
Yugoslav Journal of Operations Research
29 (2019), Number 1, 69–79
DOI: https://doi.org/10.2298/YJOR171112010L

ON RESERVE AND DOUBLE COVERING
PROBLEMS FOR THE SETS WITH

NON-EUCLIDEAN METRICS

Anna LEMPERT
Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of

Russian Academy of Science, Lermontova 134, Irkutsk, Russia
lempert@icc.ru

Alexander KAZAKOV
Matrosov Institute for System Dynamics and Control Theory, Siberian Branch of

Russian Academy of Science, Lermontova 134, Irkutsk, Russia
kazakov@icc.ru

Quang Mung LE
Irkutsk National Research Technical University, Lermontova 83, Irkutsk, Russia

quangmungle2010@gmail.com

Received: November 2017 / Accepted: February 2018

Abstract: The article is devoted to Circle covering problem for a bounded set in a two-
dimensional metric space with a given amount of circles. Here we focus on a more complex
problem of constructing reserve and multiply coverings. Besides that, we consider the
case where covering set is a multiply-connected domain. The numerical algorithms based
on fundamental physical principles, established by Fermat and Huygens, are suggested
and implemented. This allows us to solve the problems for the cases of non-convex sets
and non-Euclidean metrics. Preliminary results of numerical experiments are presented
and discussed. Calculations show the applicability of the proposed approach.
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1. INTRODUCTION

Circle covering is the dual problem of circle packing problem. The covering
problem means to locate congruent geometric objects in a metric space so that its
given area lies entirely within their union. Usually, scientists deal with the circles
covering problem (CCP) in special cases, when the covered area is a square, a
circle, a rectangle or a regular triangle. In fact, there are two popular directions of
studying this problem. The first one is to improve the best-known covering without
any proof of optimality; the second is to verify the optimality of a particular circle
configuration. Some analytical results can be found in [12, 13, 19, 22].

The first computer results for circle coverings in the plane were obtained by
Zahn [28]. He divided a big circle into small cells and applied local optimization
methods to cover as many of these cells as possible while keeping the radius of the
small circles constant. The computational results on coverings of a square seems
to be first presented by Tarnai and Gaspar, who found coverings with up to 10
circles [25].

Algorithms for covering of simply connected sets by congruent circles employ-
ing quasi-differentiability of the objective function are presented in [14], heuristic
and metaheuristic methods can be found in [1, 5, 20, 27], algorithms of integer
and continuous optimization are proposed by [19, 21, 22], geometric methods are
suggested in [26]. A modification of feasible directions’ method appears in [23]
where optimal coverings are given for different n ≤ 100. Note that the approach
proposed in [19] is based on a simulated annealing algorithm using the Voronoi
tessellation of the square with respect to the centers of the circles. A lot of com-
putational results for the circle covering problem are available on the web, for
example, Erich’s Packing Center web-site.

This theoretical problem is widely used in solving practical tasks in various
fields of human activity. Examples of such tasks are placement of cell towers, rescue
points, police stations, ATMs, hospitals, schools [6, 8, 10, 11], designing energy-
efficient monitoring of distributed objects by wireless sensor networks [2, 3, 4, 9, 24]
etc.

Note that most of the known results are obtained for the case when covered
areas or containers are subsets of the Euclidean plane or a multi-dimensional Eu-
clidean space. In the case of a non-Euclidean metric, covering and packing prob-
lems are relatively poorly studied. In this paper, the authors deal with the circles
covering problems of a multiply connected set with a non-Euclidean metric. We
present a numerical algorithm for solving this problem and expand it to problems
of reserve and multiple covering constructing. A similar multiply covering prob-
lem is considered in [11]. These problems appear in infrastructure logistics where
there is a main servicing system and it is necessary to create a duplicate system
to provide service in the case of failure of one or more (even all) nodes.
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2. FORMULATION

Assume we are given a metric space X, a bounded domain D ⊂ X, compact
sets Bk ⊂ D, k = 1, ...,m, and n of covering circles Ci(Oi) with the centers Oi =
(xi, yi), i = 1, ..., n. Let 0 < f(x, y) ≤ β be a continuous function, which makes

sense of the instantaneous speed of movement at every point of D and B =
m⋃

k=1

Bk.

Then, we define a closed multiply-connected set M :

M = cl (D \B) ⊂ X ⊆ R2 . (1)

Here cl is the closure operator.
The distance in space X is determined as follows:

ρ(a, b) = min
Γ∈G(a,b)

∫
Γ

dΓ

f(x, y)
, (2)

where G(a, b) is the set of all continuous curves, which belong to X and connect
the points a and b. In other words, the shortest route between two points is a
curve, that requires the least time to be spent.

Definition 1. Pn(r) =

n⋃
i=1

Ci(Oi) is a covering of multiply-connected set M with

the radius r if ∀i = 1, ..., n : Oi ∈M and Pn(r) ∩D = D.

Definition 2. P ∗n(r) is an optimal covering of M if r is minimal.

Thus, it is necessary to find a partition of D on n segments Di, i = 1, ..., n,
and the location of the circles centers {O∗i } ∈M , which provide minimum for

R∗ = max
i=1,n

ρ (Oi, ∂Di) , (3)

where ρ (Oi, ∂Di) is the distance from the circle center Oi to the closed boundary
of the corresponding segment Di

ρ(Oi, ∂Di) = min
x∈∂Di

ρ(Oi, x) . (4)

Definition 3. A covering P ∗a (r
′
) =

a⋃
j=1

Cj(Oj) is called a d-reserve covering of

M for P ∗n(r) if ∀1, n,∀j = 1, a : ρ(Oi, Oj) ≥ d.

Definition 4. A covering Pnb(r, r
′
) = P ∗n(r)∪P ∗b (r′′), which consists of n circles

Ci of the radius r and b circles Cl of the radius r
′′
is called a double covering of

M if ∀Z ∈ D: Z ∈ Ci and Z ∈ Cl, i, l = 1, n+ b, i 6= l and ∀i = 1, n,∀l = 1, b :
ρ(Oi, Ol) ≥ d.

In other words, every point of D must be covered at least by two circles.
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3. SOLUTION METHOD

In this section, the authors propose methods for constructing d-reserve and
double coverings, based on the analogy between the propagation of the light wave,
and finding the minimum of the functional integral (2). This analogy is a conse-
quence of the physical laws of Fermat and Huygens. This approach is described
more detailed in [15, 16, 17, 18].

Algorithm for circles covering constructing

1. Randomly generate initial coordinates of the circles centers Oi ∈M , i = 1, n.

2. From Oi, i = 1, n, we initiate the light waves using the algorithm [15]. It
allows us to divide set D on n segments Di and to find their boundaries ∂Di,
i = 1, n.

3. Boundary ∂Di of segment Di is approximated by the closed polygonal line
with nodes at the points Al, l = 1, q.

4. From Al, l = 1, q, we initiate the light waves using the algorithm [15] as well.

5. Every point (x, y) ∈ Di, first reached by one of the light waves is marked
(here and further on, we assume using an analytical grid for x and y). We
memorize time T (x, y), which is required to reach (x, y).

6. Find Ōi = arg max
(x,y)∈Di\B

T (x, y). Then, the minimum radius of a circle that

covers Di, is given by

Rimin = max
l=1,q

ρ(Ōi, Al) .

Steps 3–6 are carried out independently for each segment Di, i = 1, n.

7. Find Rmin = max
i=1,..n

Rimin. Then go to step 2 with Oi = Ōi, i = 1, n.

Steps 2–7 are being carried out while Rmin is decreasing, then the current
covering

Pn =

n⋃
i=1

Ci(Ōi, Rmin)

is memorized as a solution.

8. The counter of initial coordinates generations Iter is incremented. If Iter
becomes equal to some preassigned value, then the algorithm is terminated
and P ∗n = Pn be a solution with r = Rmin. Otherwise, go to step 1.

Using this algorithm as the base, we introduce two following algorithms.

Algorithm for d-reserve covering constructing

1. Using the algorithm for circles covering constructing, we obtain the optimal
covering P ∗n(r) for the set M , which consists of circles Ci with centers in Oi,
i = 1, n.
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2. From each Oi, i = 1, n, we initiate the light wave to find such a front that
is d units distant from Oi. Then we get the set H = {s(x, y) : ρ(s,Oi) ≤ d,
∀i = 1, n

}
.

3. Using the algorithm for circles covering constructing, we construct the op-
timal covering P ∗a (r

′
) for the set M \ H, which consists of circles Cj with

centers in Oj , j = 1, a.

Note that r and r
′

are different.

Algorithm for double covering constructing
Here the first and the second step are similar to the corresponding steps of the

previous algorithm.

1. Using the algorithm for circles covering constructing, we obtain the optimal
covering P ∗n(r) for the set M , which consists of circles Ci with centers in Oi,
i = 1, n.

2. From each Oi, i = 1, n, we initiate the light wave to find such a front that
is d units distant from Oi. Then we get the set H = {s(x, y) : ρ(s,Oi) ≤ d,
∀i = 1, n

}
.

3. Find set L, all points of which belong to only one circle of P ∗n(r):

V =

v(x, y) : v(x, y) ∈M \
n⋃

i,j=1
i6=j

Ci(Oi, r) ∩ Cj(Oj , r)

 .

4. Using the algorithm for circles covering constructing, we construct the op-
timal covering P ∗b (r

′′
) for the set M \ (V ∪H), which consists of circles Cj

with centers in Oj , j = 1, b.

4. COMPUTATIONAL EXPERIMENTS

Testing of the algorithm proposed in the previous section was carried out using
the PC of the following configuration: Intel (R) Core i7-5500U (2.4 GHz, 8 GB
RAM) and Windows 10 operating system. The algorithm is implemented in C#
using the Visual Studio 2013.

Example 1. This example considers the case when the metric is given by
formula (2), where f(x, y) = υ0(1 + ky), υ0, k are the given constants (here υ0 =
1, k = 0.1). It means that the speed of wave propagation increases linearly along
the coordinate y. The computational results are presented in Table 1 and Fig. 1.
Here R is the radius of the best covering, R0 is the radius of the best covering
without barriers, ∆R is a relative error, t is computation (processor) time. The
origin is located in the upper left corner.

Recall that the radius R here means the time of moving from center to the
boundary of the circle.
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Table 1: Covering of a convex polygon with barriers

n R R0 ∆R(%) t(sec)

1 8,348 6,443 29,567 2,34
2 6,810 5,136 32,593 5,50
3 5,683 4,182 35,892 11,86
4 4,836 3,54 36,610 14,15
5 4,364 3,09 41,230 20,22
6 4,011 2,832 41,631 22,41
7 3,632 2,678 35,624 35,73
8 3,348 2,442 37,101 50,95
9 3,252 2,259 43,958 98,48

It is easy to observe that the results correspond to the theoretical ones obtained
by A. Borovskikh [7]; he proved that covering objects are circles with displaced
centers for the given metric.

Note, the presence of barriers (grey polygons in Fig. 1) substantially (30-45%)
impairs the radius of covering.

Example 2. This example shows the effect of small perturbation on the solution.

Let f(x, y) =
x2 + y2

x2 + y2 + 1
+ 0.1. This metric is close to the Euclidean with the

distance from the origin. Parameter d = 5 and number of iterations Iter = 100.
In Table 2, R1 and R2 are radii of double covering for the given metric, ∆R1 and
∆R2 are deviations from the case with Euclidean metric. In Fig. 2, thin circles
have radius R1, bold ones have radius R2, grey ones show forbidden zones for
double covering.
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Figure 1: Covering of the convex polygon with linear metric

Table 2 shows that the deviations are rather small and increase insignificantly
with increasing the number of circles. Computation time is acceptable.

Example 3. The metrics, like those described below, arise in infrastructure
logistics when we want to locate some objects in the highlands. Here the speed of
movement depends on the angle of ascent or descent. Therefore, the wavefronts
are strongly distorted.

a1(x, y) = (x−2.5)2+(y−2.5)2

1+(x−2.5)2+(y−2.5)2
, f1(x, y) =

{
0, a1(x, y) ≥ 0.8,
a1(x, y),

a2(x, y) = (x−2.5)2+(y−7.5)2

1+(x−2.5)2+(y−7.5)2
, f2(x, y) =

{
0, a2(x, y) ≥ 0.8,
a2(x, y),

a2(x, y) = (x−7.5)2+(y−2.5)2

1+(x−7.5)2+(y−2.5)2
, f3(x, y) =

{
0, a3(x, y) ≥ 0.8,
a3(x, y),

a3(x, y) = (x−7.5)2+(y−7.5)2

1+(x−7.5)2+(y−7.5)2
, f4(x, y) =

{
0, a4(x, y) ≥ 0.8,
a4(x, y),

F (x, y) = f1(x, y) + f2(x, y) + f3(x, y) + f4(x, y),
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Table 2: The double covering of a convex polygon

n b R1 R2 ∆R1(%) ∆R2(%) t(sec)
1 1 27,288 28,064 0,010 0,000 4,02
1 2 27,288 17,297 0,010 0,015 5,15
1 3 27,288 14,799 0,010 0,014 7,34
1 4 27,288 11,818 0,010 0,026 10,01
2 1 17,297 29,598 0,015 0,170 7,02
2 2 17,297 17,930 0,015 0,223 9,24
2 3 17,297 15,693 0,015 0,016 11,35
2 4 17,297 11,957 0,015 0,009 17,78
3 1 14,799 27,288 0,014 0,010 11,9
3 2 14,799 17,491 0,014 0,572 15,09
3 3 14,799 15,903 0,014 0,223 19,58
3 4 14,799 12,129 0,014 0,862 21,2
4 1 11,818 27,288 0,026 0,010 17,89
4 2 11,818 16,589 0,026 0,024 19,05
4 3 11,818 14,799 0,026 0,010 24,67
4 4 11,818 13,016 0,026 0,077 27,31

f(x, y) =

 0.4, 0 < F (x, y) ≤ 0.4,
F (x, y),
0.8, F (x, y) = 0.

Here we construct d-reserve and double coverings for the same set to compare
their radii. Summary results are presented in Table 3 and Fig. 3. In Table 3, R1

is the radius of the best covering, R2 is the radius of the reserve covering, R3 is
the radius of double covering, d = 15, Iter = 100.

It is easy to see that R3 ≤ R2 because to construct the double covering, we
solve a regular circle covering problem twice. First, we solve it for the set M , and
then for set Q = {(x, y) ∈ Ci, (x, y) /∈ Cj , i, j = 1, ..., n, i 6= j}. The area of Q is
obviously smaller than that of M . Note, if d = 0, then R3 ≤ R1.

Table 3: Optimal reserve and double covering

n R1 R2 R3

1 82,52004 112,21367 112,21367
2 77,16915 91,95601 89,83781
3 70,68287 73,55724 71,53404
4 59,00788 62,48673 61,49187

5. CONCLUSIONS

The circles covering problem, which is one of the classical mathematical prob-
lems, was considered in a large number of papers. As a rule, authors studied
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Figure 2: The double covering of a convex polygon

convex sets and Euclidean distances between points. The case of a non-Euclidean
metric has rearly been studied, especially if a multiply connected set is covered.
Such a problem is the subject of consideration in this article. Moreover, we ad-
dress a more complex problem of constructing reserve and multiply coverings. We
present two methods, based on optical-geometrical approach, which expand our
previous results.

The results of the computational experiment make it possible to conclude that
the proposed approach is applicable. In particular, our computational results
coincide with the theoretical ones (if they exist).

Finally, note that although the proposed algorithms are used for illustration
purposes, they can be applied to continuous location problems where the objective
is to locate n facilities in order to service a given domain M in some “optimal”
way.
Acknowledgement: This work was partially supported by Russian Foundation
for Basic Research, research project 16-06-00464.



78 A. Kazakov, A. Lempert, Q.M. Le / On Reserve and Double Covering Problems

Figure 3: a) Reserve covering b) Double covering
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