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Abstract:” New numerically robust algorithms are presented for converting linear
continuous—-time constant—-parameter state models into equivalent discrete—-time state
models (discretization) as well as the reverse problem of determining continuous—time
models to represent given discrete—time models (continualization). Two methods of
discretizing linear uniformly sampled systems have been considered for their utility in
computer—aided design. These methods are the standard zero-order hold method
which assumes that inputs are held constant at their previous sample value for the
duration of the sample interval, and a method which assumes that the inputs are

linearly interpolated between samples.

Keywords: Modeling, recursive algorithms, discrete time systems, state-space methods, computer
programming, computer—aided design.

1. INTRODUCTION

With the widespread use of computers in control loops it is inevitable that control
engineers will face problems associated with sampled—-data systems. Such systems by
their very definition contain a mixture of continuous-time (C-T) and discrete-time
(D-T) signals. A common problem that arises with sampled—data control systems 1s to
find the equivalent effect of C-T operations as seen by the computer in the loop.
Typically, the modeling of the signal converters assumes an ideal uniform sampler for
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the analog-to—digital converter and a simple (zero—order) hold device synchronized
with the samples for a digital-to—analog converter. With these assumptions one may
find in many references the standard zero—order hold model, also known as the step

invariant (SI) model which will be discussed subsequently.

In addition to simple plant modeling with SI equivalents there are occasions, such
as in digital redesign, that demand more accuracy between a given C-T system and its
D-T equivalent model. In these instances higher—order discrete models are required.
Such a model is one which assumes a linearly interpolated input. This method is
referred to as a ramp invariant (RI) model in contrast to the standard ZOH model's
being a step invariant (SI) model. There are many other useful models, but this paper
will focus on only the SI and RI methods of discretization as being the most useful in
practice.

The reverse problem, called continualization, is that of reconstructing a C-T
model from a given D-T model. This problem could arise, for instance, when measured
discrete data are used to identify a C-T system [2]. The particular method of
continualization selected would depend on how the discrete data were derived. The
method of continualization is presented for the two discretization techniques, thereby
offering the designer flexibility in going between the continuous and the discrete
domains.

2. PROBLEM FORMULATION

We assume a basic state space realization for a linear system consisting of a
4—tuple of matrices; namely,

R ={A,B,C,D,} (1)
which defines the state model

x(t) = A, x(t) + B, u(t)

y(t) = C x(t) + D, u(t)

where x(f), u(¢) and y(¢) are the state, input and output vectors with dimensions n, m

and p, respectively, while the matrices A , B, C, and D, are constant matrices with
compatible dimensions.

(2)

2.1. DISCRETIZATION PROCEDURES

In this paper some computational issues of the discretization and continualization
procedures will be discussed with emphasis on explaining different algorithms which
are easily implementable. The problem of discretization will be discussed first.

The familiar SI (ZOH) equivalent D-T model assumes that the input vector w(¢)

in Equation (2) is constant between (uniform) samples. The equivalent D-T model can
be represented as

R,={A,B,;C, D,k 3)
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which implies the D-T state model
x(k+1) = A, x(k) + B u(k)
yk) = C,yx(k) + D, u(k)

The matrices A, and B, in Equation (3) are related to A, and B, in Equation (2)
by the well known relations [4]

(4)
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Step Invariant (SI) Equivalent Model. This algorithm is a numerically robust
procedure for calculating A , and B ; described above. The standard general method for
calculating A, is to compute a truncated version of Equation (5). The problem with
this approach is that for matrices A and sampling intervals T satisfying that

|A.T] > 1 (7)

a truncated version of Equation (5) may either require large N, leading to considerable
round-off errors, or may not converge at all [6]. The concept of norm is used here to
have a scalar measure of the relative size of the entries of a matrix, usually for the
comparison of convergence errors after different numbers of steps of a particular
‘algorithm. For this purpose the Frobenius (F) norm, defined as the square root of the
sum of squares of all matrix elements, is used. Any other standard matrix norm could
be used to measure the same relative effects.

It has been shown in [7] that the SI model can be calculated using an intermediate
matrix £ as follows:

A, =1+EAT,andB, = EB,T -
where E=5% (‘_qu)
o0 @+D)!

It is well known that to resolve the problem associated with Equation (7), it 18
possible to utilize the property of the exponential function that
exp(x) = &* = (e¥W/r)r (9)

The present method extends this techniques to permit calculation of both A, and
B, under the condition of Equation (7) as well as the condition that A, may be

singular.
It is shown in [3] that the truncated version of E in Equation (8) can be calculated
by the following recursive process:

Thyy = 2T, (10)
E, .=E,U+EAT,/ 2
for k =1,2,3,..,7 where
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T N(ACT/,.)I'
T — E - (11)
=g o Ey= 2l
| -ln"A T||
- = | +1 (12)
for r=2 and J T3]
- part

The desired £ = E; _,. The series will converge satisfactorily with the value of ;

given in Equation (12) since |]ACT/r"<1. Once E has been calculated, A, can be
obtained using Equation (8).

Ramp invariant (RI) Equivalent Model. This algorithm provides a robust method
for the conversion from a C-T model, Equation (2), to a five matrix D-T state model
[1], represented by

R, ={A, By, By, Cyp Dy} (13)
which, in turn, can be written as

x(k+1) = A x(k) + B, u(k) + B, u(k+1)

y(k) = Cyx(k) + D u(k)

The matrices A, E, C, and D, have been described previously, see Equations (5),
(6) and (8). To specify the remaining matrices, we define

(14)

2 (AT
F‘ = C lr
‘z:‘} (t+2)! o

from which we obtain
B, =(E-F)B,T, and B, = PB_, (16)

where P = F(E - F)!

It 1s desirable to create an algorithm which allows the condition of Equation (7)
and singular A  matrices. The development for this algorithm is given in [3] and is
summarized by the following recursive process:

Lp4y = 215

v (17)

Fir.i=05F, + 025 + F,AT,)

fork = 1,2, 3, ..., where (with j as in Equation (12) and r = 2/ as before)
7 & (AL /)
T\=—, F = C 18)
o Bo and Zﬂ (i +2)! =

and the desired F = F}+ - Once F has been calculated, it follows that

E=U+FAT), A;=1+EAT (19)

Equation (17) may be used when either the SI or Rl equivalent model is required,
as well as when only the transition matrix A, = exp(A _T) is sought.

Equivalent Standard State Model. Since the algorithm of Equation (17) results in
a non-standard five matrix model, it is useful to have a method of converting to a
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standard model as given in Equation (4). Specifically, we describe the transformation
from Equation (14) to the following equivalent model:

x(k+1) = Ay, x(k) + B, u(k)
y(k) = Cy x(k) + D, u(k)

The simplest computational procedure for converting to a standard state model is
derived using the identity of transfer function matrices, i.e.

Cq@l-Ap)~" By, +2By) +Dy=Cy (2l -Ay) B, +D,, (21)
The development is presented in [3].

(20)

2.2. CONTINUALIZATION PROCEDURES

The reverse process of converting from a D-T model to an equivalent C-T model
will now be considered, i.e. converting between the model in Equation (4) and the
model in Equation (2), R; - R_ in the SI case, or between Equation (14) and Equation
(2), R; — R, in the RI sense.

SI to Continuous-Time Model. The algorithms for continualization require
logarithmic operations instead of matrix exponentiation. When (A _~I) or A_ is non-
singular, it is easily concluded that the matrices of R, in Equation (2) may be obtained
from:

A =%—ln(Ad), Be=(A,-I)1AB, (22)

with the understanding that C, = C, and D, = D, as before. An outline of the method
is given in the following, details can be found in [3]. In a manner similar to the series
definition of the exponential function in Equation (5), the Taylor series expansion for
the function In(x) in the neighborhood of x = 1 leads to

A Z (A --I)I (=1)i+D) (23)

The problem of using a truncated version of Equation (23) is that for matrices A ;
with
| Apax | > 0.5 (24)

where 4 __ is the maximum magnitude eigenvalue of (A, - I), the series may require
large N, leadmg to considerable round-off errors if it converges at all. This algorithm

resolves this problem [5], by using the following basic property of the logarithm
function.

9 (1ol (25)

r Y (I-Ay") (26)
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where the integer j satisfies that
AANMr-D) . <05, with r=2 (27)

It has been experimentally verified that the accuracy of using Equation (26) is
satisfactory even for matrices A; where some eigenvalues of L =A;-I have

magnitude greater than one.

Having determined A, the remaining matrices in the C-T equivalent state space
model of Equation (2) could be calculated using the matrix E, appearing in Equation
(8) using the procedure given in Equations (10)-(12). It follows that C, = C,;, D, = D,
and

| B
B, =-fE ‘B, (28)
RI to Continuous-Time Model. It is easily determined that the C-T model in
Equation (2) can be obtained from the five matrix D-T model in Equation (14), or
Equations (17)-(19), by using the logarithm algorithm to calculate A, and from the

availability of F' in Equation (15), i.e. Equations (17)-(19), solving Equation (16) for B,
1

1
B.,=—F'B;;=—(E-F)'B
¢ ™ mp dl T( F) d0

with B, = PB,,, where P=F(E-F)’

The required five matrix D-T model in Equation (14), containing B, and B,
could be obtained from a standard four matrix D-T model as in Equation (20) by
applying the conversion from a four-to a five-matrix model [3].

(29)

3. NUMERICAL EXAMPLES

Two examples are presented in this section. They were selected to illustrate the
computational accuracy that can be achieved using the exponential and the
logarithmic matrix calculations discussed previously. The first example demonstrates
convergence rates when calculating A ;, given a 5x5 singular, non—-diagonalizable matrix
A, followed by a similar development in the second example in calculating A given A ;.

3.1. EXAMPLE 1: DISCRETIZATION

For this example a matrix A with eigenvalues was used
AA4)=1{0,-1,-1,-1+j1,-1-j1} (30)

Note that A_ is singular and has multiple eigenvalues. In addition, the Jordan
form, A;, corresponding to A, was not diagonal. The desired sampling interval for the
discretization is T'=2 sec.; and the (Frobenius) norm of A_ T was calculated to be 15.65.
The matrix A ; was determined from Equation (19) using the matrix F calculated from
Equations (17)-(19). Equations (5) and (8) combined provide the following truncated
summation for calculating the exponential matrix.
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[ N A

= il (31)

As before, r = 2/ wherej is given in Equation (12). Both the truncation number N
and the scaling parameter j are of key interest to this development. Several
combinations of N and j were used to calculated A (N, ). Each A (N, j) is compared to

a numerically exact matrix A ; calculated by first reducing A to its Jordan form to find
exp(A,T).

The logl0 of the norm of the error matrix E, = A, - A (N, j) was calculated for
cach combination of N and ;. It was scen that N=16 terms are sufficient for A, in
Equation (31) even for matrices A T' with relatively high norms. And N may be chosen
as low as N=6 with judicious choice of the parameter j, e.g. better than 7-place
accuracy was achieved using N=6 and j=5, and for the same j, better than 14-place
accuracy was obtained with N=10.

3.2. EXAMPLE 2: CONTINUALIZATION

In this example the matrix A, was taken to be the exact A; given 1n Example 1.
The calculation used to determine A, is the truncated series in Equation (26). The
cigenvalues A(L) were given by

{0,-0.86,-0.86,-1.06 +,0.12,-1.06 -7 0.12 }

Evaluation of A, was done for several combinations of the parameters N and j.
The matrix A (N, ) was found to be accurate even when the maximum eigenvalue of L
is greater than unity. It is also noted that the truncation may be as low as N=10.

4. CONCLUSIONS

A newly developed set of numerically robust algorithms has been presented.
These algorithms deal with the often encountered problems of discretization of C-T
models as well as the inverse problem of continualization, recreating a C-T model
from a given D-T model. The algorithms described in the paper comprise, in addition
to thestandard Step Invariant (SI or ZOH) procedures, a method which is referred to
as the Ramp Invariant (RI) method, representing a piecewise lincar approximation to
the input functions. With these algorithms the design engineer can operate casily

between the continuous and discrete time domains.
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