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Abstract: A probabili t ic a lgorithm for lead I' I ction in rin ' network I dl' cril -d and
analyzed. The election is based on com pari on of random prum numl ('1" drawn
independently by each station from a globally d fin d finite mt ger range, wi th u e
resolved by additional e lection round , and with all tation ha mg qual han' of
being elected. The algorithm i shown to b partially c rr ct and to t rrninat with
probability 1. The main resul t of the pap I' i an xplicit formula for th pr I abili ty
distribution of election t im (i.e ., th numb r of round ). It i also hown that all
moments of the distribu tion exist. A di tinctiv f ature of th und rr ly ing rin r mod .( i
the assumption that each receiving sta t ion can di tingui h it own me age from
those of others, bu t that the stations are oth irwis indi tingui hahle and u no global
information. T his assumption i rnotivat d by u reliability ar rument ba d on
reconfigurable local area network of ring topology.

Key words : Distributed algorithms, probabili stic algorithms, ring n t wo r k , ilr-ct ion of ring

leader, election time, permutation runs.

1. INTROD CTI N

In a distributed computer system consisting of n stations connect d by a
communication network, it is sometimes necessary to single out a unique stat ion,
called the leader, tha t will per fo rm an operation of global significance for the ystem . If
there exists no central coordinator that could designate the leader, we are facing the
problem of d istributed election of the leader. The problem can be analyz d under a

•MaiJing address is address of t he second author
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variety of specific assumptions concerning network topology, synchronization,
determinism, distinguishability of stations, and global information available to them. A
substantial part of research on this topic has so far concentrated on ring networks of
two different types. In the first type, ring stations are assumed to have unique
identifiers (see e.g. [3]) , and deterministic algorithms can be used to elect a particular
station that has the largest identifier or satisfies some other criteria. In the second
type, ring stations are indistinguishable, and leader election is impossible unless
probabilistic techniques are used to break the inherent symmetry of the ring [1].
Moreover, in the absence of station identifiers, a receiving station cannot distinguish
its own messages from those of others unless it is given some global information, such
as ring size. In either case, the primary goal is to develop correct election algorithms
and optimize their performance with respect to suitable complexity measures. Both
types of network permit unrestricted use of information available to stations.

In this paper we describe and analyze a leader election algorithm which is
essentially different from previous work in that it restricts the way in which stations
may use the available information. Specifically, we assume that each sta tion can
directly decide whether a received message is its own or comes from another source,
bu t c a n n o t derive any other information from station identifiers. In other words,
each station can distinguish itself from others, but can see no distinction between
other stations. As a consequence, the elect ion problem remains symmetric, and
probabilistic algorithms must be used, but the weakened distinguishability concept
still suffices to make probabilistic elect ion without global information possible. The

•

algorithm is based on the familiar method of comparing random priorities that are
independently drawn by each station from a globally defined finite range of integers.
Distinct stations may happen to draw equal priorities, in which case additional election
rounds are needed. The election method is equitable in the sense that all stations have
identical chances of being elected. Each stat ion can exchange with others only random
data, which prevents it from deriving any global information about the system through
communication, except for testing solitude, i.e., the sta tus of being the only active
station in the ring.

The approach that restricts the use of sta tion identifiers has been motivated by a
reliability argument, developed in [4, 5] in the context of reconfigurable local area
networks of ring topology. The gist of the argument is that, in the presence of faults,
leader election should be based on reliability criteria, and if failure is followed by a new
election, reelection of faulty stations should be avoided by randomization. In
particular, if all stations have identical reliability properties, and assuming a certain
fault model, equitable probabilistic elect ions were shown to have the best properties.

•

Our analysis of the algor ithm starts by showing its cor rectness. In order to
analyze the election time, defined as the number of rounds used to elect the leader, we
first derive a combinatorial result. The result determines the number of all
permutations of a multiset that have a given number of 'circular' runs, i.e., runs that
can extend beyond n-th position and continue at the first, as permitted by the ring
topology of the network. The main result is an explicit formula for the distribution of
election time. Finally, we prove that all moments of the distribution exist.

-
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2. THE ELECTION ALGORITHM

In this section we first describe the distributed system model, and then formulate
the election algorithm and prove its correctness.

The distributed system consists of n stations C o, i E 1 where n > 1 and
I n'

In = {O, ... ,n-l}. A network ofring topology connects each station Ci with station CiGH ,

where i ED 1 = i + 1 for i < n-l, and (n-l) e 1 = O. In general, operations Ea and G on
In are defmed as follows:

ckr
x ED y = ((x + y) mod n)

ckr
x G y = ((x - y) mod n)

For some m > 1, the set J m = {I, ... ,m} is called the priority range of the system.

In the course of an election, each station Ci can invoke function randomt i, m) to
generate a random priority xi E J m: C, can also use procedures eendii, xi)' to transmit
a message containing its identifier i and priority xi' and receiuetj, Xj)' to receive and
remove from the ring an incoming message of the same format. However, the only
permitted use of the received identifier j is in testing whether i = j , i.e., whether C,
itself or another station is the source of the message.

The leader election algorithm works as follows. Initially, all stations are active. In
each iteration of the loop, called an election round, some stations may become inactive.
The algorithm terminates when no active stations exist. One may fmd it simpler to
think of election rounds in different stations as being performed synchronously. If
such external synchronization existed, each station would need an input buffer that
can hold a single message. However, the algorithm can be performed asynchronously,
in which case an n-element input buffer is needed.

type station = O..(n-l);
priority -= l..m;

function leadertii dation);

var active: boolean;
j: station;
Xi' Xj: priority;

begin

active := true;
repeat

xi:= randomt i; m);
send(i, Xi);
receiueij, Xi);
active := xi:5: Xj and i *j;
leader:= i <i:
until not active;

end {leader};
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Note that only active neighbors communicate in each round. The message sent by
C. will be received and removed by its 'downstream' active neighbor. The message

t

received by C, was sent by its 'u pst ream' active neighbor Cj . When i = i. the closest
neighbor of Ci in either direction is itself, which means that C, is the only remaining
active station, and hence the leader. Otherwise, Ci gets eliminated when it has a
higher priority number, which means a lower precedence, than its upstream active
neighbor Cj" Thus the progress in each round depends not only on the priorities chosen
by stations, but also on t he arrangement of those priorities along the logical ring
formed by the cur rently active sta t ions.

Our main purpose in observing the election process is to follow how the number
of active stations is being gradually reduced from n to 1. The system state is therefore
defined as the number of current ly active stations. An election round in which that
nu mber is actually reduced is called productive. However, note that all active stations
can be assigned equal priorities, in which case none is eliminated and the round is
called unproductive. In general, the probability of transit ion of the system from state i
to state j in k rounds will be denoted by p (i ,j, k). In particular, p (n , 1, k) is then the
probability that the election will be completed in exactly k rounds, since an election
cannot end with an unproductive round.

Since the election algorithm is probabilistic, we can speak of its correctness only
in probabilistic terms.

THEOREM 1. The election algorithm terminates with probability 1 and elects a unique
leader .

PROOF. To show- partial correctness, suppose the algorithm terminates, and let
i ) < ... < ik , where k ~ 1, be the indices of active sta tions at the beginning of the last
round. Suppose k > 1. Then X i < ... < Xi since i 2 , .. . ,ik get eliminated in the last round,
and hence by transitivity X i <\i. However, since i ) gets eliminated as well, it follows
that X i < X i - a contradiction. Ttus k = 1, and i ) gets eliminated since i = j = i l' which
implies that C, is the unique leader. To show termination suppose the contrary,
namely that an ~xecution of the algorithm never terminates. Then the elect ion process
must reach its minimu m number i of active sta t ions, where i > 1, after some number
of rounds, and remain in that state forever. Let 7t(n, i ) be the probability that the
system reaches sta te i in a fmite number of rounds. An unproductive round in state i
arises when all i sta t ions choose the same priority (out of m. possibilities); hence its
probability is p (i , i , 1) = m(l/m )i = (l/m)i- l. The probability of j unproductive rounds

in sta te i is then p (i ,i,j) = p(i , i , l Y = (l/mY<i-l). The combined probability of
transition from sta te /I to a fixed state i in an arbitrary number k of rounds (with last
round productive), und then remaining in state i for another j rounds is

Qij = nin, i)p(i, i, j ) s p(i, i, j) =(1/m)j(i -Il

The probability that the elect ion never terminates is

II
•

Q = lim Qij ~ ( /I - 1) lim (l/mV = 0
J -'oo; 2 J , 00
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3. PRIORITY ASSIGNMENTS

It is evident from the election algorithm that in each productive round there exist
two active stations C, and Cj with priorities xi and xj , respectively, such that C, is the
first upstream active neighbor of i and x · < x · In each instance of such situationI j" ,

station C, will become inactive. More generally, if priorities of a sequence of
consecutive (in the direction of ring traffic) active stations form a maximal
monotonically increasing chain, then all stations in that sequence, except the first one,
will be inactive in the next election round. Below we formally define and investigate
such chains in order to determine the number of election rounds needed to complete
an election. We use the term 'R-chain' to emphasize the underlying ring topology, in
which the successor of en is station C1.

DEFINITION 1. A sequence of priorities x r' xr$l' ... ,xs chosen by stations Cr , Cr$l' ... ,Cs'

where s .8 r ~ 0, is called a non-decreasing R-chain if and only if x r:::; ... :::;xs' x r01 > x r'

and X s > x s6n. A sequence of priorities x r' xr$l' ... ,xs is called an increasing R-chain if

and only if'x, < ... < x S ' x r 0 1 ~xr' and x, ~xs611·

Thus, R-chains are maximal chains of priorities found in a ring. For this reason,
an increasing R-chain is not necessarily a non-decreasing R-chain (but is always a
part of one). In dealing with R-chains it is useful to rely on a simpler concept of
'L-chains' which are fully contained within the 'linear' sequence Xl' ... ,x,I and do not

. depend on ring topology. In other words, Cn has no successor in L-chains, and C l has
no predecessor, as if we had cut the ring after C; to obtain a linear ('bus') topology.

DEFINITION 2. A sequence of priorities x r' X r+l' ... ,xs chosen by the stations
Cr, Cr + l' ... ,C

s
' where s ~ r, is called a non-decreasing L-chain if and only if

(1) x r:::; < x
S

' (2) r = 1 or x r_ l > x r' and (3) s = n or X s > Xs +1· A sequence of priorities

X ,X +1' ,x is called an increasing L-chain if and only if (1) x; < ... < xs' (2) r = 1 orr r S _

x r_1 ~x,., and (3) s = n or Xs ~xs+l.

For notational simplicity, we have defmed R-chains and L-chains with respect to
the complete system configuration with n stations, and we shall derive their properties
using the same context. However, those properties will later also be applied to smaller
configurations, consisting only of active nodes. The same remark refers to the notation

for priority assignments that we now introduce.

NOTATION 1. For all integers n, k, 1 <k s n, let Lnk be the set of all priority

assignments l: In~ Jm with exactly k increasing L-chains and Lnk the cardinality of

L
nk

. Let Lnkand Lnkbe analogously defined for non-decreasing L-chains, ~k and R nk

for increasing R-chains, and inkand Rnk for non-decreasing R-chains.

In proving properties of chains we shall need the following result.
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LEMMA 1. For all integers n ~ 1, m ~ 1, a ~ 0, and nj ~ 0, I5,.j 5,. m,

m a+n · -I rna+n-I
L n n~ == n

n l +.. ·+ n m =n J=l J

PROOF. We identify the coefficients of'x" in the expansions

co <ma co rna + n -1
{ (x) == (1 - xr m a

== L x n
== L x

n

n=O n n=O n

and

(1)

(2)

m co

{(x) == TI (1- xra
== L

j =l n=O

m a+n .-I
L TI /

n l +.. + nm =n j =l J

(3)

-
PROPOSITION 1. The numbers L nk and Lnk of priority assignments with exactly k

L-chains have the following properties:

-
(a) L n n- k+1 == L n,k

k
- k

(b) Ln ,k == L (-I)
i=O

n+I
•
l

m(k-i )+ n-I

n

•-
PROOF.To show part (a) , let h:Lnk~Lnn_k+l be the mapping defined by

,
- - - - - -

h(l )( i) =1(n - i - 1) for all 1 ELk and i E I . To show that 1 ELk indeed implies thatn n n
- - -

1= h(l ) belongs to L n n-kwl» note that for all i, 05,. i < n-I, 1(i ) > 1(i + 1) holds if and only

if l en - i - 2) < l en - i -I). In other words, a non-decreasing chain boundary between
- -
1(i) and 1(i + 1) exists if and only if there exists no increasing chain boundary between

- -
l en - i ;- 2) and l en - i - 1). Now 1 E L

nk
implies that there are k non-decreasing chains

-
in 1 , and hence k-I values of i corresponding to non-decreasing chain boundaries

- -
between 1(i) and 1(i + 1). Since i has n-I possible values, there are (n-I ) - (k-I) = n-k

values of i such that there is an increasing chain boundary between len - i - 2) and
-

l en - i - I ), and hence n - k + 1 increasing chains in l. Thus h (Lnk ) c L n n-k+l' The fact

-
tha t h is a bijection now follows trivially from the definition. Hence Ln n- k + 1 ==~ k :,

-
To show (b), let L~r ·n," denote the number of priority assignments with exactly k

non-decreasing L- chains and with exactly n 1 ones, n 2 twos, .. . ,nm m-e , where

""~Il n i = nand n ,' ~ 0 for all i E J . Note that i n 1
k.. ·

n
", is the number of permutationsL 1= m "

•



-

(4)

(5)

(6)

--

Rnk = kRnk + (n - k + I )Rnk-l

-

with exactly k runs of the multiset {n 1"1, n2"2, ... ,nm"m}. It was shown in Exercise
5.1.3.12 of[2] that

- k . n+l m n · -l+k -i
Lnl ···nm = "(_1)1 . fl J

nk ~ t n ·
i=O j =l J

1(n with exactly k chains and let Rnk be the cardinality of 1\.nk' Clearly, for each

-

r E ~k' there are k values of i such that (r , i ) E (j(nk ' and n-k values of i such that

-

-

and the statement follows directly by Lemma 1.

THEOREM 2. The numbers R nk and L nk satisfy the relationship

n k . L k .
Rnk = L (-I)J-l n - J+ l

k j =l n -l
k -j

Substituting (4) into (5) and changing the order of summation,

- k . n+l m n · -l+k -i
-: = L (-IY. L Il J

. 0 t . nJ·1= n1+..+nm=n J=l

(r , i ) E 1(n is interpreted as a probability assignment r E ~ in ring system with a 'cut'

between C, and Cj ElH . The (increasing) chains of (r, i) coincide with the (increasing)

R-chains of r, except that a chain cannot cross the cut. Thus for r E ~k' (r, i ) has k

chains if r ei ) > rti EB 1) and k + 1 chains otherwise. Let 1\.nk be the set of all elements of

From the defmition it is clear that
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(r , i ) E 1\.n k+l' Conversely, Rnk contains k elements of the form (r , i) for each r E ~k'

and n - k + 1 elements (r , i) for each r E ~k-l' Thus

- ~-
Next, let h : 1(n ~ Ln be the mapping her, i)(j ) = r(j fB i ) for all (r, i) E 1\.n and all

i E In' Intuitively, h er, i ) can be viewed as the sequence of priorities of r , cyclically
rearranged to start at the cut, i.e. , with r( i fB 1 ) rather than with r(I ). Since the chains

-
of (r, i ) are precisely the (increasing) L-chains of h er, i ), it follows that h(1\.nk ) = Lnk·

Note that h er, i ) = h er', i') is equivalent to (Vj) r(j fBi ) = r'(j fB i' ), i.e. to the condition
that r' can be obtained by 'circular shifting' of r, It follows that for each (r , i ) the set

-
{ (r ', i' ) Ih er', i ') = h er, i ) } has exactly n elements, which implies that Rnk = nLnk·

•

•
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Substituting into (6), we get

def
Rno = 0

nLnk = kRnk + (n - k + l )Rnk- 1 for k e In
(7)

(8)

and hence the recurrence relation for R nk:

Rnk=i[nLnk- Cn -k+1)Rnk-d for keln

The statement of the theorem follows from (8) by straightforward mathematical
induction on k.

4. THE PROBABILITY DISTRIBUTION OF ELECTION TIME

Our intention is to find the probability that the system changes its state from n
to 1 using k rounds. Let p(i,), k ) denote the probability of transition from state i to
state} in k rounds, and let p (i ,}) be an abbreviation for p (i,}, 1). For k = 0 we have
p ( i J' 0) = 8.· where 8·· is the Kronecker delta symbol. From the definition it is clear

" IJ IJ
that

p(i , } , k + 1) =

•
I

I p (i , l, k) ptl, } )
I=j

o

if i ~ j and i > 1

otherwise

(9)

(0)

By using the last recurrence relation , state transition probabilities of the form
p Ci ,j , k ) ca n be reduced to those of the formp(i,j ). The latter are computed as follows.

PnoPosITION 2. The probability of transition from state i to} in one round is:

Ho ·(.. » I,Jpl., J = .
m'

PROOF. By Definition 1, a single round transition from state i to state} will take place
if the current priority assignment r has exactly j increasing R-chains. Thus p Ci ,}) is
the probability that r e fJ\;j- Since the number of assignments in fJ\;.} is Rij' and the
number of all possible assignments in state i is m', the statement follows.

We can now prove the main result of the paper. Let us define a random variable
T n' called the election lime, as the number of rounds used in the elect ion process. The
probability distribu tion of elect ion time is given by the following result.

11 =;\ .. . i,+\ = 1
d\ +.. ·+·d , =k - r

r =1

THEOREM 3. The probability of election in exactly k rounds is
min(k,n -I )

P {T" = k l = I

Proof. Suppose the elect ion has k rounds, out of which r are productive. learly, r is at
leas t 1 and at most min(ll , n-1 ). Descending from sta te n to 1, the system assumes r +1
distinct sta tes ij and has dj ~ 0 unproductive rounds in i

j
, 1 ~} s r+ 1. The election
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starts in state ij =n and terminates in ir+ 1 = 1, so dr + 1 = O. The total number of

unproductive rounds is L~=l d j = k - r. The probability of dj unproductive rounds in

state ij followed by a productive round leading to state ij +1 is p(ij, ij' d) p (ij , ij +l' 1);

the probability that this occurs for all} is obtained as a product over}. Thus
min(k,n- 1) r

P{Tn=kl= L L Op(ij,ij,d)p(ij ,ij +1,1) (11)
r =l n =i1 >· · ·>ir +1 =1 j =l

d, +··+d r =k - r

To complete the

p(ip '» d) = [p(ip ip 1) jdj , and
immediately follows.

proof, note that p(ij , ij + 1, 1) = p(ij , ij + 1) ,

p(ij, ij' 1) = mO/m)ij = m 1-ij , and the statement

5. CONVERGENCE RESULTS

In this section we first establish an upper bound on P{ Tn = k}, and then use it to
prove the existence of all moments of the probability distribution.

LEMMA 2. For k > n, the probability distribution of election time Tn satisfies the
.inequality

P{Tn = k} s mn-k-1kn-2

PROOF. In the expression for P{ Tn = k} as given by Theorem 3, we first note that for
each} < r, i

j
> 2 holds and hence mdj(l-ij } s m -dj. Since p (ij , ij +1) s 1, it follows that

O
r d}l-ij } u, .. )< Or - d j _ r -k (12)

m p ~J' ~J+1 - m - m
j =1 j =l

Furthermore, observe that r-I distinct integers i2, •.• ,ir can be selected from

{2, ... ,n-I} in
n-2 -

ways, and that the number h-r of unproductive rounds can be
r -I

partitioned into d 1, ... ,dr in
k-r+r-I

r-I

k-I
. We get

r-I

n -l

P{Tn =k} < L
r =l

n-2

r -I
k -1 r -k

m
r-I

(13)

k-I
Using ::;; (k -Ir- 1 we obtain

r-I

n -l n - 2
P{Tn = k} < L (m(k-l)r-1m1- k =

r-I
r =1

=m1-k(mk _ m +I)n-2

< n -k- 1kn - 2_m
(4)
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which completes the proof.

An immediate consequence of Lemma 2 is the following result.

THEOREM 4. The expected value, variance, and all higher-level moments of the
probability distribution of election time Tn exist.

PROOF. It suffices to show that the infmite series
~

Sq(Tn) = IkqP{Tn = k}
k=l

(15)

(17)

converges for all q > O. By Lemma 2, for k > n, the general term of (15) satisfies

kqP{Tn = k} < mn-I-kkn+q-2 (16)

The series I: 0 ksxk is convergent in the interval (-1, 1). Putting s = n + q - 2

and x = 11m we see that the series mn-II: okn+q- 2(1/ mi is convergent for all m,

n, q and Sq(Tn) exist for all q. Then E = SI(Tn) is the expected value of election time
and, in general,

u, = i)k - E)q P{Tn = k} = ±(_l)q-i ~ Eq-iSi(Tn)
k=l i=O L

is the moment of level q of the probability distribution.

6. CONCLUSION

A simple probabilistic algorithm for leader election in a ring has been formulated
and proved correct. The probability distribution of its election time has been
established, and all moments of the distribution have been proved to exist. These
results form a suitable basis for further study of this and related algorithms. Such
study may be of interest since the comparison of random priorities, employed by the
present algorithm, is a basic probabilistic election technique. The algorithm is
applicable to ring models in which stations have unique identifiers. In particular, this
allows for deterministic resolution of ties that could speed up the election. However,
our algorithm avoids deterministic symmetry-breaking mechanisms and restricts the
use of stat ion identifiers to testing whether or not a received message is one's own.
This feature places it in a separate class of leader election algorithms. It also gives rise
to a possible research topic, namely a systematic investigation of the proposed class of
leader election algorithms for ring (and perhaps other) networks, including the search
for those with minimum election time, as well as a study of potential application areas.
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