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Abstract: In order to achieve higher dimensional accuracy along with better surface
quality, the conventional machining processes have now-a-days being replaced by non-
traditional machining (NTM) processes, because of their ability to generate intricate
shape geometries on various advanced engineering materials. In order to exploit their
fullest machining potential, it is often recommended to operate those NTM processes
at their optimal parametric settings. Several optimization tools and techniques are now
available which can be effectively applied to obtain the optimal parametric conditions of
those processes. In this paper, Taguchi method and super ranking concept are integrated
together to present an efficient optimization technique for simultaneous optimization of
three NTM processes, i.e. electro-discharge machining process, wire electro-discharge
machining process and electro-chemical discharge drilling process. The derived results
are validated with the help of developed regression equations, which show that the pro-
posed approach outperforms the other popular multi-response optimization techniques.
Analysis of variance is also performed to identify the most influencing control parameters
for the considered NTM processes. The developed response surface plots further help the
process engineers in identifying the effects of various NTM process parameters on the
calculated sum of squared rank values.
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1. INTRODUCTION

In conventional machining processes, material is removed in the form of chips
while applying cutting forces on the workpiece with the help of a wedge-shaped
tool. These machining processes have many disadvantages, like incapability of ma-
chining harder and tougher materials, unwanted distortion of the work material,
higher energy requirement, formation of burrs, excessive tool wear, and inability
to generate complex shape geometries and achieve higher dimensional accuracy
with lower surface roughness. To overcome these problems, the conventional ma-
chining processes have gradually being replaced by the non-traditional machining
(NTM) processes. These NTM processes use energy in the form of mechanical,
thermal, electrical, chemical or a combination of them to remove material from the
workpiece. Unlike the conventional machining processes, in these NTM processes,
there may be even no contact between the tool and the workpiece or the tool needs
not to be harder than the workpiece material.

In these processes, material is removed from the workpiece even without for-
mation of any chip. Like in electro-discharge machining (EDM) process, mate-
rial is removed from the workpiece by a series of rapidly recurring current dis-
charges between the two electrodes, separated by a dielectric medium, or in elec-
trochemical machining (ECM) process, material is eroded from the workpiece due
to electrochemical dissolution at atomic level. These processes are now being
extensively used in machining of various difficult-to-machine and high-strength-
temperature-resistant materials, like stainless steel, ceramics, nimonics, tungsten
carbide, metal matrix composites etc., which have found wide application in au-
tomobile, aerospace, nuclear plant, wafer fabrication, and tool and die making
industries [10, 18].

In order to explore the fullest machining potential from these NTM processes,
careful selection of their various input (control) parameters is needed redundant
to achieve the desired values of the corresponding responses (outputs). Selection
of these NTM process parameters mainly depends on the technical knowledge and
experience of the operators. Often the manufacturers’ booklets are referred to for
identifying the most appropriate combination of NTM process parameters for a
specific work material and shape feature combination. But, it is often noticed that
the parametric combination provided by the manufacturers does not meet the re-
quirements of the operators/process engineers. For a particular NTM process, the
best parametric combination may not be derived from the given information book-
let and even sometimes, this may be far from the optimal combination, redundant
constraining the NTM process to perform machining at its fullest capability. Thus,
selection of the optimal combination of NTM process parameters is often judged to
be a challenging task with the increasing number of the considered process param-
eters and responses. Various optimization tools, like Taguchi methodology, grey
relational analysis (GRA), technique for order of preference by similarity to ideal
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solution (TOPSIS), principal component analysis (PCA), desirability function ap-
proach etc., are already available and can be effectively deployed to overcome this
problem.

2. LITERATURE REVIEW

Optimization of various NTM process parameters while employing different
mathematical approaches has been the topic of immense research interest since
the last few years. While considering pulse-on time, wire tension, delay time, wire
feed speed and ignition current intensity as the controllable process parameters,
and material removal rate (MRR), surface roughness (Ra) and wire wear ratio
(WWR) as the responses, Ramakrishnan and Karunamoorthy [21] applied Taguchi
methodology as an optimization tool for determining the optimal parametric mix
for a wire electro-discharge machining (WEDM) process. Rao and Yadava [22]
proposed a hybrid approach combining Taguchi method with GRA technique for
optimization of Nd:YAG laser cutting process parameters in order to minimize kerf
width, kerf taper and kerf deviation. While selecting current, pulse-on time and
pulse-off time as the control parameters in an EDM process, Nayak and Routara
[16] applied GRA technique to optimize the values of three responses, i.e. MRR,
electrode wear rate (EWR) and Ra. Senthil et al. [26] considered discharge current,
pulse-on time and pulse-off time as the control parameters of an EDM process,
and applied TOPSIS method for optimization of three responses, i.e. MRR, tool
wear rate (TWR) and Ra. Khanna et al. [12] presented the application of Taguchi
method along with GRA technique in an electro-discharge drilling process while
considering pulse-on time, pulse-off time and flushing pressure as the important
input parameters in order to maximize MRR and minimize TWR in drilling of
aluminium Al-7075 alloy.

Reddy et al. [24] investigated the performance of an EDM process while ma-
chining PH17-4 stainless steel material using graphite powder-mixed and surfactant-
mixed dielectric fluids. An integrated Taguchi-data envelopment analysis-based
multi-response optimization technique was applied while choosing peak current,
surfactant concentration and graphite powder concentration as the three impor-
tant process parameters, and MRR, Ra and TWR as the responses. Considering
pulse-on time, pulse-off time, pulse current and wire drum speed as the input
parameters, Lal et al. [13] adopted Taguchi method-based GRA technique to im-
prove two quality characteristics, i.e. Ra and kerf width in a WEDM process.
Bose [5] presented the application of Taguchi methodology aided with fuzzy logic
as a multi-criteria decision making (MCDM) tool to obtain the optimal paramet-
ric combination of an electrochemical grinding process. Rao and Padmanabhan
[23] optimized the input parameters of an ECM process while integrating Taguchi
method with utility concept. Applied voltage, electrolyte concentration, electrode
feed rate and percentage of reinforcement were considered as the important process
parameters, and MRR, Ra and radial overcut were the responses.

Marichamy et al. [15] fabricated a duplex (-) brass plate and investigated
its machinability behavior during EDM operation. While taking current, pulse-on
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time and voltage into consideration as the process parameters, Taguchi method was
later employed to improve MRR, EWR and Ra during the machining operation.
Ekici et al. [9] studied the effects of wire tension, reinforcement percentage, wire
speed, pulse-on time and pulse-off time on Ra and MRR during WED cutting
operation of high-density Al/B4C metal matrix composites. Taguchi method was
subsequently applied so as to obtain the optimal combination of the considered
process parameters. Long et at. [14] applied Taguchi method for maximizing
MRR in a powder-mixed EDM process while taking titanium powder-mixed HD-1
as the dielectric fluid. Workpiece material, electrode material, electrode polarity,
pulse-on time, current, pulse-off time and powder concentration were the process
parameters. Considering machining time, temperature and concentration as the
input parameters in a photochemical machining process, Bhasme and Kadam [3]
applied GRA technique to optimize MRR, Ra and undercut.

Bhuyan and Routara [4] selected pulse-on time, peak current and flushing pres-
sure as the three important EDM process parameters, and applied VIKOR (Vlse
Kriterijumska Optimizacija Kompromisno Resenje) aided with entropy method
to optimize four responses, i.e. MRR, TWR, radial overcut and Ra. While se-
lecting compact load, current and pulse-on time as the three process parameters,
Rahang and Patowari [19] applied Taguchi method to optimize the performance
measures, such as TWR, MRR, Ra and edge deviation of an EDM process.Dhuria
et al. [8] proposed the application of a hybrid Taguchi-entropy weight-based GRA
method to optimize MRR and TWR in an ultrasonic machining (USM) process
while considering slurry type, tool type, power rating, grit size, tool treatment
and workpiece treatment as some of the significant input parameters. Antil et al.
[1] selected voltage, electrolyte concentration, inter-electrode gap and duty factor
as the control parameters in electrochemical discharge drilling of SiC reinforced
polymer matrix composite, and later applied Taguchi method along with GRA
technique to derive the optimal parametric mix.

Huang et al. [11] considered pulse duration, pulse-off time, discharge current
and working period as the process parameters in a micro-EDM milling process, and
adopted grey-based Taguchi method to optimize three responses, i.e. EWR, MRR
and overcut. Sonawane and Kulkarni [29] integrated PCA technique with Taguchi
method to optimize a WEDM process. Pulse-on time, servo voltage, pulse-off
time, peak current, wire feed rate and cable tension were considered as the pro-
cess parameters, and Ra, overcut and MRR were the responses. Chakraborty et al.
[6] adopted GRA technique along with fuzzy logic approach to solve three multi-
objective optimization problems for determining the optimal parametric settings
of abrasive water-jet machining, ECM and USM processes. Also, Chakraborty
et al. [7] introduced a multivariate quality loss function approach in parametric
optimization of three NTM process and showed that the proposed approach out-
performs other multi-response optimization techniques, like desirability function,
distance function and mean squared error methods. Considering pulse discharge-
on time, pulse discharge-off time, wire feed rate and material characteristics of
varying boron nitride volume fractions as the input parameters, Thankachan et
al. [32] integrated Taguchi method with GRA technique to solve a multi-objective



P. P. Das, S. Chakraborty / Parametric Optimization of Non-Traditional 253

optimization problem for a WEDM process while optimizing two responses, i.e.
MRR and Ra. Taking dielectric fluid, pulse-on time, discharge current, duty cycle,
gap voltage, tool electrode material and tool electrode lift time as the important
parameters of an EDM process, Payal et al. [17] applied Taguchi-fuzzy logic ap-
proach to obtain the optimal parametric combination in order to increase MRR
and decrease Ra. Shrivastava and Pandey [28] adopted Taguchi-based regression
analysis and particle swarm optimization technique in a laser cutting process of
Inconel-718 sheet. Gas pressure, stand-off distance, cutting speed and laser power
were considered as the input parameters while optimizing three responses, i.e.
bottom kerf deviation, bottom kerf width and kerf taper as the responses.

From the extensive review of the above-cited literature, it can be fully justified
that parametric optimization of various NTM processes is very much essential,
and it has been the research interest of many researchers. It can also be no-
ticed that various optimization tools, like Taguchi method, TOPSIS, GRA, PCA,
VIKOR etc. have already been extensively deployed in solving a wide range of
problems related to parametric optimization of numerous NTM processes. But,
the application of these optimization techniques is found to be often conserva-
tive leading to near or sub-optimal solutions. Thus, this paper presents a simple
methodology integrating Taguchi method and super ranking concept in solving
multi-response optimization problems for three NTM processes. The distinct fea-
ture of this combined approach is to transform each response into a single rank
variable by subsequent addition of the squared ranks for each of the responses
resulting in a single master rank, also referred to as the super rank response, thus
changing all independent values into a single non-dimensional value.

3. TAGUCHI METHOD AND SUPER RANKING CONCEPT

Taguchi method, developed by Genichi Taguchi [30, 31], is a very effective
tool that deals with responses influenced by multiple variables. Besseris [2] later
proposed a simple and easy approach of Taguchi methodology to solve difficult
multi-response optimization problems without considering the theoretical base of
the data. The application of Taguchi method and super ranking concept starts
with identification of the control (process parameters) and noise factors (responses)
along with their working ranges. An appropriate orthogonal array is then selected
which requires minimum effort while considering all the control and noise fac-
tors, and executes the trial runs accordingly. The recorded responses are trans-
formed into the corresponding signal-to-noise (S/N) ratios based on three generic
classes, i.e. larger-the-better (LTB), smaller-the-better (STB) and nominal-the-
best (NTB). The following equations are usually employed for this transformation
depending on the type of the considered quality characteristic, i.e. Eq. (1) for
LTB, where higher values are preferred; Eq. (2) for STB, where lower values are
desired; and Eq. (3) for NTB, where target values are desired.

S/N = −10log10

[
1

n

∑ 1

xi(k)2

]
(1)
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S/N = −10log10

[
1

n

∑
xi(k)2

]
(2)

S/N = 10log10
µ2

σ2
(3)

where xi(k) is the observed data (response) for ith alternative (experimental
run) and kth criterion, n is the total number of responses, and µ and σ are the
mean and standard deviation of the responses for a given criterion, respectively.

Figure 1: Flowchart for Taguchi method and super ranking concept leading to
parametric optimization of NTM processes

After calculation of the S/N ratios, ranks are assigned to all these S/N ratios
for each of the responses separately. This ranking is performed in descending order
based on the calculated S/N ratio values, i.e. the largest S/N ratio is assigned rank
1, the second largest rank 2, and so on. If there is a tie between two or more S/N
ratios, their average rank is then assigned to each of them. After proper ranking
of all the responses, the next step involves squaring up of all those ranks. The
squared ranks are added together to generate a single response, which is called
as sum of squared ranks (SSR). The calculated SSR values further receive one
more ranking, starting from the lowest value as rank 1, second lowest as rank 2
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and so forth, thus converting the multi-response data into a single rank column,
conveniently called as super rank (SR) response. A smaller value of SSR for a
particular experimental run indicates its superiority over the others for a said
machining application. The corresponding flowchart representing the application
of Taguchi method along with super ranking concept for parametric optimization
of NTM processes is exhibited in Figure 1.

Each NTM process has several control parameters and the optimal paramet-
ric combination of those parameters is mostly desired so as to explore the fullest
machining potential with respect to the considered responses. This becomes a
challenging task with the increased number of process parameters and responses,
which are also conflicting in nature, thus forming a multi-objective optimization
problem where all the responses need to be optimized simultaneously. Usually, in
manufacturing industries, selection of those process parameters mainly depends
on the operators’ knowledge or manufacturer’s handbook that does not often en-
sure achieving a global optimal parametric mix for a considered NTM process.
In this paper, a combined Taguchi method and a super ranking concept are ap-
plied to three NTM processes, i.e., EDM, WEDM, and electrochemical discharge
drilling (ECDD) processes for identifying the optimal parametric mixes resulting
in achievement of better quality characteristics. It can also be noticed that this
proposed approach would excel over the other popular optimization techniques,
which proves its application potentiality and solution accuracy as an efficient multi-
objective optimization tool.

4. PARAMETRIC OPTIMIZATION OF NTM PROCESSES

4.1. EDM process

Rahul et al. [20] applied satisfaction function and distance-based approach
as a multi-response optimization technique during EDM operation of superalloy
Inconel 718 while using a pure copper rod of 20 mm diameter as an electrode.
Gap voltage, peak current, pulse-on time, duty cycle and flushing pressure, each
with five different levels, were chosen as the input parameters for the considered
EDM process. All these EDM process parameters are independent and controllable
factors. On the other hand, MRR (in mm3/min), EWR (in mm3/min), Ra (in
µm), surface crack density (SCD) (in µm/µm2), white layer thickness (WLT) (in
µm) and micro hardness (MH) (in HV0.05) were treated as the responses. The
considered process parameters along with their levels are presented in Table 1.
Taguchi’s L25 orthogonal array was employed for conducting the experiments.
This experimental design plan and the measured response values are shown in
Table 2. Amongst the six responses, MRR is the only LTB quality characteristic
(beneficial criterion), whereas, the remaining five responses are of STB type (non-
beneficial criteria). The values of correlation coefficient (r) between these six
EDM responses, as shown in Table 3, identify them to be almost uncorrelated.
Depending on the type of each response, Eqs. (1)-(2) are now utilized to convert
the measured response values into the corresponding S/N ratios, as presented in
Table 4. These S/N ratios are then ranked in descending order for the considered 25
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experimental trial runs. As explained earlier, the assigned ranks are now squared
for all the responses for a particular experimental trial run and further added
together to obtain a single SSR value, as shown in Table 5. Finally, these calculated
SSR values are again ranked in ascending order to provide the values of SR, as
provided in Table 5. Among the 25 experimental runs, it is observed that the
experiment trial number 22 with the parametric combination of A5B2C1D5E4 has
the smallest SSR value, signifying it to be the most preferred experimental run for
the considered EDM process for simultaneous optimization of all the six responses.

Level
Process parameters Symbol unit 1 2 3 4 5

Gap voltage A V 50 60 70 80 90

Peak current B A 3 5 7 9 11

Pulse-on time C µs 100 200 300 400 500

Duty factor D % 65 70 75 80 85

Flushing pressure E bar 0.2 0.3 0.4 0.5 0.6

Table 1: Process parameters with levels for the EDM process [20]

Run A B C D E MRR EWR Ra SCD WLT MH

1 50 3 100 65 0.2 8.926014 0.111982 3.800 0.0158 19.261 439.3333

2 50 5 200 70 0.3 14.10501 0.022396 6.333 0.0166 19.577 387.7000

3 50 7 300 75 0.4 38.40095 0.022396 9.133 0.0151 16.954 441.1333

4 50 9 400 80 0.5 48.49642 0.078387 9.867 0.0136 18.596 463.7000

5 50 11 500 85 0.6 88.21002 0.111982 7.600 0.0141 17.667 389.5667

6 60 3 200 75 0.5 4.892601 0.156775 3.733 0.0154 19.074 391.4333

7 60 5 300 80 0.6 15.179 0.134378 4.400 0.0152 17.065 518.0667

8 60 7 400 85 0.2 26.92124 0.044793 8.067 0.0152 17.523 388.9667

9 60 9 500 65 0.3 38.78282 0.055991 7.667 0.0156 20.308 373.8667

10 60 11 100 70 0.4 89.16468 0.145577 9.600 0.0056 17.742 392.4333

11 70 3 300 85 0.3 5.298329 0.011198 2.967 0.0189 19.861 394.5000

12 70 5 400 65 0.4 10.04773 0.011198 5.533 0.0163 20.090 390.0000

13 70 7 500 70 0.5 18.30549 0.011198 7.267 0.0168 20.100 406.4333

14 70 9 100 75 0.6 49.21241 0.022396 8.533 0.0093 19.445 405.9667

15 70 11 200 80 0.2 79.57041 0.067189 9.733 0.0125 19.086 390.3000

16 80 3 400 70 0.6 2.362768 0.011198 4.267 0.0172 18.310 384.1333

17 80 5 500 75 0.2 4.868735 0.022396 5.267 0.0157 18.067 352.6000

18 80 7 100 80 0.3 22.52983 0.022396 7.200 0.0108 18.137 385.6333

19 80 9 200 85 0.4 44.8926 0.022396 5.667 0.0084 18.673 390.6333

20 80 11 300 65 0.5 49.06921 0.011198 9.867 0.0110 18.835 410.7333

21 90 3 500 80 0.4 1.312649 0.011198 2.133 0.0156 17.602 378.2000

22 90 5 100 85 0.5 7.207637 0.011198 5.667 0.0117 16.646 372.9000

23 90 7 200 65 0.6 18.61575 0.033595 7.333 0.0136 17.707 375.8000

24 90 9 300 70 0.2 25.1074 0.044793 9.200 0.0116 19.752 399.1000

25 90 11 400 75 0.3 48.01909 0.022396 10.333 0.0100 19.077 431.8667

Table 2: Experimental details for the EDM process [20]
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EDM process parameter MRR EWR Ra SCD WLT MH

MRR 1.000 0.333 0.734 -0.631 -0.060 0.086

EWR 0.333 1.000 -0.012 -0.138 -0.155 0.381

Ra 0.734 -0.012 1.000 -0.574 0.043 0.127

SCD -0.631 -0.138 -0.574 1.000 0.192 0.006

WLT -0.060 -0.155 0.043 0.192 1.000 -0.136

MH 0.086 0.381 0.127 0.006 -0.136 1.000

Table 3: Correlation coefficients between the EDM responses

S/N ratio

Run MRR EWR Ra SCD WLT MH

1 19.0132 19.017 -11.5957 36.0269 -25.6936 -52.8559

2 22.9875 32.9966 -16.0322 35.5978 -25.8349 -51.7699

3 31.6868 32.9966 -19.2123 36.4205 -24.5854 -52.8914

4 33.7142 22.1151 -19.8837 37.3292 -25.3884 -53.3247

5 38.9104 19.017 -17.6163 37.0156 -24.9433 -51.8116

6 13.7908 16.0945 -11.4412 36.2496 -25.6088 -51.8532

7 23.6249 17.4334 -12.8691 36.3631 -24.6421 -54.2877

8 28.6019 26.9758 -18.1342 36.3631 -24.8722 -51.7982

9 31.7728 25.0376 -17.6925 36.1375 -26.1533 -51.4543

10 39.0039 16.7381 -19.6454 45.0362 -24.9801 -51.8753

11 14.4828 39.0172 -9.44640 34.4708 -25.9600 -51.9209

12 20.0414 39.0172 -14.8592 35.7562 -26.0596 -51.8213

13 25.2516 39.0172 -17.2271 35.4938 -26.0639 -52.1798

14 33.8415 32.9966 -18.6220 40.6303 -25.7762 -52.1698

15 38.015 23.454 -19.7649 38.0618 -25.6143 -51.828

16 7.4684 39.0172 -12.6025 35.2894 -25.2538 -51.6896

17 13.7483 32.9966 -14.4313 36.0820 -25.1377 -50.9456

18 27.0552 32.9966 -17.1466 39.3315 -25.1713 -51.7235

19 33.0435 32.9966 -15.0671 41.5144 -25.4243 -51.8354

20 33.8162 39.0172 -19.8837 39.1721 -25.4993 -52.2712

21 2.3630 39.0172 -6.57980 36.1375 -24.9112 -51.5544

22 17.1559 39.0172 -15.0671 38.6363 -24.4262 -51.4318

23 25.3976 29.4745 -17.3056 37.3292 -24.9629 -51.4991

24 27.996 26.9758 -19.2758 38.7108 -25.9122 -52.0216

25 33.6283 32.9966 -20.2845 40.0000 -25.6102 -52.707

Table 4: Calculated S/N ratios for the EDM process

Now, the arithmetic means of the calculated SSR values at different operating
levels of the EDM process parameters are computed as the response variables and
are shown in Table 6. Based on these mean values, the best operating levels of the
EDM process parameters (shown in bold faced) are identified. Thus, in order to
achieve the most preferred machining performance of the considered EDM process,
the optimal parametric combination is to be set as gap voltage = 80 V, peak current
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= 7 A, pulse-on time = 100 µs, duty factor = 85% and flushing pressure = 0.4 bar,
which can also be represented as A4B3C1D5E3. The max-min column in Table
5 identifies gap voltage as the most influencing EDM process parameter. Figure
2 depicts the corresponding response graph, which also validates A4B3C1D5E3

as the optimal combination of input parameters for the considered EDM process.
As observed from this figure, a steep slope for gap voltage also confirms it to be
the most important EDM process parameter. The analysis of variance (ANOVA)
results based on the estimated SSR values are provided in Table 7, which show
that gap voltage has the highest contribution of 32.85% in determining the SSR
values, thus validating the above-obtained conclusion.

Rank Squared rank

Run MRR EWR Ra SCD WLT MH MRR EWR Ra SCD WLT MH SSR SR

1 19 21.5 4 20 18 22 361 462.25 16 400 324 484 2047.25 25

2 17 11 11 22 20 8 289 121 121 484 400 64 1479 15

3 10 11 19 13 2 23 100 121 361 169 4 529 1284 11

4 6 20 23.5 10.5 12 24 36 400 552.25 110.25 144 576 1818.5 22

5 2 21.5 15 12 6 10 4 462.25 225 144 36 100 971.25 5

6 22 25 3 16 15 14 484 625 9 256 225 196 1795 21

7 16 23 6 14.5 3 25 256 529 36 210.25 9 625 1665.25 20

8 11 16.5 17 14.5 4 9 121 272.25 289 210.25 16 81 989.5 6

9 9 18 16 17.5 25 3 81 324 256 306.25 625 9 1601.25 19

10 1 24 21 1 8 15 1 576 441 1 64 225 1308 12

11 21 4 2 25 22 16 441 16 4 625 484 256 1826 23

12 18 4 8 21 23 11 324 16 64 441 529 121 1495 16

13 15 4 13 23 24 19 225 16 169 529 576 361 1876 24

14 4 11 18 3 19 18 16 121 324 9 361 324 1155 9

15 3 19 22 9 17 12 9 361 484 81 289 144 1368 14

16 24 4 5 24 11 6 576 16 25 576 121 36 1350 13

17 23 11 7 19 9 1 529 121 49 361 81 1 1142 8

18 13 11 12 5 10 7 169 121 144 25 100 49 608 2

19 8 11 9.5 2 13 13 64 121 90.25 4 169 169 617.25 3

20 5 4 23.5 6 14 20 25 16 552.25 36 196 400 1225.25 10

21 25 4 1 17.5 5 5 625 16 1 306.25 25 25 998.25 7

22 20 4 9.5 8 1 2 400 16 90.25 64 1 4 575.25 1

23 14 15 14 10.5 7 4 196 225 196 110.25 49 16 792.25 4

24 12 16.5 20 7 21 17 144 272.25 400 49 441 289 1595.25 18

25 7 11 25 4 16 21 49 121 625 16 256 441 1508 17

Table 5: Rank, squared rank, SSR and SR for the considered EDM process
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Figure 2: Response graph for SSR values for the EDM process

Level
Process parameters 1 2 3 4 5 Max-Min Rank

Gap voltage 1520 1471.8 1544 988.5 1093.8 555.5 1

Peak current 1603.3 1271.3 1109.95 1357.45 1276.1 493.35 3

Pulse-on time 1138.7 1210.3 1519.15 1432.2 1317.75 380.45 4

Duty factor 1432.2 1521.65 1376.8 1291.6 995.85 525.8 2

Flushing pressure 1428.4 1404.45 1140.5 1458 1186.75 317.5 5
Table 6: Response table for SSR values for the EDM process

Source DoF Adj SS Adj MS f -value % contribution

Gap voltage 4 1371062 342766 3.29 32.85

Peak current 4 650079 162520 1.56 15.57

Pulse-on time 4 485464 121366 1.16 11.63

Duty factor 4 811460 202865 1.95 19.44

Flushing pressure 4 439183 109796 1.05 10.52

Error 4 416812 104203 9.99

Total 24 4174061 100
Table 7: ANOVA results for the EDM process

From the above analysis, it can thus be observed that the experiment trial
number 22, i.e. A5B2C1D5E4 with the lowest SSR value of 575.25 is the most
preferred combination of input parameters for the considered EDM process. But,
the response graph of Figure 2, which is developed based on the arithmetic means
of SSR values, provides another parametric combination of A4B3C1D5E3 for the
same EDM process. This parametric mix derived from the response graph differs
from that of the experimental trial number 22. As the chance of obtaining lower
SSR value is more at setting A4B3C1D5E3 than at combination A5B2C1D5E4, it
is thus preferred to operate the considered EDM process at an optimal parametric
setting of A4B3C1D5E3. On the other hand, Rahul et al. [20] identified the
best parametric setting of the same EDM process as A4B5C1D5E3, which slightly
varies from the setting A4B3C1D5E3 with respect to peak current. In the setting
of A4B3C1D5E3, the peak current is required to be set at level 3 (7 A), whereas,
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Rahul et al. [20] advised to set peak current at level 5 (11 A). Now, in order to
show the effectiveness of this approach as an effective multi-response optimization
tool, the two different parametric combinations are compared with respect to the
SSR values, which can be predicted using Eq. (4).

Sp = Sm

n∑
i=1

(S̄i −Sm) (4)

where, Sp is the predicted SSR value, Sm is the mean SSR value for all the 25
experiments, S̄i is the mean SSR value for ith level of the process parameters, and
n is the total number of process parameters.

The SSR value for setting A4B3C1D5E3 is predicted as 79.02, whereas, for set-
ting A4B5C1D5E3, it is estimated to be 245.17. Thus, it can be noticed that for
setting A4B3C1D5E3, there is a decrement of 166.15 in the predicted SSR value,
which justifies the selection of A4B3C1D5E3 as the optimal parametric combina-
tion for the considered EDM process. In order to fully justify the superiority of
this combination over that as obtained by Rahul et al. [20], the following regres-
sion equations are also developed while considering only the main effects of various
EDM process parameters.

MRR = −25.7−0.0494×A+8.176×B−0.0155×C+0.449×D+11.1×E (5)
EWR = 0.161−0.001792×A+0.00134×B−0.000067×C+0.00013×D+0.0358×E (6)
Ra = 6.68−0.0107×A+0.7420×B−0.00089×C–0.0472×D−8.19×E (7)
SCD = 0.02274−0.000059×A−0.000764×B+0.000011×C−0.000032×D−0.00184×E (8)
WLT = 24.37−0.045×A+0.0193×B+0.00090×C−0.0666×D−25.14×E (9)
MH = 427.0−1.96×A+0.67×B−0.0137×C+0.239×D+55.6×E (10)

Based on these regression equations, a comparison of the response values at the de-
rived optimal parametric combination and that of Rahul et al. [20] is shown in Table 8.
It is interesting to observe from the table that at this optimal parametric mix, the value
of MRR (being an LTB quality characteristic) is substantially increased by 25.53%, i.e.
from 54.6764 mm3/min to 68.635 mm3/min. Similarly, for the remaining five responses,
i.e. EWR, Ra, SCD, WLT, and MH (all being STB quality characteristics), there are
decrements in their values by 70.87%, 6.64%, 9.33%, 2.47%, and 1.093%, respectively
at this optimal parametric combination. Finally, the corresponding response plots are
developed, as shown in Figure 3. These plots, basically, demonstrate the effects of dif-
ferent EDM process parameters in estimating the SSR values. It would further help the
concerned process engineers in determining the corresponding SSR value for any given
combination of the EDM process parameters.

Optimization method MRR EWR Ra SCD WLT MH

Taguchi method and
super ranking concept 68.635 0.0457 3.641 0.00369 5.2781 316.075

(A4B3C1D5E3)

Satisfaction function and
distance-based approach 54.6764 0.1569 3.9 0.00407 5.4120 319.5667

(A4B5C1D5E3)[20]

Improvement (%) 25.53 70.87 6.64 9.33 2.47 1.093
Table 8: Predicted response values for the EDM process
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(a) SSR vs. gap voltage, peak current (b) SSR vs. gap voltage, pulse-on time

(c) SSR vs. gap voltage, duty factor (d) SSR vs. gap voltage, flushing pressure

(e) SSR vs. peak current, pulse-on time (f) SSR vs. peak current, duty factor

(g) SSR vs. peak current, flushing pressure (h) SSR vs. pulse-on time, duty factor

(i) SSR vs. pulse-on time, flushing pressure (j) SSR vs. duty factor, flushing pressure
Figure 3: Surface plots showing the effects of different EDM process parameters on SSR value
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4.2. WEDM process

Santhanakumar et al. [25] studied the effects of four important WEDM process
parameters, i.e. gap voltage, capacitance, feed rate, and wire tension on three responses,
i.e. Ra (in µm), kerf width (KW) (in µm) and MRR (in µg/s). The correlation coefficients
between Ra and kerf width, Ra and MRR, and kerf width and MRR are estimated
as -0.112, -0.027 and -0.014 respectively, which prove the independency between the
considered WEDM responses. Four different levels were chosen for each of those process
parameters, as shown in Table 9. The work material was considered as Ti 6-4 sheet
and based on L16 orthogonal array, 16 experiments were conducted. The experimental
design plan and the measured response values are exhibited in Table 10. An integrated
TOPSIS and RSM-based approach was later adopted to identify the best parametric
combination as A3B1C3D4 for the considered WEDM process. Now, following the same
computational procedures, adopted in the first example, the combined Taguchi method
and super ranking concept are again adopted here for parametric optimization of the
said WEDM process. The S/N ratio values for the three responses, their ranks and
squared ranks along with the SSR and SR values are estimated in Table 10. It can be
observed from the table that the experimental trial number 9 has the lowest SSR value,
which identifies it to be the most preferred experimental run among the 16 parametric
combinations for the WEDM process.

Level

Process parameters Symbol unit 1 2 3 4

Gap voltage A V 80 90 100 110

Capacitance B µF 0.1 1 10 40

Feed rate C µm/s 3 6 9 12

Wire tension D gm 9 12 15 18

Table 9: WEDM process parameters and their corresponding levels [25]

Run A B C D Ra KW MRR

1 80 0.1 3 9 0.484 100 1.755

2 80 1 6 12 0.586 110 3.861

3 80 10 9 15 1.32 120 6.318

4 80 40 12 18 2.464 90 6.318

5 90 0.1 6 15 0.531 110 3.861

6 90 1 3 18 0.596 110 1.93

7 90 10 12 9 1.514 100 7.02

8 90 40 9 12 2.977 80 4.212

9 100 0.1 9 18 0.272 80 4.212

10 100 1 12 15 0.674 70 4.914

11 100 10 3 12 1.692 90 1.579

12 100 40 6 9 2.498 110 3.861

13 110 0.1 12 12 0.958 90 6.318

14 110 1 9 9 0.683 100 5.265

15 110 10 6 18 1.831 80 2.808

16 110 40 3 15 2.928 100 1.755

Table 10: Experimental design plan and response values for the WEDM process [25]
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The corresponding response table and response graph are subsequently developed
based on the calculated SSR values, and are presented in Table 12 and Figure 4, respec-
tively. It can be revealed that gap voltage = 100 V, capacitance = 0.1 µF, feed rate =
12 µm/s and wire tension = 18 gm, i.e. A3B1C4D4 is the optimal combination of input
parameters for the considered WEDM process so as for achieving the desired machining
performance. This optimal parametric mix, obtained based on Taguchi method and su-
per ranking concept, slightly differs from the setting A3B1C3D4 [25] only with respect
to feed rate. The max-min column of Table 12 and a steep slope in the response graph
identify feed rate as the most influencing control parameter for the said WEDM process.
This finding can also be well validated from the ANOVA results of Table 13, where feed
rate has a maximum contribution of 59.56% in determination of the SSR value.

S/N ratio Rank Squared rank

Run Ra KW MRR Ra KW MRR Ra KW MRR SSR SR

1 6.3031 -40 4.8855 2 9.5 14.5 4 90.25 210.25 304.5 11

2 4.642 -40.8279 11.734 4 13.5 10 16 182.25 100 298.25 10

3 -2.4115 -41.5836 16.0116 9 16 3 81 256 9 346 12

4 -7.8328 -39.0849 16.0116 13 6 3 169 36 9 214 6

5 5.4981 -40.8279 11.734 3 13.5 10 9 182.25 100 291.25 8

6 4.4951 -40.8279 5.7111 5 13.5 13 25 182.25 169 376.25 13

7 -3.6025 -40 16.9267 10 9.5 1 100 90.25 1 191.25 5

8 -9.4756 -38.0618 12.4898 15 3 7.5 225 9 56.25 290.25 7

9 11.3086 -38.0618 12.4898 1 3 7.5 1 9 56.25 66.25 1

10 3.4268 -36.902 13.8287 6 1 6 36 1 36 73 2

11 -4.568 -39.0849 3.9676 11 6 16 121 36 256 413 14

12 -7.9518 -40.8279 11.734 14 13.5 10 196 182.25 100 478.25 15

13 0.3727 -39.0849 16.0116 8 6 3 64 36 9 109 3

14 3.3116 -40 14.428 7 9.5 5 49 90.25 25 164.25 4

15 -5.2538 -38.0618 8.9679 12 3 12 144 9 144 297 9

16 -9.3314 -40 4.8855 15 9.5 14.5 225 90.25 210.25 525.5 16

Table 11: S/N ratio and rank calculations for the WEDM process

Level

Process parameters 1 2 3 4 Max-Min Rank

Gap voltage 290.6875 287.25 257.625 273.9375 33.0625 4

Capacitance 192.75 227.9375 311.8125 377 184.25 2

Feed rate 404.8125 341.1875 216.6875 146.8125 258 1

Wire tension 284.5625 277.625 308.9375 238.375 70.5625 3
Table 12: Response table for SSR values for the WEDM process

Source DoF Adj SS Adj MS f -value % contribution

Gap voltage 3 2706 902.2 0.17 0.98

Capacitance 3 82866 27622.1 5.31 30.06

Feed rate 3 164168 54722.5 10.51 59.56

Wire tension 3 10276 3425.2 0.66 3.73

Error 3 15620 5206.6 5.67

Total 15 275636 100
Table 13: ANOVA results for the WEDM process
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Figure 4: Response graph for SSR values for the WEDM process

(a) SSR vs. gap voltage, capacitance (b) SSR vs. gap voltage, feed rate

(c) SSR vs. gap voltage, wire tension (d) SSR vs. capacitance, feed rate

(e) SSR vs. capacitance, wire tension (f) SSR vs. feed rate, wire tension
Figure 5: Surface plots showing the effects of different WEDM process parameters on SSR value

Based on the computational procedure as adopted in the first example, the SSR value
is predicted to be 3.4375 at the parametric setting A3B1C4D4, whereas, it is estimated
as 73.3125 at the parametric mix A3B1C3D4, thus showing a decrement of 69.875 in
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the estimated value of SSR for the proposed parametric combination. The corresponding
regression equations are also developed depicting the relationships between the responses
and input parameters of the considered WEDM process. Using these equations, the
response values, as predicted at the two different parametric settings, are compared in
Table 14, which shows a marginal improvement of 5.88% and 0.89% in Ra and KW
values respectively, whereas, there is a remarkable improvement of 41.12% in the MRR
value. Finally, the corresponding response surface plots showing the influences of various
WEDM process parameters on the SSR value are developed, as exhibited in Figure 5.

Ra = −0.62+0.01039×A+0.05244×B−0.0039×C−0.0067×D (11)

KW = 168.9−0.500×A−0.035×B−1.500×C−1.200×D (12)

MRR = 3.36−0.0219×A−0.0006×B+0.4856×C−0.0585×D (13)

Optimization method Ra KW MRR

Taguchi method and
super ranking concept 0.256 79.29 5.944

(A3B1C4D4)

TOPSIS-based
RSM approach 0.272 80 4.212

(A3B1C3D4) [25]

Improvement (%) 5.88 0.89 41.12
Table 14: Predicted responses for the WEDM process

4.3. ECDD process

While taking SiC reinforced polymer matrix composite as the work material, Antil et
al. [1] investigated the effects of four ECDD process parameters, i.e. voltage, electrolyte
concentration, inter-electrode gap, and duty factor on three responses, i.e. MRR (in
mg/min), overcut (in mm), and taper (in mm). The correlation coefficients between
MRR and overcut, MRR and taper, and overcut and taper are determined as 0.546,
0.070 and 0.083, respectively. An L9 orthogonal array was adopted as the experimental
design plan. Those four ECDD process parameters along with their three levels are
shown in Table 15. Table 16 exhibits the detailed observations of the considered responses
obtained from the nine experimental trials. Using Taguchi method-based GRA technique
as an optimization tool, Antil et al. [1] determined the most preferred combination of
input parameters for the considered ECDD process as A2B3C2D2 (i.e. voltage = 60V,
electrolyte concentration = 110 g/l, inter-electrode gap = 120 mm, and duty factor
= 0.66). This problem is now solved while employing the proposed Taguchi method
and super ranking concept to determine the optimal combination of different process
parameters. From the derived results, as provided in Table 17, it can be observed that
based on the derived SSR values, experimental number 2, i.e. A1B2C2D2 emerges out
as the best parametric combination for the said NTM process.

Level

Process parameters Symbol unit 1 2 3

Voltage A V 45 60 75

Electrolyte concentration B g/l 90 100 110

Inter-electrode gap C mm 100 120 140

Duty factor D 0.5 0.66 0.75

Table 15: Process parameters with their levels for the ECDD process [1]
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Run A B C D MRR Overcut Taper

1 45 90 100 0.5 1.092 0.121 0.0560

2 45 100 120 0.66 1.023 0.112 0.0490

3 45 110 140 0.75 1.025 0.113 0.0590

4 60 90 120 0.75 1.016 0.098 0.0500

5 60 100 140 0.5 1.019 0.088 0.0510

6 60 110 100 0.66 1.005 0.064 0.0491

7 75 90 140 0.66 1.015 0.179 0.0562

8 75 100 100 0.75 1.017 0.196 0.0610

9 75 110 120 0.5 1.012 0.103 0.0480

Table 16: Experimental details for the ECDD process [1]

Now using the calculated SSR values, the corresponding response table and response
graph are developed for the ECDD process and presented in Table 18 and Figure 6,
respectively. Based on these observations, the setting A2B2C2D1 (i.e. voltage = 60 V,
electrolyte concentration = 100 g/l, inter-electrode gap = 120 mm, and duty factor =
0.5) can be noticed as the optimal parametric mix for the considered NTM process for
simultaneous optimization of all the three responses. In Table 18, the highest max-min
value of 77.6666 indicates voltage as the most influencing factor among the four ECDD
process parameters, followed by inter-electrode gap.

S/N ratio Rank Squared rank

Run MRR Overcut Taper MRR Overcut Taper MRR Overcut Taper SSR SR

1 0.7645 18.3443 25.0362 1 7 6 1 49 36 86 5

2 0.1975 19.0156 26.1961 3 5 2 9 25 4 38 1

3 0.2145 18.9384 24.5830 2 6 8 4 36 64 104 7

4 0.1379 20.1755 26.0206 6 3 4 36 9 16 61 3

5 0.1635 21.1103 25.8486 4 2 5 16 4 25 45 2

6 0.0433 23.8764 26.1784 9 1 3 81 1 9 91 6

7 0.1293 14.9429 25.0053 7 8 7 49 64 49 162 8

8 0.1464 14.1549 24.2934 5 9 9 25 81 81 187 9

9 0.1036 19.7433 26.3752 8 4 1 64 16 1 81 4

Table 17: S/N ratios and rank calculations for the ECDD process

Figure 6: Response graph for SSR values for the ECDD process
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Level

Process parameters 1 2 3 Max-Min Rank

Voltage 76 65.6667 143.3333 77.6666 1

Electrolyte concentration 103 90 92 13 4

Inter-electrode gap 121.3333 60 103.6667 61.3333 2

Duty factor 70.6667 97 117.3333 46.6666 3
Table 18: Response table for SSR values for the ECDD process

Like the previous examples, in order to understand the significance of each of the
ECDD process parameters on the computed SSR values, ANOVA is performed in Table
19. It can be revealed from this table that the corresponding number of degrees of
freedom (DoF) for the residual error has a value of zero, showing lack of sufficient data
and it usually occurs when four process parameters, with three levels each, are considered
for experimentation using L9 orthogonal array. Hence, to overcome this problem, pooling
is made [27]. Pooling is a technique of revising and re-estimating the ANOVA results
in order to neglect a factor which is of less significance as compared to others. It can
be noticed from Table 19 that electrolyte concentration has an adjusted mean square
(Adj. MS) value of 147 which is quite low as compared to the other ECDD process
parameters, identifying it as the least influencing factor. The same can also be revealed
from the max-min column of the response table and its less steep slope in the response
graph. Hence, electrolyte concentration is pooled in Table 20. This table also confirms
voltage as the most influencing process parameter with 52.75% contribution, followed by
inter-electrode gap having 29.55% contribution.

Source DoF Adj SS Adj MS f -value % contribution

Voltage 2 10672.7 5336.3 * *

Electrolyte concentration 2 294.0 147.0 * *

Inter-electrode gap 2 5980.7 2990.3 * *

Duty factor 2 3284.7 1642.3 * *

Error 0 * *

Total 8 20232.0

Table 19: ANOVA for SSR values (before pooling) for the ECDD process

Source DoF Adj SS Adj MS f -value % contribution

Voltage 2 10672.7 5336.3 36.30 52.75

Inter-electrode gap 2 5980.7 2990.3 20.34 29.55

Duty factor 2 3284.7 1642.3 11.17 16.25

Error 2 294 147.0 1.45

Total 8 20232 100

Table 20: ANOVA for SSR values (after pooling) for the ECDD process

Now, the two parametric combinations, i.e. A2B2C2D1 and A2B3C2D2 are compared
based on the predicted SSR values. It is observed that there is a decrement of 28.3334
in the predicted SSR value for the proposed setting of A2B2C2D1 against A2B3C2D2 as
derived by Antil et al. [1]. To fully justify the above observations, the corresponding
regression equations are developed for all the considered responses. The estimated re-
sponse values, derived from these regression equations, and presented in Table 21, show
improvements by 1.43%, 38.78% and 2.14% in MRR, overcut, and taper, respectively.
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Figure 7 shows the corresponding response surface plots to highlight the influences of
various ECDD process parameters on the computed SSR value.

MRR = 1.3400−0.001067×A−0.001350×B−0.000458×C+0.0960×D (14)

Overcut = 0.151+0.00147×A−0.00197×B−0.000008×C+0.122×D (15)

Taper = 0.0514+0.000013×A−0.00012×B+0.000001×C+0.00175×D (16)

Optimization method MRR Overcut Taper

Taguchi method and
super ranking concept 1.134 0.10224 0.0411

(A2B3C2D2)

GRA technique
(A2B3C2D2) [1] 1.118 0.167 0.042

Improvement (%) 1.43 38.78 2.14
Table 21: Estimated responses for the ECDD process

(a) SSR vs. voltage, (b) SSR vs. voltage, inter-electrode gap
electrolyte concentration

(c) SSR vs. voltage, duty factor (d) SSR vs. electrolyte concentration,
inter-electrode gap

(e) SSR vs. electrolyte concentration, (f) SSR vs. duty factor, inter-electrode gap
duty factor

Figure 7: Surface plots showing the effects of different ECDD process parameters on SSR value
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5. CONCLUSIONS

In this paper, a novel technique combining Taguchi method and super ranking con-
cept is applied to determine the optimal parametric combinations for three different NTM
processes. It can be clearly observed that the proposed approach provides better para-
metric combinations for all the considered NTM processes with respect to the predicted
SSR values. Moreover, the developed regression equations for the individual responses
also confirm the superiority of this approach over the other popular methods while prov-
ing its competency as a multi-objective optimization tool. This approach is quite simple,
easy to implement and free from any complex mathematical computation. As the entire
analysis is based on the secondary experimental data of the past researchers, thus, there
is no scope of conducting any confirmatory experiment so as to validate the derived re-
sults. It can also be applied to other conventional, as well as non-conventional, machining
processes for determination of the optimal parametric combinations for achieving their
better machining performance.
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