∈ Rn, t ∈ I,

b∫
a

φi(t, x, ẋ)dt−
b∫
a

φi(t, u, u̇)dt+
1

2

b∫
a

qi(t)TM i(t, u, u̇)qi(t)dt

=

b∫
a

η(t, x, u)T (φix(t, u, u̇)−Dφiẋ(t, u, u̇)+M i(t, u, u̇)qi(t))dt.

Let X denote the set of all feasible solutions of (P ).

De�nition 2. [12] A point x0(t) ∈ X is said to be an e�cient solution of (P) if
there exists no x(t) ∈ X such that

b∫
a

φr(t, x, ẋ)dt <

b∫
a

φr(t, x0, ẋ0)dt, for some r ∈ K

and

b∫
a

φi(t, x, ẋ)dt 5

b∫
a

φi(t, x0, ẋ0)dt, for all i ∈ Kr.

3. SECOND-ORDER MOND-WEIR TYPE SYMMETRIC
DUALITY

We present the following second-order symmetric dual multiobjective variational
problems and prove duality theorems under η-bonvexity assumptions :

Primal (V P ):

Minimize (
b∫
a

(f1(t, x, ẋ, y, ẏ)− 1
2p

1(t)TA1p1(t))dt, ...,
b∫
a

(fk(t, x, ẋ, y, ẏ)− 1
2p
k(t)TAkpk(t))dt)

Subject to

x(a) = 0 = x(b), ẋ(a) = 0 = ẋ(b), (1)

y(a) = 0 = y(b), ẏ(a) = 0 = ẏ(b), (2)

k∑
i=1

λi(f iy(t, x, ẋ, y, ẏ)−Df iẏ(t, x, ẋ, y, ẏ) +Aipi(t)) 5 0, t ∈ I, (3)
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y(t)T
k∑
i=1

λi(f iy(t, x, ẋ, y, ẏ)−Df iẏ(t, x, ẋ, y, ẏ) +Aipi(t)) = 0, t ∈ I, (4)

λ > 0, (5)

Dual (V D):

Maximize (
b∫
a

(f1(t, u, u̇, v, v̇)− 1
2q

1(t)TB1q1(t))dt, ...,
b∫
a

(fk(t, u, u̇, v, v̇)− 1
2q
k(t)TBkqk(t))dt)

Subject to

u(a) = 0 = u(b), u̇(a) = 0 = u̇(b), (6)

v(a) = 0 = v(b), v̇(a) = 0 = v̇(b), (7)

k∑
i=1

λi(f ix(t, u, u̇, v, v̇)−Df iẋ(t, u, u̇, v, v̇) +Biqi(t)) = 0, t ∈ I, (8)

u(t)T
k∑
i=1

λi(f ix(t, u, u̇, v, v̇)−Df iẋ(t, u, u̇, v, v̇) +Biqi(t)) 5 0, t ∈ I, (9)

λ > 0, (10)

where, for all i ∈ K,

(i) λi ∈ R, λ = (λ1, λ2, ..., λk),
(ii) f i : I ×Rn ×Rn ×Rm ×Rm → R,
(iii) Ai(t, x, ẋ, y, ẏ) = f iyy − 2Df iyẏ +D2f iẏẏ −D3f iẏÿ, t ∈ I,
(iv) Bi(t, x, ẋ, y, ẏ) = f ixx − 2Df ixẋ +D2f iẋẋ −D3f iẋẍ t ∈ I,
(v) pi : I → Rm, qi : I → Rn.

All the derivatives of x, and all the partial and total derivatives of f used in this
paper are assumed to be continuous.

4. DUALITY THEOREMS

Let F and G be sets of all feasible solutions of the primal problem (V P ) and its
Mond-Weir type dual problem (V D) respectively. Let η1 : I×Rn×Rn → Rn and
η2 : I ×Rm ×Rm → Rm.

Theorem 3. (Weak duality). Let

(i) (x(t), y(t), λ, p(t)) ∈ F and (u(t), v(t), λ, q(t)) ∈ G,
(ii) η1(t, x, u) + u = 0 and η2(t, v, y) + y = 0,

(iii)
b∫
a

f i(t, ., ., v(t), v̇(t))dt be η1-bonvex at u(t) for �xed v(t), and
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(iv) −
b∫
a

f i(t, x(t), ẋ(t), ., .)dt be η2-bonvex at y(t) for �xed x(t).

Then

b∫
a

(fr(t, x, ẋ, y, ẏ)− 1

2
pr(t)TArpr(t))dt <

b∫
a

(fr(t, u, u̇, v, v̇)− 1

2
qr(t)TBrqr(t))dt,

(11)

for some r ∈ K and

b∫
a

(f i(t, x, ẋ, y, ẏ)− 1

2
pi(t)TAipi(t))dt 5

b∫
a

(f i(t, u, u̇, v, v̇)− 1

2
qi(t)TBiqi(t))dt,

(12)

for all i ∈ Kr, can not hold.

Proof: Suppose, to the contrary, that the inequalities (11) and (12) hold. Since
λ > 0, we get

b∫
a

k∑
i=1

λi[f i(t, x, ẋ, y, ẏ)−f i(t, u, u̇, v, v̇)− 1

2
pi(t)TAipi(t)+

1

2
qi(t)TBiqi(t)]dt < 0.

(13)

Inequality (8) and hypothesis (ii) yield,

(η1(t, x, u) + u)T
k∑
i=1

λi[f ix(t, u, u̇, v, v̇)−Df iẋ(t, u, u̇, v, v̇) +Biqi(t)] = 0, t ∈ I.

Using the constraint (9), it reduces to

ηT1 (t, x, u)

k∑
i=1

λi[f ix(t, u, u̇, v, v̇)−Df iẋ(t, u, u̇, v, v̇) +Biqi(t)] = 0, t ∈ I,

which implies

b∫
a

ηT1 (t, x, u)

k∑
i=1

λi[f ix(t, u, u̇, v, v̇)−Df iẋ(t, u, u̇, v, v̇) +Biqi(t)]dt = 0. (14)
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Since
b∫
a

f i(t, ., ., v(t), v̇(t))dt is η1-bonvex at u(t) for �xed v(t),

b∫
a

[f i(t, x, ẋ, v, v̇)− f i(t, u, u̇, v, v̇) + 1
2q
i(t)TBiqi(t)]dt =

b∫
a

ηT1 (t, x, u)[f ix(t, u, u̇, v, v̇)−Df iẋ(t, u, u̇, v, v̇) +Biqi(t)]dt. (15)

Multiplying (15) by λi > 0, summing over all i ∈ K and then using the inequality
(14), we obtain

b∫
a

k∑
i=1

[λi(f i(t, x, ẋ, v, v̇)− f i(t, u, u̇, v, v̇) +
1

2
qi(t)TBiqi(t))]dt = 0. (16)

Similarly, inequality (3) and hypothesis (ii) give

(η2(t, v, y) + y)T
k∑
i=1

λi(f iy(t, x, ẋ, y, ẏ)−Df iẏ(t, x, ẋ, y, ẏ) +Aipi(t)) 5 0, t ∈ I.

This along with inequality (4) yields

ηT2 (t, v, y)

k∑
i=1

λi(f iy(t, x, ẋ, y, ẏ)−Df iẏ(t, x, ẏ, y, ẏ) +Aipi(t)) 5 0, t ∈ I,

or

b∫
a

ηT2 (t, v, y)

k∑
i=1

λi(f iy(t, x, ẋ, y, ẏ)−Df iẏ(t, x, ẋ, y, ẏ) +Aipi(t))dt 5 0. (17)

Now, η2-bonvexity of −
b∫
a

f i(t, x(t), ẋ(t), ., .)dt at y(t) for �xed x(t), implies

b∫
a

f i(t, x, ẋ, y, ẏ)− f i(t, x, ẋ, v, v̇)− 1

2
pi(t)TAipi(t))dt

= −
b∫
a

ηT2 (t, v, y)(f iy(t, x, ẋ, y, ẏ)−Df iẏ(t, x, ẋ, y, ẏ)+Aipi(t))dt.

Using λi > 0, i = 1, 2, ..., k, and (17), we get

b∫
a

k∑
i=1

λi[f i(t, x, ẋ, y, ẏ)− f i(t, x, ẋ, v, v̇)− 1

2
pi(t)TAipi(t))dt = 0. (18)
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The above inequality, along with (16), yields

b∫
a

k∑
i=1

λi[f i(t, x, ẋ, y, ẏ)− f i(t, u, u̇, v, v̇)− 1

2
pi(t)TAipi(t) +

1

2
qi(t)TBiqi(t)]dt = 0,

which contradicts (13). Hence, inequalities (11) and (12) can not hold.

In order to establish a strong duality theorem, we need the following Fritz John
necessary optimality conditions [12] :

Theorem 4. Let x̄(t) be an e�cient solution of (P). Then there exist λ̄i ∈ R, i ∈
K and a piecewise smooth function ȳ : I → Rm such that
k∑
i=1

λ̄i(φix(t, x̄, ˙̄x)−Dφiẋ(t, x̄, ˙̄x)) + gx(t, x̄, ˙̄x)ȳ(t)−D(gẋ(t, x̄, ˙̄x)ȳ(t)) = 0, t ∈ I,

ȳ(t)T g(t, x̄, ˙̄x) = 0, t ∈ I,

(λ̄, ȳ(t)) ≥ 0, t ∈ I.

In the following theorems, (V P )λ0 and (V D)λ0 , respectively denote the problems
(V P ) and (V D) when λ is �xed to be λ0.

Theorem 5. (Strong duality). Assume that the assumptions of weak duality the-
orem are satis�ed for all feasible solutions of (V P ) and (V D). Fix λ = λ0. Let

(i) (x0(t), y0(t), λ0, p0(t)) be an e�cient solution of (V P ),
(ii) the matrices Ai, t ∈ I, i ∈ K, be nonsingular,
(iii) the set {f iy(t, x0, ẋ0, y0, ẏ0)−Df iẏ(t, x0, ẋ0, y0, ẏ0) +Aipi0(t), t ∈ I, i ∈ K} be
linearly independent, and
(iv) the matrix

k∑
i=1

λi0[(Aipi0(t))y−D(Aipi0(t))ẏ+D2(Aipi0(t))ÿ−D3(Aipi0(t))...y +D4(Aipi0(t))....y ], t ∈ I,

be positive or negative de�nite.

Then (x0(t), y0(t), λ0, p0(t) = 0) is an e�cient solution of (V D)λ0 .

Proof : Since (x0(t), y0(t), λ0, p0(t)) is an e�cient solution of (V P ), there exist
α, µ ∈ Rk and piecewise smooth functions β : I → Rm, γ : I → R, such that the
following Fritz John conditions (Theorem 4.2) are satis�ed at (x0(t), y0(t), λ0, p0(t)):

k∑
i=1

αi[f ix−Df iẋ− 1
2 (pi0(t)TAipi0(t))x+ 1

2D(pi0(t)TAipi0(t))ẋ− 1
2D

2(pi0(t)TAipi0(t))ẍ

+ 1
2D

3(pi0(t)TAipi0(t))...x − 1
2D

4(pi0(t)TAipi0(t))....x ] + (β−γy0)
k∑
i=1

λi0[f iyx−Df iyẋ
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−Df iẏx+D2f iẏẋ−D3f iẏẍ+(Aipi0(t))x−D(Aipi0(t))ẋ+D2(Aipi0(t))ẍ−D3(Aipi0(t))...x

+D4(Aipi0(t))....x ] = 0, t ∈ I, (19)

k∑
i=1

αi[f iy−Df iẏ− 1
2 (pi0(t)TAipi0(t))y+ 1

2D(pi0(t)TAipi0(t))ẏ− 1
2D

2(pi0(t)TAipi0(t))ÿ+

1
2D

3(pi0(t)TAipi0(t))...y − 1
2D

4(pi0(t)TAipi0(t))....y ]+(β−γy0)
k∑
i=1

λi0[Ai+(Aipi0(t))y

−D(Aipi0(t))ẏ +D2(Aipi0(t))ÿ −D3(Aipi0(t))...y +D4(Aipi0(t))....y ]

−γ(t)

k∑
i=1

λi0[f iy −Df iẏ +Aipi0(t)] = 0, t ∈ I, (20)

(β − γy0)T [f iy −Df iẏ +Ai(t)pi0(t)]− µi = 0, t ∈ I, i ∈ K, (21)

−αiAipi0(t) + λi0Ai(β − γy0) = 0, t ∈ I, i ∈ K, (22)

βT
k∑
i=1

λi0[f iy −Df iẏ +Aipi0(t)] = 0, t ∈ I, (23)

γy0
T

k∑
i=1

λi0[f iy −Df iẏ +Aipi0(t)] = 0, t ∈ I, (24)

µTλ = 0, (25)

(α, β(t), γ(t), µ) 6= 0, t ∈ I, (26)

(α, β(t), γ(t), µ) = 0, t ∈ I. (27)

Since λ > 0, (25) implies µ = 0. Therefore from (21), we get

(β − γy0)T (f iy −Df iẏ +Aipi0(t)) = 0, t ∈ I, i ∈ K. (28)

As Ai, t ∈ I, i ∈ K are nonsingular, from (22), it follows that

(β − γy0)λi0 = αipi0(t), t ∈ I, i ∈ K. (29)

Equation (20) can be written as

k∑
i=1

(αi−γλi0)(f iy−Df iẏ)+
k∑
i=1

λi0Ai[(β−γy0)−γpi0(t)]+
k∑
i=1

[(Aipi0(t))y−D(Aipi0(t))ẏ

+D2(Aipi0(t))ÿ −D3(Aipi0(t))...y +D4(Aipi0(t))....y ][(β − γy0)λi0 − 1

2
αipi0(t)] = 0
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or using (29),

k∑
i=1

(αi−γλi0)[f iy−Df iẏ+Aipi0(t)]+ 1
2

k∑
i=1

λi0[(Aipi0(t))y−D(Aipi0(t))ẏ+D2(Aipi0(t))ÿ

−D3(Aipi0(t))...y +D4(Aipi0(t))....y ](β − γy0) = 0, t ∈ I. (30)

Premultiplying (30) by (β − γy0) and using (28), we get

(β − γy0)T
k∑
i=1

λi0[(Aipi0(t))y −D(Aipi0(t))ẏ +D2(Aipi0(t))ÿ

−D3(Aipi0(t))...y +D4(Aipi0(t))....y ](β − γy0) = 0, t ∈ I,

which by hypothesis (iv) imply

β = γy0, t ∈ I. (31)

From (30) and (31),

k∑
i=1

(αi − γλi0)[f iy −Df iẏ +Aipi0(t)] = 0, t ∈ I.

Since the set {f iy −Df iẏ +Aipi0(t), t ∈ I, i ∈ K} is linearly independent,

αi = γλi0, t ∈ I, i ∈ K. (32)

Now, suppose γ(t) = 0 for some t = t0, i.e., t0 ∈ I and γ(t0) = 0. Then re-
lations (31) and (32) imply β(t) = 0 and αi = 0, i ∈ K, respectively. Hence
(α, β(t0), γ(t0), µ) = 0, which contradicts (27). Therefore

γ(t) > 0, t ∈ I. (33)

As λi0 > 0, i ∈ K, from (32) we conclude that

αi > 0, i ∈ K.

From (29) and (31),

αipi0(t) = 0, t ∈ I, i ∈ K,

and hence

pi0(t) = 0, t ∈ I, i ∈ K.

Therefore (19) and (31) imply

k∑
i=1

αi(f ix −Df iẋ) = 0,
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which in view of (32) and (33) give

k∑
i=1

λi0(f ix −Df iẋ) = 0,

and so

x0
T

k∑
i=1

λi0(f ix −Df iẋ) = 0.

Thus it follows that (x0(t), y0(t), λ0, p0(t) = 0) is a feasible solution of (V D)λ0 and
the objective function values of (V P ) and (V D)λ0 are equal.

If (x0, y0, λ0, p0 = 0) is not an e�cient solution for (V D)λ0 , then there exists a
point (u0, v0, λ0, q0) ∈ G such that

(
b∫
a

(f1(t, u, u̇, v, v̇)− 1
2q

10(t)TB1q10(t))dt, ...,
b∫
a

(fk(t, u, u̇, v, v̇)− 1
2q
k0(t)TBkqk0(t))dt)

≥ (
b∫
a

(f1(t, x, ẋ, y, ẏ)− 1
2p

10(t)TA1p10(t))dt, ...,
b∫
a

(fk(t, x, ẋ, y, ẏ)− 1
2p
k0(t)TAkpk0(t))dt),

which contradicts the conclusion of the weak duality theorem. Hence (x0, y0, λ0, p0 =
0) is an e�cient solution for (V D)λ0 .

The converse duality theorem is stated below. Its proof is analogous to that of the
strong duality theorem proved above.

Theorem 6. (Converse duality). Assume that the assumptions of weak duality
theorem are satis�ed for all feasible solutions of (V P ) and (V D). Fix λ = λ0.
Also, let

(i) (u0(t), v0(t), λ0, q0(t)) be an e�cient solution of (V D),
(ii) the matrices Bi, t ∈ I, i ∈ K, be nonsingular,
(iii) the set {f ix(t, u0, u̇0, v0, v̇0)−Df iẋ(t, u0, u̇0, v0, v̇0) +Biqi0(t), t ∈ I, i ∈ K} be
linearly independent, and

(iv) the matrix
k∑
i=1

λi0[(Biqi0(t))x−D(Biqi0(t))ẋ+D2(Biqi0(t))ẍ−D3(Biqi0(t))...x +

D4(Biqi0(t))....x ], t ∈ I, be positive or negative de�nite.

Then (u0(t), v0(t), λ0, q0(t) = 0) is an e�cient solution to (V P )λ0 .
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5. RELATED PROBLEMS

If the time dependency of (V P ) and (V D) is removed, then these problems reduce
to the following second-order symmetric multiobjective nonlinear problems stud-
ied by Suneja et al. [22], under the same hypotheses.

(SP)

Minimize (f1(x, y)− 1
2p

1T f1yy(x, y)p1, ..., fk(x, y)− 1
2p
kT fkyy(x, y)pk)

Subject to
k∑
i=1

λi(∇yf i(x, y) +∇yyf i(x, y)pi) 5 0,

yT
k∑
i=1

λi(∇yf i(x, y) +∇yyf i(x, y)pi) = 0,

λ > 0,

(SD)

Maximize (f1(u, v)− 1
2q

1T f1xx(u, v)q1, ..., fk(u, v)− 1
2q
kT fkxx(u, v)qk)

Subject to
k∑
i=1

λi(∇xf i(u, v) +∇xxf i(x, y)qi) = 0,

uT
k∑
i=1

λi(∇xf i(u, v) +∇xxf i(u, v)qi) 5 0,

λ > 0.

6. CONCLUSION

A pair of multiobjective second-order symmetric dual variational problems has
been formulated and various daulity results have been proved assuming η-bonvexity
on the functionals involved. It may be noted that these results can be extended to
establish the duality relations for the second-order fractional variational programs
and other related programming problems over cone constraints.
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