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Abstract: This paper presents a new approach for the treatment of uncertainty and
imprecision based on interval-valued fuzzy-rough numbers (IVFRNs). IVFRNs make a
decision making possible using only the internal knowledge from the data, using objective
indeterminacy without the need to rely on models of any assumption. Namely, instead
of subjectively entering external uncertainties, the structure of the given data is used.
Taking into account the given assumptions, we developed an original multi-criteria model
based upon the IVFR approach. In the multi-criteria model the traditional MAIRCA
(Multi-Attribute Ideal-Real Comparative Analysis) method was modified. The model
was tested and validated on a case study, considering selection of the optimal landing
operations point for overcoming water obstacles. The sensitivity analysis of the IVFRN
MAIRCA model was carried out through 24 scenarios which showed that our results are
of a high stability degree.
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222 D. Pamučar, et al. / Application of Interval Valued Fuzzy-Rough Numbers

MSC: 91B, 93C.

1. INTRODUCTION

Multi-criteria decision-making models that contain qualitative and quantitative
values of the attributes have wide application in the fields of operational research,
management science, urban planning, natural sciences, military fields, etc. Due to
ambiguity and complexity of attributes in multi-criteria decision-making problems
(MCDM), the attributes cannot always be expressed with crisp numbers. In classic
MCDM methods, such as TOPSIS [13, 16, 17], VIKOR [20, 25], MABAC [6, 22]
and CODAS [1, 7], the weight of each attribute and the ranking of the alternatives
are represented by crisp numbers. However, in the real world, the decision maker
may prefer to assess the attributes using linguistic variables instead of crisp values
because of his partial knowledge about the attributes or the lack of information
in from the domain of a problem. In such a situation, priority information about
the alternatives provided by the decision makers can be unclear, imprecise or
incomplete. The fuzzy set, introduced by Zadeh [34], is one of the tools used to
present such imprecision in a mathematical form. Multi-criteria decision-making
(MCDM) problems with imprecise information can be successfully modeled using
the theory of fuzzy sets in the field of decision making. However, the fuzzy set can
only focus on the degree of belonging of unclear parameters or events.

Unlike fuzzy theory, a very convenient tool for treating imprecision without
the effect of subjectivism is the theory of rough sets, introduced by Pavlak [29].
In nowadays literature rough set theory is successfully applied to a wide range of
different areas of human activity [23, 31]. Knowing the advantages of rough set
theory, it is completely justifiable to carry out the decision-making process using
rough sets when it contains indeterminate and inaccessible data [24].

In the decision-making process the interval fuzzy technique is used to transform
crisp numbers into fuzzy numbers which, with the help of the membership function,
show the degree of belonging of elements to a given set. According to Zadeh [34],
linguistic expressions (linguistic variables) can be used very successfully to quan-
tify uncertainty in complex and uncertain situations [5]. Here, linguistic variables
are variables whose values are linguistic terms that can be used in an intuitive and
simple way to express the subjectivity and/or qualitative imprecision in the assess-
ments of decision makers. Karnik and Mendel [14] regarded introducing linguistic
expressions by using classical fuzzy sets (type-1 fuzzy sets) as not sufficiently clear
and precise. Further, they consider that it is much more natural and precise to
introduce linguistic expressions by using interval-valued fuzzy sets (type-2 fuzzy
sets). Interval-valued fuzzy sets can provide greater flexibility in presenting impre-
cise and unclear information, especially in the process of group decision making,
which is characterized by a high degree of uncertainty [3]. For this reason, the ap-
plication of interval-valued fuzzy sets in multi-criteria decision making (MCDM)
is a logical step, to ensure a clear enough presentation of linguistic expressions.

However, as with type-1 fuzzy sets, interval-valued fuzzy sets are also charac-
terized by subjectivism when defining the borders of the sets and the footprint of
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uncertainty [2]. In order to eliminate this subjectivity, the authors of this paper
present a new approach which is a modification of fuzzy sets by using rough num-
bers. Interval-valued fuzzy-rough numbers (IVFRN) utilize the benefits of both
theories: fuzzy sets and rough sets (numbers). In the IVFRN approach the borders
are determined based on the border approximation areas and the uncertainty in
them. The IVFRN approach uses only internal knowledge, that is, the operational
data, and there is no need to rely on models of any assumption. This means that
with the application of IVFRN, instead of different additional/external parame-
ters, only the structure of the given data is used. This IVFRN-based approach
combines the benefits of the fuzzy and rough concepts.

This paper has several objectives. The first objective is to improve the method-
ology for dealing with uncertainties in the field of group multi-criteria decision
making. The second goal is to affirm the idea of interval-valued fuzzy-rough num-
bers through a detailed presentation of arithmetical operations with IVFRN that
are characteristic of multi-criteria decision making. The third goal is to introduce
other authors to the wider application of IVFRN in MCDM, since the benefits
of IVFRN that are emphasized in this paper are a logical motive for their wider
application. Finally, the fourth goal is to bridge the gap that exists in the method-
ology for evaluating landing operations points for overcoming water obstacles by
means of a new approach to the treatment of uncertainties based on IVFRN.

In the multi-criteria model presented in this paper an original modification
of the MAIRCA and TOPSIS methods was carried out by applying the IVRFN
approachThe proposed models provide an evaluation of the alternatives in spite of
doubts in the decision-making process and a lack of quantitative information. The
authors hope that these modifications will make a significant contribution to the
literature that discusses multi-criteria decision making. Since the IVFRN approach
is essentially a unification of the advantages of the fuzzy and rough approaches,
a logical scenario for validating the IVFRN model is the application of fuzzy and
rough theory. Therefore, the fuzzy and rough modifications of the MAIRCA,
VIKOR and TOPSIS methods are used to validate the basic IVFRN-MAIRCA
model. The authors specifically highlight the original IVFRN modification of the
TOPSIS model that was developed for validating the MCDM model and which has
not been considered in the literature so far. In addition to the above contributions,
the authors emphasize the contribution of the paper in the field of selecting the
optimum landing operations point for overcoming water obstacles. The authors
did not come across any MCDM model in the literature that considers the selec-
tion of the optimum landing operations point for overcoming water obstacles and
they hope that the IVFR-MAIRCA model will make a significant contribution to
decision makers in this field.

The rest of the paper is organized into six sections. After the introduction, the
second section presents the basic concept of interval-valued fuzzy-rough numbers.
The third section presents the algorithm for the hybrid IVFRN-MAIRCA model,
tested in the fourth section on a case study, considering the optimal place for
overcoming water obstacles and forming a landing operations point for Serbian
Army units to cross. The fifth section is a discussion of the results and a validation
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of the IVFRN-MAIRCA model. Finally, the sixth section presents the concluding
considerations and directions for further research.

2. INTERVAL-VALUED FUZZY-ROUGH NUMBERS

We define fuzzy set A as a set of arranged pairs

A = {(x, µA (x)) |x ∈ X, 0 ≤ µA (x) ≤ 1} ,

which is described by a triangular membership function. Then we can represent
a fuzzy number A as A = (a1, a2, a3), where a1 and a3 respectively represent the
left and right borders of the interval of fuzzy number A, and a2 represents the
value at which fuzzy number A reaches its maximum value.

Suppose that U is a universe that contains all objects and let Y be an arbitrary
object from U. Suppose that there is a set of k classes representing preferences of
the DM, G∗ = (A1, A2, ..., Ak), under the condition that they belong to a series
that satisfies the condition that A1 < A2 <, ..., < Ak. All objects are defined in
the universe and connected with the preferences of the DM. Each element Ai (1 ≤
i ≤ k) represents a fuzzy number defined as Aq = (a1q, a2q, a3q). Since element Ai

from the class of objects G∗ is represented as a fuzzy number Aq = (a1q, a2q, a3q),
for each of the values a1q, a2q and a3q we obtain one class of objects, represented in
the intervals I(a1)q = {I(a1)lq, I(a1)uq}, I(a2)q = {I(a2)lq, I(a2)uq} and I(a3)q =
{I(a3)lq, I(a3)uq} where the condition that I(aj)lq ≤ I(aj)uq (j = 1, 2, 3; 1 ≤
q ≤ k) is satisfied, as well as the condition I(a1)q, I(a2)q, I(a3)q ∈ G∗. Then
I(aj)lq and I(aj)uq (j = 1, 2, 3; 1 ≤ q ≤ k) respectively represents the lower
and the upper limit of the interval of the q-th class of objects. If both limits
of the class of objects (upper and lower limits) respectively are arranged so that
I∗(aj)l1 < I∗(aj)l2 <, ..., < I∗(aj)ls; I

∗(aj)u1 < I∗(aj)u2 <, ..., < I∗(aj)um (j =
1, 2, 3; 1 ≤ s,m ≤ k), then for any class of objects I∗(aj)lq ∈ G∗ and I∗(aj)uq ∈ G∗

(j = 1, 2, 3;1 ≤ q ≤ k) we can define the lower approximation I∗(aj)lq using the
following expressions

Apr (I∗(a1)lq) =
⋃
{Y ∈ U/G∗(Y ) ≤ I∗(a1)lq} ; (1 ≤ q ≤ k) (1)

Apr (I∗(a2)lq) =
⋃
{Y ∈ U/G∗(Y ) ≤ I∗(a2)lq} ; (1 ≤ q ≤ k) (2)

Apr (I∗(a3)lq) =
⋃
{Y ∈ U/G∗(Y ) ≤ I∗(a3)lq} ; (1 ≤ q ≤ k) (3)

And the upper approximation of I∗(aj)uq using the following expressions

Apr (I∗(a1)uq) =
⋃
{Y ∈ U/G∗(Y ) ≥ I∗(a1)uq} ; (1 ≤ q ≤ k) (4)

Apr (I∗(a2)uq) =
⋃
{Y ∈ U/G∗(Y ) ≥ I∗(a2)uq} ; (1 ≤ q ≤ k) (5)

Apr (I∗(a3)uq) =
⋃
{Y ∈ U/G∗(Y ) ≥ I∗(a3)uq} ; (1 ≤ q ≤ k) (6)
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Both classes of objects (object classes I∗(aj)lq and I∗(aj)uq) are defined by
their lower limit Lim (I∗(aj)lq); j = 1, 2, 3, and their upper limit Lim (I∗(aj)uq);
j = 1, 2, 3. The lower limits are defined by the following expressions:

Lim (I∗(a1)lq) =
1

ML(a1)

∑
G∗(Y ) |Y ∈ Apr (I∗(a1)lq) ; (1 ≤ q ≤ k) (7)

Lim (I∗(a2)lq) =
1

ML(a2)

∑
G∗(Y ) |Y ∈ Apr (I∗(a2)lq) ; (1 ≤ q ≤ k) (8)

Lim (I∗(a3)lq) =
1

ML(a3)

∑
G∗(Y ) |Y ∈ Apr (I∗(a3)lq) ; (1 ≤ q ≤ k) (9)

where ML(a1), ML(a2) and ML(a3) represents the sum of the objects contained
in the lower approximation of the classes of objects I∗(a1)lq, I∗(a2)lq and I∗(a3)lq.
The upper limits Lim (I∗(aj)uq); j = 1, 2, 3, are defined by expressions (10)-(12)

Lim (I∗(a1)uq) =
1

MU(a1)

∑
G∗(Y ) |Y ∈ Apr (I∗(a1)uq) ; (1 ≤ q ≤ k) (10)

Lim (I∗(a2)uq) =
1

MU(a2)

∑
G∗(Y ) |Y ∈ Apr (I∗(a2)uq) ; (1 ≤ q ≤ k) (11)

Lim (I∗(a3)uq) =
1

MU(a3)

∑
G∗(Y ) |Y ∈ Apr (I∗(a3)uq) ; (1 ≤ q ≤ k) (12)

where MU(a1), MU(a2) and MU(a3) respectively represent the sum of the objects
contained in the upper approximation of the classes of objects I∗(a1)uq, I∗(a2)uq
and I∗(a3)uq.

Both limits of the objects (the lower limit and upper limit) Lim (I∗(aj)lq) and
Lim (I∗(aj)uq); j = 1, 2, 3 should satisfy the condition that

Lim (I∗(a1)lq) ≤ Lim (I∗(a1)uq) ≤ Lim (I∗(a2)lq) ≤
Lim (I∗(a2)uq) ≤ Lim (I∗(a3)lq) ≤ Lim (I∗(a3)uq)

(13)

If because of a great amount of uncertainty (disagreement) in the expert deci-
sion making and the characteristics of the predefined fuzzy linguistic scales, condi-
tion (13) is not satisfied, that is Lim (I∗(a1)uq) > Lim (I∗(a2)lq) or Lim (I∗(a2)uq) >
Lim (I∗(a3)lq), then equations (14) and (15) apply

Lim (I∗(a1)uq) = Lim (I∗(a2)lq) . (14)

Lim (I∗(a3)lq) = Lim (I∗(a2)uq) . (15)

We can determine the rough boundary interval for each class of objects from
I(a1)q represented as RB (I(aj)q); j = 1, 2, 3, which denotes the interval between
the lower and upper limits:

RB (I(a1)q) = Lim (I∗(a1)uq)−Lim (I∗(a2)lq) ; (j = 1, 2, 3; 1 ≤ q ≤ k) . (16)



226 D. Pamučar, et al. / Application of Interval Valued Fuzzy-Rough Numbers

As we can see, each class of objects I(a1)q, I(a2)q and I(a3)q is defined by its

lower and upper limits, which make up interval fuzzy-rough number A,(Figure 1),
which is defined as

A =
[
AL

q , A
U
q

]
=

=

[ (
Lim (I∗(a1)uq) , Lim (I∗(a2)lq) , Lim (I∗(a2)uq) , Lim (I∗(a3)lq) ;w1(AL

q )
)(

Lim (I∗(a1)lq) , Lim (I∗(a2)lq) , Lim (I∗(a2)uq) , Lim (I∗(a3)uq) ;w2(AU
q )
) ]

(17)

where AL
q and AU

q respectively represent the upper and lower trapezoidal fuzzy-

rough number that satisfies the condition AL
q ⊂ AU

q , while w1(AL
q ) and w2(AU

q )

respectively represents maximum values of interval fuzzy-rough number A.

From Figure 1 we can see that for interval-valued fuzzy-rough number A it is
true that w1(AL

q ) = w2(AU
q ) = 1. On this basis, we can write expression (17) in

the following form

A =
[
AL

q , A
U
q

]
=
[(
aL1q, a

U
1q

)
,
(
aL2q, a

U
2q

)
,
(
aL3q, a

U
3q

)]
(18)

where aLjq = Lim (I∗(aj)lq) and aUjq = Lim (I∗(aj)uq) ; (j = 1, 2, 3; 1 ≤ q ≤ k).

1
1 2( ) ( ) 1L U

q qw A w A 

 *
1( )lqLim I a  *

1( )uqLim I a  *
2( )lqLim I a  *

2( )uqLim I a  *
3( )lqLim I a  *

3( )uqLim I a

U
qA L

qA

0

Figure 1: Interval-valued fuzzy-rough number A
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If there is consensus among the decision makers (DMs) regarding assigning
particular values from a linguistic fuzzy scale then aL1q = aU1q, aL2q = aU2q i aL3q = aU3q.

Then interval-valued fuzzy-rough number A becomes fuzzy number A type-1.

Interval-valued fuzzy-rough number A which is defined at interval (−∞,+∞)
can be represented using expressions (19) and (20)

A =
{
x,
[
µAL

q
(x), µAU

q
(x)
]}

,

x ∈ (−∞,+∞), µAL
q

(x), µAU
q

(x) : (−∞,+∞)→ [0, 1] . (19)

µ
A

(x) =
[
µAL

q
(x), µAU

q
(x)
]
, µAL

q
(x) ≤ µAU

q
(x),∀x ∈ (−∞,+∞). (20)

where µAL
q

(x) and µAU
q

(x) represent the degree of membership to the upper and

lower function of interval fuzzy-rough number A.
Based on the above we can define arithmetic operations between two interval-

valued fuzzy-rough numbers A =
[(
aL1 , a

U
1

)
,
(
aL2 , a

U
2

)
,
(
aL3 , a

U
3

)]
and

B =
[(
bL1 , b

U
1

)
,
(
bL2 , b

U
2

)
,
(
bL3 , b

U
3

)]
[26]:

(1) Adding interval-valued fuzzy-rough numbers ”+”

A+B =
[(
aU1 , a

L
1

)
,
(
aL2 , a

U
2

)
,
(
aL3 , a

U
3

)]
+
[(
bL1 , b

U
1

)
,
(
bL2 , b

U
2

)
,
(
bL3 , b

U
3

)]
=

=
[(
aU1 + bU1 , a

L
1 + bL1

)
,
(
aL2 + bL2 , a

U
2 + bU2

)
,
(
aL3 + bL3 , a

U
3 + bU3

)] (21)

(2) Subtracting interval-valued fuzzy-rough numbers ”-”

A−B =
[(
aL1 , a

U
1

)
,
(
aL2 , a

U
2

)
,
(
aL3 , a

U
3

)]
−
[(
bL1 , b

U
1

)
,
(
bL2 , b

U
2

)
,
(
bL3 , b

U
3

)]
=

=
[(
aL1 − bL3 , aU1 − bU3

)
,
(
aL2 − bU2 , aU2 − bL2

)
,
(
aL3 − bL1 , aU3 − bU1

)] (22)

(3) Multiplying interval-valued fuzzy-rough numbers ”×”

A×B =
[(
aU1 , a

L
1

)
,
(
aL2 , a

U
2

)
,
(
aL3 , a

U
3

)]
×
[(
bL1 , b

U
1

)
,
(
bL2 , b

U
2

)
,
(
bL3 , b

U
3

)]
=

=
[(
aU1 × bU1 , aL1 × bL1

)
,
(
aL2 × bL2 , aU2 × bU2

)
,
(
aL3 × bL3 , aU3 × bU3

)] (23)

(4) Dividing interval-valued fuzzy-rough numbers ”÷”

A÷B =
[(
aL1 , a

U
1

)
,
(
aL2 , a

U
2

)
,
(
aL3 , a

U
3

)]
÷
[(
bL1 , b

U
1

)
,
(
bL2 , b

U
2

)
,
(
bL3 , b

U
3

)]
=

=
[(
aL1 ÷ bL3 , aU1 ÷ bU3

)
,
(
aL2 ÷ bU2 , aU2 ÷ bL2

)
,
(
aL3 ÷ bL1 , aU3 ÷ bU1

)] (24)

If two interval-valued fuzzy-rough numbers A and B are given, they are repre-
sented as

A =
[(
aL1 , a

U
1

)
,
(
aL2 , a

U
2

)
,
(
aL3 , a

U
3

)]
and B =

[(
bL1 , b

U
1

)
,
(
bL2 , b

U
2

)
,
(
bL3 , b

U
3

)]
.
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Let

h(A) =
aL1 + aU1 + aL2 + aU2 + aL3 + aU3

6
(25)

h(B) =
bL1 + bU1 + bL2 + bU2 + bL3 + bU3

6
(26)

Then we can say that A > B if the condition is met that h(A) > h(B).

Example 1 :
Based on the above section, we can very easily determine the upper and lower

approximations of the IVFRN. The process of determining the IVFRN will be
explained using the example of evaluating alternative Ai according to evaluation
criterion Cj . The evaluation of the alternative was carried out by five experts. Tri-
angular fuzzy numbers in the form M =(l,m,u) were used for the evaluation, where
m represents the value at which the membership function reaches its maximum,
while l and u represent the left and right limits of the fuzzy set respectively. The
fuzzy scale used to evaluate alternative Ai is represented with the values: Very
little (VL) – (0,1,2); Little (L) – (1,2,3); Medium (M) – (2,3,4); Large (L) – (3,4,5)
and Very large (VH) – (4,5,6). The expert evaluations are presented in Table 1.

Alternative
Experts

E1 E2 E3 E4 E5

Ai (2,3,4) (4,5,6) (3,4,5) (2,3,4) (4,5,6)

Table 1: Expert evaluation of alternative Ai according to evaluation criterion Cj
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The expert evaluations in Table 1 show that the experts do not have a united
position on the value of this alternative according to the evaluation criterion.

In addition to the fuzzy approach, the uncertainties described can also be
represented by IVFRN. By means of expressions (1)-(12), it is defined that IVFRNs
consist of three rough sequences. So, based on the values from Table 1, we select
three classes of objects l, m and u: l = {2; 4; 3; 2; 4},m = {3; 5; 4; 3; 5} and u =
{4; 6; 5; 4; 6}. Using expressions (1)-(12) rough sequences are formed for each class
of objects l, m and u. So for the class of objects l we determine the upper and
lower approximation for each object:

Lim(2) = 2, Lim(2) =
1

5
(2 + 4 + 3 + 2 + 4) = 3;

Lim(3) =
1

3
(2 + 3 + 2) = 2.33, Lim(3) =

1

3
(4 + 3 + 4) = 3.67;

Lim(4) =
1

5
(2 + 4 + 3 + 2 + 4) = 3, Lim(4) = 4.

For the second class of objects m we obtain:

Lim(3) = 3, Lim(3) =
1

5
(3 + 5 + 4 + 3 + 5) = 4;

Lim(4) =
1

3
(3 + 4 + 3) = 3.33, Lim(4) =

1

3
(5 + 4 + 5) = 4.67;

Lim(5) =
1

5
(3 + 5 + 4 + 3 + 5) = 4, Lim(5) = 5.

In an identical way, we determine the upper and lower approximations for each
object from the class of objects u:

Lim(4) = 4, Lim(4) =
1

5
(4 + 6 + 5 + 4 + 6) = 5;

Lim(5) =
1

3
(4 + 5 + 4) = 4.33, Lim(5) =

1

3
(6 + 5 + 6) = 5.67;

Lim(6) =
1

5
(4 + 6 + 5 + 4 + 6) = 5, Lim(6) = 6.

Since when defining the upper and lower approximations for A(E3) condi-
tion (13) was not met, we use equations (14) and (15). In this way we ob-

tain interval-valued fuzzy-rough numbers (17): A(E1) = [(2, 3) , (3, 4) , (4, 5)],

A(E2) = [(3, 4) , (4, 5) , (5, 6)], A(E3) = [(2.33, 3.33) , (3.33, 4.33) , (4.33, 5.67)],

A(E4) = [(2, 3) , (3, 4) , (4, 5)] and IRN(E5) = [(3, 4) , (4, 5) , (5, 6)]. A compar-
ative presentation of the expert evaluation using crisp, fuzzy and IVFRN is pre-
sented in Table 2.
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Presentation of

the evaluation

Experts

E1 E1 E3 E4 E5

Crisp 3 5 4 3 5

Fuzzy (2,3,4) (4,5,6) (3,4,5) (2,3,4) (4,5,6)

IVFRN
[(2,3),(3,4),

(4,5)]

[(3,4),(4,5),

(5,6)]

[(2.3,3.3),

(3.3,4.3),

(4.3,5.6)]

[(2,3),(3,4),

(4,5)]

[(3,4),(4,5),

(5,6)]

Table 2: Expert evaluation by means of crisp, fuzzy and interval-valued fuzzy-rough numbers

The uncertainties that exist in the decision making in the example from Table
1 are presented by means of the fuzzy concept, which includes the fuzzification
of crisp values 1, 2, 3, 4 and 5. The traditional representation of the expert
evaluations from tables 1 and 2 using crisp values includes averaging the expert
evaluations. Most commonly, arithmetic averaging is used for the aggregation of
expert opinions. By arithmetic averaging of the expert opinions from Table 1 we
obtain the value of 4. The crisp expert evaluations are found between 3 and 5, so
we can intuitively conclude that the ”real perception” that the other approaches
(fuzzy numbers and IVFRN) should have a value of 4. In Figure 2 the ”real
perception” is represented by an intermittent vertical line.

From Figure 2 we see that the ”real perception” is found in the composition
of the maximum values of all three IVFRN functions (Figures 2b, 2c and 2d). On
the other hand, with fuzzy numbers (Figure 2a) the ”real perception” belongs to
only one of three fuzzy numbers (fuzzy number H (3,4,5)). The remaining two
fuzzy numbers M (2,3,4) and VH (4,5,6) with their functions do not include the
”real perception”.
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Figure 2: Expert evaluation – the crisp, fuzzy and IVFRN approach

Based on these analyses we can conclude that IVFRNs more accurately describe
decision makers perception with fuzzy numbers because they are much closer to
the ”real perceptions”.

3. INTERVAL-VALUED FUZZY-ROUGH NUMBERS MAIRCA
MODEL

The IVFR approach was tested by means of an MCDM model in which an
original modification of the MAIRCA method was used to evaluate the alternatives
[28, 25] based on an IVFR approach. The authors chose to use the MAIRCA
method because of these numerous advantages: (1) the mathematical framework of
the method remains the same regardless of the number of alternatives and criteria;
(2) it can be applied in cases in which there are a large number of alternatives and
criteria; (3) it has a clearly defined ranking of the alternatives that is expressed in
numerical values, which makes it possible to understand the results more easily;
(4) it is applicable to both qualitative and quantitative types of criteria and (5)
it provides stable solutions regardless of any changes in the measurement scale for
qualitative criteria and changes in the method of formulating quantitative criteria
[28]. The algorithm for the IVFR-MAIRCA method is presented in detail in the
following section.

The MAIRCA method is one of the more recent methods of multi-criteria
decision making (MCDM) [7]. The MAIRCA method was developed at the Centre
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for Research in the field of defence logistics at the University of Defence in Belgrade
[28]. To date, it has found wide application and modification with the purpose
of solving numerous problems in the field of multi-criteria decision making [7, 9,
10, 21, 25, 26, 33]. The basic MAIRCA method defines the gap between the ideal
and real parameters. The following section presents the algorithm for the modified
IVFRN-MAIRCA method.

Step 1. Forming the initial decision matrix (Y ).The first step is to evaluate
l alternatives according to n criteria. The alternatives are evaluated based on a

predefined fuzzy scale represented by triangular fuzzy numbers
%
y = (yL, yU , yU ).

Based on the matrices of answers Yk =

[
%
y
e

ij

]
l×n

(1 ≤ e ≤ m), we obtain three

matrices of aggregated sequences for experts Y ∗L, Y ∗Sand Y ∗U .

Y ∗L =


y1L11 , y

2L
11 , . . . , y

mL
11 y1L12 ; y2L12 ; . . . ; ymL

12 , . . . , y1L1n ; y2L1n , . . . , y
mL
1n

y1L21 , y
2L
21 , . . . , y

mL
21 y1L22 ; y2L22 ; . . . ; ymL

22 , . . . , y1L2n ; y2L2n , . . . , y
mL
2n

. . . . . .
. . . . . .

y1Ln1 , y
2L
n1 , . . . , y

mL
n1 y1Ln2 ; y2Ln2 ; . . . ; ymL

n2 , . . . , y1Lnn; y2Lnn, . . . , y
mL
nn


(27)

Y ∗S =


y1S11 , y

2S
11 , . . . , y

mS
11 y1S12 ; y2S12 ; . . . ; ymS

12 , . . . , y1S1n ; y2S1n , . . . , y
mS
1n

y1S21 , y
2S
21 , . . . , y

mS
21 y1S22 ; y222; . . . ; ymS

22 , . . . , y1S2n ; y2S2n , . . . , y
mS
2n

. . . . . .
. . . . . .

y1Sn1 , y
2S
n1 , . . . , y

mS
n1 y1Sn2 ; y2Sn2 ; . . . ; ymS

n2 , . . . , y1Snn; y2Snn, . . . , y
mS
nn


(28)

Y ∗U =


y1U11 , y

2U
11 , . . . , y

mU
11 y1U12 ; y2U12 ; . . . ; ymU

12 , . . . , y1U1n ; y2U1n , . . . , y
mU
1n

y1U21 , y
2U
21 , . . . , y

mU
21 y1U22 ; y2U22 ; . . . ; ymU

22 , . . . , y1U2n ; y2U2n , . . . , y
mU
2n

. . . . . .
. . . . . .

y1Un1 , y
2U
n1 , . . . , y

mU
n1 y1Un2 ; y2Un2 ; . . . ; ymU

n2 , . . . , y1Unn ; y2Unn , . . . , y
mU
nn


(29)

where yLij =
{
y1Lij , y

2L
ij , . . . , y

mL
ij

}
, ySij =

{
y1Sij , y

2S
ij , . . . , y

mS
ij

}
and

yUij =
{
y1Uij , y

2U
ij , . . . , y

mU
ij

}
represent sequences of triangular fuzzy number ỹ which

describe the relative significance of criterion i in relation to alternative j. Using
expressions (1)-(13) each sequence ymL

ij , ymS
ij and ymU

ij is transformed into a rough

sequence RN(ymL
ij ), RN(ymS

ij ) and RN(ymU
ij ). Thus we obtain rough matrices

Y1L, Y2L, . . . ,YmL; Y1S , Y2S , . . . , YmS ; Y1U , Y2U , . . . , YmU for each rough se-
quence RN(ymL

ij ), RN(ymS
ij ) and RN(ymU

ij ) respectively. For each group of rough
matrices obtained we get rough sequences

RN(yLij) =

=
{[
Lim(y1Lij ), Lim(y1Lij )

]
,
[
Lim(y2Lij ), Lim(y2Lij )

]
, ...,

[
Lim(ymL

ij ), Lim(ymL
ij )

]}
,
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RN(ySij) =

=
{[
Lim(y1Sij ), Lim(y1Sij )

]
,
[
Lim(y2Sij ), Lim(y2Sij )

]
, ...,

[
Lim(ymS

ij ), Lim(ymS
ij )

]}
,

RN
(
yUij
)

=

=
{[
Lim(y1Uij ), Lim(y1Uij )

]
,
[
Lim(y2Uij ), Lim(y2Uij )

]
, ...,

[
Lim(ymU

ij ), Lim(ymU
ij )

]}
.

Using equations (30)-(32) we obtain the averaged rough sequences

RN(yLij) = RN(y1Lij , y
2L
ij , ..., y

mL
ij ) =


Lim(yLij) = 1

m

m∑
e=1

Lim(yeLij )

Lim(yLij) = 1
m

m∑
e=1

Lim(yeLij )

(30)

RN(ySij) = RN(y1Sij , y
2S
ij , ..., y

mS
ij ) =


Lim(ySij) = 1

m

m∑
e=1

Lim(yeSij )

Lim(ySij) = 1
m

m∑
e=1

Lim(yeSij )

(31)

RN(yUij) = RN(y1Uij , y
2U
ij , ..., y

mU
ij ) =


Lim(yUij) = 1

m

m∑
e=1

Lim(yeUij )

Lim(yUij) = 1
m

m∑
e=1

Lim(yeUij )

(32)

where RN(yLij), RN(ySij) and RN(yUij) represent rough sequences of interval-valued
fuzzy-rough number

yij =
[
RN(yLij), RN(ySij), RN(yUij)

]
=
[
(lLyij

, lUyij
), (sLyij

, sUyij
), (uLyij

, uUyij
)
]
.

Thus we obtain interval valued fuzzy-rough vectors Ai = (yi1, yi2, ..., yin) of the

averaged initial decision matrix, where yij =
[
(lLyij

, lUyij
), (sLyij

, sUyij
), (uLyij

, uUyij
)
]

represents the value of the i-th alternative according to thej-th criterion (i =
1, 2, ..., l;j = 1, 2, ..., n).

Y =

A1

A2

...
Al

C1 C2 ... Cn
y11 y12 ... y1n
y21 y22 ... y2n

... ...
. . . ...

yl1 yl2 ... yln


l×n

(33)

where l denotes the number of alternatives, n denotes the total number of criteria.
Step 2. Determining the preferences according to the selection of alternative

PAi
. When selecting an alternative the decision maker (DM) is neutral towards
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selecting an alternative, i.e., he or she has no preference towards any of the alter-
natives. This makes it possible for each alternative to be considered with equal
probability, and so the preference towards selecting one of l possible alternatives
is

PAi
=

1

l
;

l∑
i=1

PAi
= 1, i = 1, 2, ..., l (34)

where l represents the total number of alternatives that the choice is made from.
Step 3. Normalizing the elements of the initial matrix (33). By normalizing

the elements of the initial decision matrix we obtain normalized matrix Z

Z =

A1

A2

...
Al

C1 C2 ... Cn
z11 z12 ... z1n
z21 z22 ... z2n

... ...
. . . ...

zl1 zl2 ... zln


l×n

(35)

The elements zij of the normalized matrix (Z) are determined using expressions
(36) and (37):

a) For “benefit” type criteria (higher values of the criteria are desirable)

zij =

{[(
lLij − lLi−
uU
i+ − lli−

,
lUij − lLi−
uU
i+ − lli−

)
,

(
sLij − lLi−
uU
i+ − lli−

,
sUij − lLi−
uU
i+ − lli−

)
,

(
uL
ij − lLi−

uU
i+ − lli−

,
uU
ij − lLi−

uU
i+ − lli−

)]}
(36)

b) For “cost” type criteria (lower values of the criteria are desirable)

zij =

[(
uU
ij − uU

i−

lli− − uU
i+

,
uL
ij − uU

i−

lli− − uU
i+

)
,

(
sUij − uU

i−

lli− − uU
i+

,
sLij − uU

i−

lli− − uU
i+

)
,

(
lUij − uU

i−

lli− − uU
i+

,
lLij − uU

i−

lli− − uU
i+

)]
(37)

where uUj+ and lUj− are defined as uUi+ = max
1≤i≤n

(uUij) and lLi− = min
1≤i≤n

(lLij).

Step 4. Calculating the elements of the theoretical assessment matrix (Tp). A
theoretical assessment matrix (Tp) is formed with a format of l × n (l represents
the total number of alternatives, n represents the total number of criteria). The

elements of the theoretical assessment matrix (tpij) are IVFRNs and they are
calculated as the product of the preferences in the selection of alternatives PAi

and weight coefficients of the criteria (wj , i = 1, 2, ..., n).

Tp =

PA1

PA2

...
PAl

w1 w2 ... wn
tp11 tp12 ... tp1n
tp21 tp22 tp2n
... ... ... ...

tpl1 tpl2 ... tpln


l×n

(38)
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where PAi
represents the preferences in the selection of alternatives, wj the weight

coefficients of the evaluation criteria, and tpij the theoretical assessment of an
alternative for the observed evaluation criterion. The elements of matrix Tp are
determined using expression (39)

tpij = PAi · wi = PAi ·
[
(wL

lj , w
U
lj), (wL

sj , w
U
sj), (w

L
uj , w

U
uj)
]

(39)

Since the DM is neutral in relation to the initial selection of an alternative,
then the preferences (PAi

) are the same for all alternatives. Since the preferences
(PAi

) are the same for all alternatives, then the matrix (31) can be displayed in
the format 1× n (n represents the total number of criteria).

w1 ; ... wn

Tp = PAi

[[
(tLpl1, t

U
pl1), (tLps1, t

U
ps1), (tLpu1, t

U
pu1)

]
...
[
(tLp ln, t

U
p ln), (tLpsn, t

U
psn), (tLpun, t

U
pun)

]]
1xn

(40)

where n represents the total number of criteria, PAi
the preferences in the selection

of the alternatives, wj the weight coefficients of the criteria.
Step 5. Determining the elements of the actual assessment matrix (Tr). The

elements of the actual assessment matrix (Tr) are calculated by multiplying the
elements of the theoretical assessment matrix (Tp) and the elements of the nor-
malized matrix (Z) according to the expression:

trij = tpij · zij =

=
[
(tLplij , t

U
plij ), (tLpsij , t

U
psij ), (tLpuij

, tUpuij
)
]
·
[
(zLlij , z

U
lij ), (zLsij , z

U
sij ), (zLuij

, zUuij
)
] (41)

where tpij represents the elements of the theoretical assessment matrix, and zij
represents the elements of normalized matrix Z =

[
zij
]
l×n

.

Step 6. Calculating the total gap matrix (G). The elements of matrix G are

obtained as the difference (gap) between the theoretical (tpij) and actual assess-

ment (trij), that is by subtracting the elements of the theoretical weight matrix
(Tp) and the elements of the actual weight matrix (Tr)

G = Tp − Tr =


g11 g12 ... g1n
g21 g22 ... g2n
... ... ... ...
gl1 gl2 ... gln


l×n

(42)

where n represents the total number of criteria, l represents the total number of
alternatives, wherefrom the selection is made, and gij represents the gap obtained
for alternative i according to criterion j. Gap gij represents the IVFRN and is
obtained using expression (43)
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gij = tpij − trij =

=
[
(tLplij , t

U
plij ), (tLpsij , t

U
psij ), (tLpuij

, tUpuij
)
]
−
[
(tLrlij , t

U
rlij ), (tLrsij , t

U
rsij ), (tLruij

, tUruij
)
]

(43)

It is desirable that the value of gij inclines towards zero (gij → 0) since we

choose an alternative that has the smallest difference between the theoretical (tpij)

and actual assessment (trij). If alternative Ai for criterion Ci has a theoretical

assessment value which is equal to the value of the actual assessment (tpij = trij)
then the gap for alternative Ai according to criterion Ci inclines towards zero.
That is, alternative Ai according to criterion Ci is the best (ideal) alternative.

If alternative Ai for criterion Ci has a theoretical assessment value of tpij and
an actual assessment value that inclines towards zero, then the gap for alternative

Ai according to criterion Ci is gij ≈ tpij . This means that alternative Ai according
to criterion Ci is the worst (anti-ideal) alternative.

Step 7. Calculating the values of the criterion functions (Qi) for the alterna-
tives. The values of the criterion functions are obtained by summing the gap from
the matrix (42) for each alternative according to the evaluation criteria, expression
(44)

Qi =

n∑
j=1

gij , i = 1, 2, ..., l (44)

The alternatives are ranked based on the value obtained for Qi. It is desirable
for an alternative to have the value as low as possible for Qi. Comparison of the
alternatives is carried out using expressions (25) and (26).

4. APPLICATION OF THE IVFRN-MAIRCA MODEL:
SELECTING THE OPTIMUM PLACE FOR OVERCOMING

WATER OBSTACLES

During combat operations, Serbian Army units are used in various operations. In
situations when there is one or more water obstacles in the zone of operation [30],
and when it is impossible or inappropriate to evade them, the water obstacles need
to be negotiated. This involves action, which in the course of combat operations,
ensures transition of individuals and units through natural and artificial water ob-
stacles, in order to accomplish the given task [19]. Water obstacles are overcomed
by crossing or by forced crossing [18]. They are crossed when the firepower of
the enemy is eliminated on existing bridges or other types of crossing [18], that
is, when the opposite shore is not being defended by enemy forces [30]. A forced
crossing of the water obstacle means that the opposite shore is being defended
by the enemy [30], which is more characteristic for an offensive peration. Cross-
ing water obstacles by force begins at a landing operations point (LOP). When a
sufficiently deep bridgehead is established, access is gained to establish a raft or
pontoon crossing point.
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A landing operations point is ”part of a river, coast and coastline on its own
or the opposite shore which should be used in order to ensure passage across the
water obstacle by means of a landing operation” [30]. A forced river crossing at an
LOP is a key segment of successfully overcoming water obstacles in an offensive
peration. If there is no other alternative, then failure at a forced river crossing
means the failure of the entire operation. Therefore, planning and organizing
activities at an LOP require special attention, whereby the possibility of any error
must be excluded [4]. In this sense, the choice of the place where the LOP will
be organized is one of the most important elements of the success of an entire
operation.

Six criteria are key to the selection of an LOP [4]: Relative combat power (C1),
Combat capabilities for preparing for a forced crossing under fire (C2), Secrecy of
the preparations (C3), Level of exposure to enemy fire (C4), Characteristics of the
opposite shore (C5) and the characteristics of the present shore (C6). Criteria C1,
C2, C3, C5 and C6 belong to the group of benefit criteria (max type of criteria),
and C4 belongs to a group of cost criteria (min type of criteria). Evaluation of
the criteria, that is, determining the weight values of the criteria was carried out
by four experts. The criteria are evaluated using the fuzzy scale shown in Table 3
[26].

No. Linguistic terms Triangular fuzzy numbers

1. Very poor (VP) (1,1,1)

2. Poor (P) (2/3,1,3/2)

3. Medium (M) (3/2,2,5/2)

4. Good (G) (5/2,3,7/2)

5. Very good (VG) (7/2,4,9/2)

Table 3: Fuzzy scale for evaluating the alternatives

By analyzing the expert assessments, the weight coefficients of the criteria are
obtained using expressions (1)-(24), Table 4.

Linguistic terms IVFRN weight coefficient Rank

C1 [(0.240,0.267),(0.303,0.316),(0.362,0.383)] 1

C2 [(0.122,0.273),(0.293,0.244),(0.327,0.333)] 3

C3 [(0.063,0.079),(0.090,0.101),(0.103,0.110)] 6

C4 [(0.197,0.208),(0.219,0.247),(0.341,0.386)] 2

C5 [(0.065,0.078),(0.089,0.098),(0.126,0.149)] 5

C6 [(0.117,0.157),(0.182,0.133),(0.197,0.114)] 4

Table 4: IVFRN weight coefficients of the evaluation criteria
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After calculating the weight coefficients of the criteria, expert evaluation of
the alternatives was carried out (landing operations crossing points for units of
the Serbian Army) according to the predefined evaluation criteria. The IVFRN-
MAIRCA model was used to evaluate four places for landing operations points in
the South Morava Valley between Bujanovac and Vladičin Han: Vranjska Banja
(A1), Korbevac (A2), Toplac (A3), Gramada (A4), Bujkovac (A5) and Vrbovo
(A6). The expert assessment of the alternatives according to the evaluation criteria
is shown in Table 5.

Alter. C1 C2 C3 C4 C5 C6

A1

F VG G VP F F

F G G P F F

G G F P P F

G VG F F G G

A2

F G F G F F

P G F G F F

F F G F G F

G F G G F P

A3

G F G F G G

F G F F G VG

F G VG G VG F

F F G G VG VG

A4

G F VG P G F

G F G F G F

VG P F P F G

G F F P G G

A5

VG P VG F VG G

VG P G F G G

G VP VG G G G

G P G G G F

A6

F VG VG G G P

P G VG G F P

P G VG G F F

F F G F F F

Table 5: Expert assessment of the alternatives
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Expert evaluation of the alternatives was carried out using a fuzzy scale, Table
3.

From Table 5 we can see that there is no complete agreement of the experts in
the evaluation of the alternatives according to the criteria. In order to provide a
more complete presentation of the imprecision in the expert assessments, the fuzzy
evaluations from Table 5 using expressions (1)-(15) were converted into IVFRNs.
Finally, in order to apply the IVFR-MAIRCA multi-criteria model for evaluating
the alternatives, aggregation of the values was carried out using equations (30)-(32)
and an initial decision matrix was obtained (Table 6).

Alt./

Crit.
C1 C2 ... C6

A1 [(2.75,3.25),(3.25,3.75),(3.75,4.25)] [(3.75,4.25),...]

...

[(2.56,2.94),(3.06,3.44),(3.56,3.94)]

A2 [(2.08,2.92),(2.58,3.42),(3.08,3.92)] [(2.75,3.25),...] [(2.06,2.44),(2.56,2.94),(3.06,3.44)]

A3 [(2.56,2.94),(3.06,3.44),(3.56,3.94)] [(2.75,3.25),...] [(3.25,4.23),(3.75,4.73),(4.13,4.83)]

A4 [(3.56,3.94),(4.06,4.44),(4.53,4.72)] [(2.06,2.44),...] [(2.75,3.25),(3.25,3.75),(3.75,4.25)]

A5 [(3.75,4.25),(4.25,4.75),(4.63,4.87)] [(1.28,1.47),...] [(3.06,3.44),(3.56,3.94),(4.06,4.44)]

A6 [(1.75,2.25),(2.25,2.75),(2.75,3.25)] [(3.08,3.92),...] [(1.75,2.25),(2.25,2.75),(2.75,3.25)]

Table 6: Initial decision matrix

The IVFRN from Table 5 were aggregated using expressions (30)-(32). After
obtaining the initial decision matrix, using expressions (36) and (37) the elements
zij of the normalized matrix (Z) were obtained, Table 7.

Alt./

Crit.
C1 C2 ... C6

A1 [(0.32,0.48),(0.48,0.64),(0.64,0.80)] [(0.68,0.83),...]

...

[(0.26,0.38),(0.42,0.54),(0.58,0.70)]

A2 [(0.11,0.27),(0.27,0.53),(0.53,0.69)] [(0.41,0.54),...] [(0.10,0.22),(0.26,0.38),(0.42,0.54)]

A3 [(0.26,0.38),(0.42,0.54),(0.58,0.70)] [(0.41,0.54),...] [(0.48,0.64),(0.64,0.96),(0.96,1.00)]

A4 [(0.58,0.70),(0.74,0.86),(0.89,0.95)] [(0.21,0.32),...] [(0.32,0.48),(0.48,0.64),(0.64,0.81)]

A5 [(0.64,0.80),(0.80,0.96),(0.96,1.00)] [(0.00,0.05),...] [(0.42,0.54),(0.58,0.71),(0.75,0.87)]

A6 [(0.00,0.16),(0.16,0.32),(0.32,0.48)] [(0.50,0.64),...] [(0.00,0.16),(0.16,0.32),(0.32,0.48)]

Table 7: Normalized matrix

In the next steps, using expressions (38)-(41), the elements of the theoretical
and actual assessment were calculated. Finally, using expressions (42) and (43)
the gap between the theoretical and actual assessments was determined. In the
final step (step 7), by applying expression (44) the final values of the gap were
obtained for each alternative, Table 8.
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Alternative Q Rang

A1 [(0.122,0.150),(0.155,0.203),(0.211,0.260)] 5

A2 [(0.117,0.144),(0.150,0.194),(0.203,0.254)] 3

A3 [(0.111,0.137),(0.141,0.191),(0.197,0.245)] 2

A4 [(0.124,0.152),(0.157,0.206),(0.213,0.260)] 6

A5 [(0.111,0.135),(0.142,0.186),(0.194,0.238)] 1

A6 [(0.115,0.140),(0.146,0.191),(0.198,0.242)] 4

Table 8: Ranking of the alternatives using the IVFR-MAIRCA model

It is desirable for an alternative to have between the theoretical and the actual
assessment as small as possible, that is, for as many criteria as possible to be
close to the ideal alternative. The alternatives were ranked using expressions for
comparing IVFRNs, i.e., using expressions (25) and (26).

5. DISCUSSION OF THE RESULTS

The discussion of the results has two parts. In the first part, the results of
the IVFRN-MAIRCA model are compared with the results given by other MCDM
models: TOPSIS, MABAC, and VIKOR. These methods were selected because
their application so far has shown that they give stable and reliable results [16,
17, 20]. The TOPSIS, MABAC and VIKOR methods were modified using fuzzy,
rough and interval-valued fuzzy-rough techniques. The second part is a sensitivity
analysis of the IVFRN-MAIRCA model through 24 scenarios. A more detailed
analysis of the first and second parts of the discussion of the results is presented
in the next section.

The ranking of the alternatives obtained by the IVFRN-MAIRCA model was
compared with the ranking of the other MCDM techniques mentioned above. A
comparative ranking of the different MCDM techniques is shown in Figure 3.
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Figure 3: Ranks of the alternatives

The ranking of the alternatives by the methods presented shows that alter-
native A4 was ranked as the first by all of the methods. Alternative A6, which
according to the IVFRN-MAIRCA method was ranked as the second, retained
second position in all of the MCDM models shown. The main question to be
answered before making the final decision is the assessment of the reliability of
the results obtained when compared with other MCDM techniques. Spearman’s
Rank correlation coefficient is a useful and important measure for determining the
connection between the results obtained by different approaches [27, 32, 33, 11, 8].
In addition, it is a suitable coefficient when there are ordinal variables or ranked
variables. In this paper, Spearman’s coefficient (SCC) was used to determine
the statistical significance of the difference between the ranks obtained by the
IVFRN-MAIRCA model and other approaches. The results show that there is a
great correlation between the rankings of the MCDM methods compared. Based
on the recommendations of [27], all SCC values greater than 0.8 show extremely
high correlation. Since in this paper all SCC values are significantly greater than
0.8, and the mean value is 0.964, we can conclude that there is great correlation
(closeness) between the proposed approach and other MCDM techniques tested,
i.e., that the proposed ranking is confirmed and credible.

The results of MCDM methods depend to a great extent on the values of
the weight coefficients of the evaluation criteria. Sometimes the ranks of the
alternatives change with very small changes in the weight coefficients, because
of which the results of MCDM methods, as by rule are followed by an analysis
of their sensitivity to these changes. Therefore, this section of the paper shows
an analysis of the sensitivity of the ranks of the alternatives to changes in the
weight coefficients of the criteria. The sensitivity analysis is presented through 24
scenarios (Table 9) divided into three phases.
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Pha Scen Weights of
-ses -ario criteria

P
h
a
se

I S1 wc1 = 1.10 × wc1(old), wc2 = 0.45 × wc2(old) , wc3 = 0.45 × wc3(old) , ... , wc6 = 0.45 × wc6(old)
S2 wc2 = 1.25 × wc2(old), wc1 = 0.45 × wc1(old) , wc3 = 0.45 × wc3(old) , ... , wc6 = 0.45 × wc6(old)
S3 wc3 = 1.25 × wc3(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S4 wc4 = 1.25 × wc4(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S5 wc5 = 1.25 × wc5(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S6 wc6 = 1.25 × wc6(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc5 = 0.45 × wc5(old)

P
h
a
se

II

S7 wc1 = 1.45 × wc1(old), wc2 = 0.45 × wc2(old) , wc3 = 0.45 × wc3(old) , ... , wc6 = 0.45 × wc6(old)
S8 wc2 = 1.45 × wc2(old), wc1 = 0.45 × wc1(old) , wc3 = 0.45 × wc3(old) , ... , wc6 = 0.45 × wc6(old)
S9 wc3 = 1.45 × wc3(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S10 wc4 = 1.45 × wc4(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S11 wc5 = 1.45 × wc5(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S12 wc6 = 1.45 × wc6(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc5 = 0.45 × wc5(old)

P
h
a
se

II
I S13 wc1 = 1.65 × wc1(old), wc2 = 0.45 × wc2(old) , wc3 = 0.45 × wc3(old) , ... , wc6 = 0.45 × wc6(old)

S14 wc2 = 1.65 × wc2(old), wc1 = 0.45 × wc1(old) , wc3 = 0.45 × wc3(old) , ... , wc6 = 0.45 × wc6(old)
S15 wc3 = 1.65 × wc3(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S16 wc4 = 1.65 × wc4(old),wc1 = 0.45 × wc1(old) ,wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S17 wc5 = 1.65 × wc5(old),wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S18 wc6 = 1.65 × wc6(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc5 = 0.45 × wc5(old)

P
h
a
se

IV

S19 wc1 = 1.85 × wc1(old), wc2 = 0.45 × wc2(old) , wc3 = 0.45 × wc3(old) , ... , wc6 = 0.45 × wc6(old)
S20 wc2 = 1.85 × wc2(old), wc1 = 0.45 × wc1(old) , wc3 = 0.45 × wc3(old) , ... , wc6 = 0.45 × wc6(old)
S21 wc3 = 1.85 × wc3(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S22 wc4 = 1.85 × wc4(old), wc1 = 0.45 × wc1(old) ,wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S23 wc5 = 1.85 × wc5(old), wc1 = 0.45 × wc1(old) ,wc2 = 0.45 × wc2(old) , ... , wc6 = 0.45 × wc6(old)
S24 wc6 = 1.85 × wc6(old), wc1 = 0.45 × wc1(old) , wc2 = 0.45 × wc2(old) , ... , wc5 = 0.45 × wc5(old)

Table 9: Scenarios for the sensitivity analysis

Based on the recommendations of Kirkwood [15] and Kahraman [12], the val-
ues were defined for the change in the weight coefficients of the criteria through the
scenarios (i.e. 1.25, 1.45, 1.65 and 1.85). The weight coefficient of elasticity was
defined, which expresses the relative compensation of the other values of the weight
coefficients in relation to the given changes in the weight of the most important
criteria in the scenario. Parameter ∆x was defined, which represents the size of
the change applied to the set of weight coefficients, depending on their coefficients
of weight elasticity. This interval was divided into four values of 1.25, 1.45, 1.65
and 1.85. In their research, Kirkwood [15] and Kahraman [12] recommend only
an impact analysis of the most important criterion. In order to comprehensively
validate the results, the authors carried out an analysis of the impact of changing
the weight of all the criteria in the defined range. In each of the four phases of the
sensitivity analysis the weight coefficients of the criteria were increased by 1.25,
1.45, 1.65 and 1.85 respectively. At the same time, the weight coefficients of the
remaining criteria were reduced by 0.45.

During the sensitivity analysis of the IVFRN-MAIRCA model to changes in
the weight coefficients for all values of the interval rough weight coefficients of
the criteria wj =

[
(lwL
j , lwU

j ), (swL
j , swU

j ), (uwL
j , uwU

j )
]

the condition 0 ≤ lwL
j ≤

lwU
j ≤ swL

j ≤ swU
j ≤ uwL

j ≤ uwU
j ≤ 1 was fulfilled for each evaluation criterion

cj ∈ C. Since these are interval numbers, weight coefficient wj belongs to interval[
swL
j , swU

j

]
, that is lwL

j ≤ lwU
j ≤ swL

j ≤ wj ≤ swU
j ≤ uwL

j ≤ uwU
j for each value

j = 1, 2, ..., n. Based on the previously defined, during the sensitivity analysis
of the model to change in the weight coefficients of the criteria, the conditions
that

∑n
j=1 l

wL
j ,

∑n
j=1 l

wU
j ,

∑n
j=1 s

wL
j ≤ 1 and

∑n
j=1 s

wU
j ,

∑n
j=1 u

wL
j ,

∑n
j=1 u

wU
j ≥ 1

were fulfilled. After reducing the values of the weight coefficients through the
scenarios, the values were corrected to satisfy the previously presented conditions.

Changes in the ranking of the alternatives during the 24 scenarios are shown
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in Figure 4.

Figure 4: Sensitivity analysis of the ranking of the alternatives through 24 scenarios
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The results (Figure 4) show that assigning different weights to the criteria
through the scenarios leads to a change in the ranks of individual alternatives,
which confirms that the model is sensitive to changes in the weight coefficients.
By comparing the first-ranked alternatives (A4 and A6) in scenarios 1-24 with the
results shown in Table 8 the ranking of alternatives A4 and A6 was confirmed.
By analyzing the ranks through 24 scenarios we can see that alternatives A4 and
A6 retain their ranks in all scenarios (they remained as the first-or second-ranked
alternatives). During changes in the weights of the criteria through the scenar-
ios there was a change in the ranks of the remaining alternatives. However, we
can conclude that these changes were not drastic, which was confirmed by the
correlation of the ranks through the scenarios, Figure 5.

Figure 5: Correlation of the ranks through 24 scenarios

By analyzing the correlation of ranks through the scenarios a mean SCC value
was obtained in all scenarios of 0.897, which shows an extremely high correlation.
Since all SCC values are significantly higher than 0.850 we can conclude that
there is a very high correlation of the ranks and that that the proposed ranking is
confirmed and credible.
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6. CONCLUSION

The development and application of tools that take uncertainty into account
adequately is a significant area of MCDM. The decision makers are asked to ob-
jectively and impartially make decisions taking into account uncertainty and im-
precision. Therefore, the use of these tools is a prerequisite for objective decision
making. This paper presents a new model for the treatment of uncertainty based
on the application of IVFRN. The benefits of using IVFRN are numerous. IVFRN
exclusively uses internal knowledge for presenting the limit values of the attributes
of a decision. This eliminates subjectivity and assumptions when defining the limit
values of traditional fuzzy sets, which can affect the attribute values and the final
selection of alternatives.

The IVFRN approach, which is presented in this paper, includes the defini-
tion of an initial fuzzy reference set that describes the uncertainties in MCDM.
After defining the initial fuzzy set, indeterminacies in the assessment of the deci-
sion maker (DM) are measured by means of rough sets. This leads to objective
indicators that are contained in the data. The basic logic of IVFRN is that the
data should speak for themselves. IVFRNs use only the internal values from
the data set for presenting the limit values of the attributes of a decision. This
eliminates the shortcomings of the traditional fuzzy approach that relate to the
interval boundaries, since for each rating by the decision maker (DM), unique in-
terval boundaries are formed. This means that the boundaries of the intervals do
not depend on subjective assessment but rather are defined based on imprecision
in the data. In the case of less imprecision, IVFRN are transformed into type-1
fuzzy sets, while with greater imprecision the footprint of uncertainty increases and
IVFRN are transformed into interval-valued fuzzy sets with rough boundaries. If
there is disagreement in the assessment of the DMs, the interval boundaries of the
IVFRN are increased, since the uncertainty and imprecision in decision making
are greater. On the other hand, stronger consensus results in fewer changes in
the boundaries and the IVFRN are transformed into traditional fuzzy numbers.
This is reflected in less uncertainty in the assessments of the DMs. In the case
of consensus among the DOMs the boundaries of the initial fuzzy numbers are
not mentioned and the assessments are described by a unique linguistic expression
from the defined fuzzy scale, that is, by a type-1 fuzzy set.

The IVFR approach was tested by means of a case study in which IVFRNs were
used in combination with the MAIRCA, MABAC, TOPSIS and VIKOR methods
to evaluate landing operations points. In the multi-criteria model presented here,
original modifications of the MAIRCA and TOPSIS methods were performed us-
ing IVFRN. In addition to these modifications, in this study an original rough
modification of the TOPSIS model was also carried out which has not been con-
sidered in the literature so far. Finally, the model was validated by comparing
the results given by the fuzzy and rough modifications of the given methods. The
discussion of the results and validations show significant stability of the results and
indicate the promising possibilities for the application of the IVFN MCDM model.
Since this is a new approach, the directions for future research should focus on the
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application of IVFRN in traditional MCDM models for determining the weight
coefficients of criteria (e.g., the AHP/ANP model, the DEMATEL method).
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(Only in Serbian: Vojna enciklopedija), 1974.
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multi-criteria decision making based on interval rough numbers: Hybrid DEMATEL-ANP-
MAIRCA model”, Expert Systems with Applications, 88 (2017) 58–80.
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