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*Abstract: New numerically robust algorithms are presented for converting linear
continuous-time constant-parameter state models into equivalent discrete-time state
models (discretization) as well as the reverse problem of determining continuous-time
models to represent given discrete-time models (continualization). Two methods of
discretizing linear uniformly sampled systems have been considered for their utility in
computer-aided design. These methods are the standard zero-order hold method
which assumes that inputs are held constant at their previous sample value for the
duration of the sample interval, and a method which assumes that the inputs are
linearly interpolated between samples.
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1. INTRODUCTION

With the widespread use of computers in control loops it is inevitable that control
engineers will face problems associated with sampled-data systems. Such systems by
their very definition contain a mixture of continuous-time (C-T) and discrete-time
(D-T) signals. A common problem that arises with sampled-data control systems is to
fmd the equivalent effect of C-T operations as seen by the computer in the loop.
Typically, the modeling of the signal converters assumes an ideal uniform sampler for
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the analog-to-digital converter and a simple (zero-order) hold device synchronized
with the samples for a digital-to-analog converter. With these assumptions one may
fmd in many references the standard zero-order hold model, also known as the step
invariant (SI) model which will be discussed subsequently.

In addition to simple plant modeling with SI equivalents there are occasions, such
as in digital redesign, that demand more accuracy between a given C-T system and its
D-T equivalent model. In these instances higher-order discrete models are required.
Such a model is one which assumes a linearly interpolated input. This method is
referred to as a ramp invariant (RI) model in contrast to the standard ZOH model's
being a step invariant (SI) model. There are many other useful models, but this paper
will focus on only the SI and RI methods of discretization as being the most useful in
pract ice.

The reverse problem, called continualization, is that of reconstructing a C-T
model from a given D-T model. This problem could arise, for instance, when measured
discrete data are used to identify a C-T system [2]. The particular method of
continualizat ion selected would depend on how the discrete data were derived. The
method of continualization is presented for the two discretization techniques, thereby
offering the designer flexibility in going between the continuous and the discrete
domains.

2. PROBLEM FORMULATION

We assume a basic state space realization for a linear system consisting of a
4-tuple of matrices; namely,

s , = { A e, B e' Ce, D c} (1)

which defines the state model

xct) = A ex(t) + B e u (t)

yet) = Cex(t) + D c u (t)

where x (t) , u (t) and yet) are the state, input and output vectors with dimensions n , m
and p , respectively, while the matrices A , B , C and D are constant matrices with- e e e e
compatible dimensions.

2.1. DISCRETIZATION PROCEDURES

In this paper some computat ional issues of the discretization and continualization
procedures will be discussed with emphasis on explain ing different algorithms which
are easily implementable. The problem of discretization will be discussed first .

The familiar SI (ZOH) equivalent D- T model assumes that the input vector /l et)

in Equation (2) is constant between (uniform) samples. The equivalent D-T model can
be represented as

(3)
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which implies the D- T state model

x (k+l ) = A dx(k ) + Bd ll (k)

y(k) = Cdx(k ) + Dd u (k )

The matrices A d and B d in Equation (3) are rela ted to A
c

and Bc in Equation (2)
by the well known relations 14]

•

~ = e J\T = f (~:)I
;=0 L.

B = TJ eAclB dt = ~ (~Ti B T
d c c: ( . 1)' co i=O L + .

Cd = c, and D d = o, (6 )

Step Invariant (81) Equivalent Model. This algorithm is a numerically robu t
procedure for calculating A d a nd Bd described above. The standard general method for
calculating A d is to compute a t ru ncated ver ion of Equation (5). The probl m with
this approach is that for matrices Ac and sampling interval T satisfying that

II~TII > 1 (7)

(8)

a truncated version of Equation (5) may either require large N , le ding to considerable
round-off errors, or may not converge at all /6] . The concept of norm is used here to
have a scalar measure of the rela t ive ize of the entrie of a matrix, usually for the
comparison of convergence er rors after different numb rs of steps of a particular
algorithm. For this purpose t he Frobenius (F) norm, defined as the square root of the
sum of squares of all matrix elements, is used. Any other standard matrix norm could
be used to measure the same rela tive effects.

It has been shown in [7] that the Sl model can be calculated using an intermediate
matrix E as follows :

Ad = I + EAcT, and B d = EBcT
­•

where E = f (AcT)'
;=0 (i + I)!

It is well known that to resolve the problem associated with Equation (7), it is
possible to utilize the property of the exponential funct ion that

exp(x) = ex = (e(.rlr» r (9 )

The present method extends this techniques to permit calcu lation of both Ad and
B

d
under the condition of Equation (7) as well as the condition that Ac may be

singular.

It is shown in [3] that the truncated version of E in Equation (8) can be calcu lated

by the following recursive process:

T k + l = 2Tk (10)

E k+1 = E k (1 + E0cTk / 2)

for k = 1, 2, 3, ... .i where
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l'
1'1 =- and

r

N (A TidE = L ...:.-~c-!---'--
1 ;=0 (i+ l) !

(11)

for r = 2' and ) = + 1
integer
part

(12)

(14 )

The desired E = Ej t I ' The series will converge satisfactorily with the value of}

given in Equation (12) s ince IAeT/rll < 1. Once E has been calculated, Ad can be

obtained using Equation (8) .

Ramp invariant (RI) Equivalent Model. This algorithm provides a robust method
for the conversion from a C-T model, Equation (2), to a five matrix D-T state model
[1 1, represented hy

R dr = { Ad' B dO' BdJ> c; D d } (13)

which , in turn , can be written as

x(h+ 1) = A dx(h ) + BdOIt (h ) + Bd11t (h+ 1)

y (k ) = Cd x (h ) + D d u (h )

The matrices A d' E , Cd and Dd have been described previously, see Equations (5) ,
(6) and (8) . T o specify the remaining matrices , we define

•

F = L (Ac'l')'
i=o (i 2)!

frum which we obtain

B dO = {E - F ) Be1', and B d ] = }JBdO

wh rc P = F ( l!: - Ff I

(15)

(16)

(1 8 )

(17)

It is desirable to crea te an algorithm which allows the condition of Equation (7)
and s ingu la r Ae matrices . The development for this algorithm is given in [31 and is
su m m a r ized by the following recursive process :

T k 1 I = 21'k

1"" t I = 0.51"" 0.25 (l + 1"e\Tk )2

for It = 1, 2 ,~ , ....i where (with) as in Equation (12) and r = 2i us before )

' I' _ T I,' _ N (AcT / d
I ] - - . I - . 2)'

r i O {t + .

a nd the desired 1" = Fj t l . One 1" has been ca lcu la ted, it follows that

g = (l + 1"AcT), A d = I + EA/l' (1 9 )

Equ ation { 17) may he used wh m c it h ' I' the lor HI equ iva le nt mod ,I is required,
as w li as wh in only th ' t ra ns it ion matrix A d = 'xp {A :1') i sough t.

t.

Equi\'ul nt S t. n rrd n r d S t a t Mod I. inc > th algorithm of Equation U 7) rc ults in
II non -ss tundnrd fi ve ma trix mod ' I, it is u iful to hay 1I III thod of COIl\' rt.ing to 1I
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(20)

(2 1)

(22)

(26)

ED RE2.2. C NTlN ALIZATI

1 In - I BAc = - (Ad ), B e = (A d - I) A e d
T

With this approach the truncated ser ies for calcu lation becomes

r N (l - A.ct1/ri
Ac = -- L .

T i= 1 l

standard model as given in Equation (4 ). p cifically, we d scr ib th transformation
from Equation (4) to the fo llowing equivalent mod I:

x (k +1 ) = A de x (k ) + Bdl!u (k )

y(k) = Cdex(k) + Ddl! uUll

The simplest com putational procedure for conv sr t. ing to a tandard t t mod I is
derived using the ident ity of transf 'I' function matrices , i.e,

Cd(zi - Ad)- I (Bdo + zB d l ) + Dd = d,,(zl - Ad.J 1 Bri.. + Dde
The development is presented in 131.

with the understanding tha t Ce = Cd and Dc = Dd as before. An ou t line of the m thod
is given in the following, details can be found in 131. In a manner s im ilar to the c r ies
definition of the exponential function in Equation (5), the Taylor ser ies expan ion for
the function ln tx) in the n eighborhood of x = 1 leads to

•

Ac =~ f (Ap ~ 1)' (_l)(i+I) (23)
T i= 1 t

The problem of u sing a truncated version of Equation (23) is that for matrices Ad

with

The reverse process of converting from a D-T mod I to an quiualent - 'I' mod I
will now be considered, i.e . converting betwe n th mod I in Equa tion (4) and th
model in Equation (2), Rd Re in the I case, or b tw en Equation (14 ) and Equation
(2), Rdr ~ Re in t he RI sense.

SI to Continuous-Time Model. The algorithms for continualization requir
logarithmic operations instead of matrix exponentiation . Wh n (Acrl) or Ae is non­
singu lar, it is easily conclu ded that the matrice of He in Equation (2) may b obtain d
from :

I A.max I > 0.5 (24)

where A. is the maximum magnitude eigenvalue of (A d - I ), t he ser ies may require
large N,l;ding to considerable round- off er rors if it converges at all . This algorithm
resolves this problem 151, by u sing the following basic property of the logarithm

function .

lnlx) = r In [(x) l/r ] = - r f (1- ~ 1/r )i (25)
. 1 l
1=

I
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where the integer j satisfies that
•

IA(A / lr - I ) Imax < 0.5, with r = 2' (27)

It has been experimentally verified that the accuracy of using Equation (26) is
satisfactory even for matrices A d where some eigenvalues of L = Ad - I have
magnitude greater than one.

Having determined Ac' the remaining matrices in the C-T equivalent state space
model of Equation (2) cou ld be calculated using the matrix E , appearing in Equation
(8) using the procedure given in Equations (10)- (1 2). It follows that Cc = Cd' Dc = Dd
and

(28)

RI to Continuous-Time Model. It is easily determined that the C-T model in
Equat ion (2) can be obtained from the five matrix D-T model in Equation (14) , or
Equat ions (17)-(19), by using the logarithm algorithm to calculate Ac and from the
availability of F in Equ ation (15) , i.e . Equations (17)- (1 9) , solving Equation (1 6) for Bc'

1 - I 1 - Ie, =- F Bd l =-(E- F) Bd OT T
(29)

with Bd l = PBdO' where P = F (E - F)-I

The required five matrix D-T model in Equation (14), con taining Bd O and Bd l ,

could be obtained from a standard four matrix D-T model as in Equation (20) by
applying the conversion from a four-to a five-matrix model [3).

3. NUMERICAL EXAMPLES

Two exam ples are presented in this section. They were selected to illustrate the
computational accuracy that can be achieved using the exponential and the
logarithmic matrix calculations discussed previously. The first example demonstrates
convergence rates when calcula ting A d given a 5 x5 singu lar , non-diagonalizable matrix
Ac' followed by a similar development in the second example in calculating A c given A d'

3.1. EXAMPLE 1: DISCRETIZATION

For this example a matrix Ac with igenvalues was used
•

A(A c) = { 0, - 1, - 1, - 1 + j 1, - 1 - j 1 } (30)

Note that A c is singu la r and has multiple eigenvalues. In addition , the Jordan
form, .4.;, corresponding to Ac was not diagonal. The desired sampling interval for the
discretization is 7'= 2 sec.; and the (Frob m ius) norm of A 7' was calcula ted to be 15.65.c
The matrix A d was determ ined from Equation (19) using the matrix F calculated from
Equations (17)- (19). Equations (5) and (8) combined provide the following truncated
su mmation for calculat ing the exponent ial matrix.
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N (AcTld r

Ai = L .,
i=O to

(31)

As before, r = 2J where) is given in Equation (1 2). Both the tru ncation number N
and the scaling parameter i are of key interest to this development. Several
combinations of N and) were used to calculated AiN,). Each AiN,) is compared to
a numerically exact matrix Ad calculated by first reducing A c to its Jordan form to find
exp(AcT) .

The log10 of the norm of the error matrix Ed = Ad - Ai N ,) was calculated for
each combination of N and j. It was seen that N = 16 terms are su fficien t for A d in
Equation (31) even for matrices A cT with relatively high norms. And N may be chosen
as low as N=6 with judicious choice of the parameter i . e.g. bettor than 7-place
accuracy was achieved using N = 6 and j' = 5, and for the same), better than lA- place
accuracy was obtained with N =lO.

3.2. EXAMPLE 2: CONTIN UALIZATION

In this example the matrix Ad was taken to be the exact Ad given in Example 1.
The calculation used to determine A c is the trunca ted ser ies in Equation (26). The

eigenvalues 2(L ) were given by

{ 0, -0.86, - 0.86, - 1.06 +) 0.12, - 1.06 - ) 0.12 }

Evaluation 'of A
c

was done for several combinat ions of the parameters N ami).
"The matrix A/N,) was found to he accurate even when the maximum eigenvalue of L
is greater than unity. It is also noted tha t the trunca tion may he [IS low as N = 10.

4. CONCLUSIONS

A newly develop-ed set of numerically robust algorithms has been presented.
These algorithms deal with the often encountered problems of discretization of C-T
models as well as the inverse problem of cont inualizaiion , recreating a C-T model
from a given D-T model. The algorithms described in the paper comprise, in addition
to the-standard Step Invariant (SI or ZO]{) procedures, a method which is referred to
as the Ramp Invariant (R l) method, representing a piecewise linear approximation to
the input functions. With these algorithms the design engineer ca n ope ra te easily

between the continuous and discrete time domains.
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