Yugoslav Journal of Operations Research
3 (1993), Number 2, 199-218

APPLICATIONS OF NEURAL-NET COMPUTING TO
TRANSIENT STABILITY ASSESSMENT
AND ENHANCEMENT OF ELECTRIC POWER SYSTEMS

Miodrag PUKANOVIC

Nikola Tesla Institute
V.Hugo 3, 11000 Belgrade, Yugoslavia

Mirko MILIC |

Faculty of Electrical Engineering, University of Belgrade
Bulevar Revolucije 73, 11000 Belgrade, Yugoslavia

Dejan J. SOBAJIC

Electric Power Research Institute, Power System Control
Palo Alto, CA 94304, USA

Yoh-Han PAO

Departments of Electrical Engineering and Computer Science,

Case Western Reserve University
Cleveland, Ohio 44106 USA

Abstract: This paper describes some application of artificial neural networks in electric
power systems. The concept of adaptive pattern recognition and neural networks in
the process of recognizing and classifying patterns is explained. The Generalized Delta
Rule and the Functional Link Net architectures of neural nets and the
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calculation of voltage dips and calculation of generation shedding requirements.

Keywords: Short term system dynamics, transient stability, security assessment, neural-nets,
adaptive pattern recognition



200 M.Dukanovié et al. / Applications of neural-net in electric power systems

LIST OF SYMBOLS AND ABBREVIATIONS

n — the number of generator nodes;

P_ .- mechanical power of the i-th generator

nmi

P .(0+) — electrical output (active power) of the i-the generator immediately after
occurrence of a fault

E. - electromotive force behind the transient reactance of the i—th generator

G,;, B;; — components of 7j-th elements of the reduced short circuit admittance matrix
for the network

M; = LiSni — inertia constant of the i-th synchronous machine;
wS

T';. — inertia time constant;

S . —rated apparent power;

w, — synchronous speed of rotation;
n
Mcor = 2 M;
i=1

§; — rotor angle of the i-th generator relative to the synchronously rotating reference
frame

w, — angular velocity of the rotor of the i-th generator relative to the synchronous
velocity

n
5' — Z ’ 9,‘=5,'—50 y W; =W; —Wy
=1

T
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1. ARTIFICIAL NEURAL NETWORKS

Traditional pattern recognition techniques has been viewed as useful for
recognizing and classifying objects that belong to different classes. However, existing
conventional pattern recognition techniques are incapable of synthesizing complex and
transparent mappings. They are computationally involved if applied in power systems,

because a new discriminant function is required for any change in network topology or
new disturbance location.

The addition of parallel distributed processing to traditional pattern recognition
has given rise to a more powerful methodology, adaptive pattern recognition. The
introduction of parallel distributed processing allows for adaptive learning and
classification. Such subsymbolic-level processing seems to be appropriate for dealing

with perception tasks and perhaps even with tasks that call for combined perception
and cognition.
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Artificial neural networks (ANN) [14] also known as parallel distributed
processing systems, connectionist networks or adaptive systems are based upon the
methods of information processing understood to exist in the brain. They consist of a
large number of simple processing units, massively interconnected. Such processing
architectures have capability to create its own sub-symbolic representation, to learn,
to memorize, and to recall associatively. In the supervised learning of input/output
palrs, the ANNs can predict accurately and generalize in the feature space. Neural
systems are efficient in discovering similarities among large bodies of data and in
synthesizing distributed fault-tolerant models for nonlinear, partly unknown and
noise corrupted system.

A typical feedforward neural network is illustrated in Figure 1. A three layered
network 1s shown, but in principle there could be more than one layer of internal
representation units. The idea underlying the design of the network is that the
information going to the input layer units are recoded into an internal representation
and the outputs are generated by the internal representation rather than by the input
pattern.

output pattern y

output layer
(M units)

hidden layer
(H units)

input ayer
(N units)

input pattern x

Figure 1. An illustration of feedforward neural netw: -k

Historically Rumelhart, Hinton and Williams demonstrated ([17] that a
feedforward layered machine of the Perceptron type with one or more internal layers
could indeed train itself autonomously as desired if analytic functions were used for
activation at the network nodes and if a generalized delta rule (GDR) was used to
change the interconnecting weights, activation functions and thresholds until proper
recognition capability had been attained. Supervised learning may be treated as a



202 M.DPukanovic et al. / Applications of neural-net in electric power systems

mechanism which when presented with a sequence of class labeled patterns learns an
internal structure which allows it to generalize and to classify other patterns correctly.
The input signals come either from the environment or from the outputs of other
processing units and from the input pattern vector. A typical neuron, which is the
elementary processor unit of a neural-net, utilizes the logistic activation function as
shown in Figure 2. The parameter 6; is called a threshold and determines the
transition region of the function, while the parameter 6, determines the abruptness of

the transition. Also shown is the weight corresponding to each unit, a collection of

which forms the weight vector w, where w. represents the connection strength for the

n
i—th input. The activation or total input for a unit in layer j is called net ;= > w ok

The computation is typically performed by taking the scalar (dot) product of the input
vector w and processing that value through an activation function f. In the vector

notation:
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Figure 2. An illustration of a neuron with sigmoidal activation function

Bach processing unit is characterized by the threshold parameter 6. It may e
viewed as another weight relative to the (n+1)-th input of proce ‘ing unit that
receives permanently signal of value one. The expression (1) becom  n point-wise
notation:

J y A Ji™

N

0, =/'[Tw 0 +H] (2)
=1

The activation function determines the output value of a processing unit. The

sigmoidal activation function, that is a hybrid of the ramp and the step activation

tunctions, shown in Figure 2, provides a graded nonlinear response to the Input signal.
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It has the equation:

A 1 '
f_ netJ—BJ (3)

= 3

l+e

The sigmoidal function has the important property of exponential maps that its
first derivative can be expressed in terms of the function itself. This function yields an
output which varies continuously from 0 to 1. The quantity 0 serves as a "threshold’
and positions the transition region of the f function.

In learning the hidden representation, that is, the weights and the threshold
values, the network is presented with a pair of patterns, an input pattern and a
corresponding desired output pattern. Using its (possibly incorrect) weights and
thresholds, the network produces its own output pattern which 1s compared with the
desired output pattern. The outputs of units in layer £ are multiplied by various
weights w, and these are inputs or the hidden layer £+ 1. Each node in a lower layer
is connected to every node in the next layer without feedback connections from a
higher layer to a lower layer. The input patterns are fed into the input layer and
propagated forward to the output layer. The outputs are compared with the desired
outputs and the error signals propagate backwards through the network adjusting the
weights of each laver. The delta rule, which is the basis for training of the single-layer
perceptron is also called the Widrow—Hoff rule and has the form:

Aw; = r;(d}. —oj-)o,; (4)

where dJ- is the desired output of unit j and 0_[ = dj -0, 1s the error signal at the output

of the unit ;.
The generalized delta rule applies to systems with hidden layers and is frequently
augmented by the momentum term for convergence reasons, as:

AIUE‘}'(J’I): U‘Sj o£+a'Aw,-J-(r;-_1) (5)

where r; denotes the :-th sequence of the iterative procedure, while 7 1s called the
learning rate parameter. The momentum term a tends to make the next weight-
change in more or less the same direction as the last change keeping the network from
falling into a local minimum. The training objective of the supervised learning neural-

net is to achieve a unique set of weights (w) and threshold (¢) that will minimize

eriteria (6) over the entire set of patterns (p). E is the sum of squared difference
between the set of training outputs for all patterns p and the set of actual outputs.

[ 2
E:l/Qs—T:dLPJ—OLPI] (6)

A
A minimization is performed using a gradient-descent algorithim which always
takes the steepest descending route down from the current position. Adjustment of
weights are made first, updating the hidden-to output weights, computing so the o,'s
at the output layer and then back propagation these error signals to the hidden layer

to compute J;'s which with the input values are used to update the input-to hidden
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weights. Incorrect local minima can be recognized by failure to converge to the desired
output pattern during the training process. In this case the gradient descent is started
over again using new initial values for w;; or new values for the learning rate 7 and the
momentum term a.

Feedforward networks operate in two distinctive phases: learning phase and
consulting phase. In the learning phase the patterns are fed into input layer and
propagated forward to the output layer, where the actual outputs are compared with
desired ones and the error is obtained. The error is propagated backwards through the
network adjusting the weights of each layer. Adjustments of weights are made by first
updating the hidden—to output weights, and computing the error signals at the output
layer. Then, these terms are propagated back to the hidden layer to compute error
signals which are used to update the input-to hidden weights.

This 1s schematically illustrated in Figure 3 where L is a desired output of unit j;
0; 1s the error signal at the output of the unit j; 7 is the learning rate parameter; a is
momentum term which determines the effect of past weights changes on the current
direction of movement in weight space; m is the presentation number, net; is the total
iInput to a unit j; o; is the output of a unit in layer j; f is a convenient logistic activation
function.
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Figure 3. An illustration of the generalized delta rule algorithm

Functional Link Net (FLN) introduced by Pao [14] represents the new network
architecture that allows unsupervised learning, supervised learning and associative
retrieval to be carried out with the same net configuration and with the same data
structure. The basic idea behind a Functional Link Net is the use of links for effecting
nonlinear transformations of the input pattern before it is fed to the input layer of the
actual network. In this way the generation of an enhanced pattern to be used in place
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of actual pattern is performed. There is mathematical basis, as well as pragmatic
evidence that supervised learning can be achieved exceedingly well with a flat net and
the delta rule if the enhancement are done correctly. This is in contrast to the
conventional use of a net with the obligatory hidden layers and the generalized delta
rule. No intrinsically new informatioa is introduced, but the representation is
enhanced. The flat architecture of the FLN exhibits highly desirable learning
capabilities and in some applications drastically reduces the convergence time. In the
functional expansion model, the FLN acts on each node singly (typically through
orthonormal basis functions), while in the outerprcduct model each component of the
input pattern multiplies the entire pattern vector. It might induce the same set of

additional functionalities for each and every node in the input pattern space. Those
two FLN net architecture are shown in Figure 4a and 4b:

X9y Xz X3 XX X1X3 XpX3 X4XpXy

. . . . . . X x| x1

sin (mx) cos(x) sin (2¢tx) cos ( 21x) sin(4rx) l &

b
Figure 4. a) The functional expansion model,
b) the outerproduct model of the Functional Link Net architecture

Use of the FLN-net "flat" architecture with no hidden layers increases learning
rates and simplifies the learning algorithms.

The basic characteristics of ANN architectures for supervised learning are:
layered network, linear operation between layers, nonlinear processing only at nodes,
no interaction among nodes in the same layer, iterative convergence to least mean
square error representation, processing of binary and analog data.

However, neural-nets are characterized by some inherent shortcomings. The
input features for characterization of the phenomena which is being solved must be
properly selected to describe a given problem. Backpropagation algorithm doesn't scale
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well, the algorithm goes slowly and a criterion how to select the optimum number of
hidden layers and the optimum number of ncaes in the hidden layers should be
developed. The choice of good step parameters cften involves a process of trial and
error and there is still lack of evidence that the steepest descent algorithm will not
converge to the local minimum.

The investigations of artificial neural networks have covered a large number of
topics in interpretation, diagnostics, forecasting, predictive monitoring, control and a

variety of other tasks [1,3-13,15,16,18-24].

2. NEURAL-NET BASED UNSTABLE iACHINE IDENTIFICATION
USING INDIVIDUAL ENE..3Y FUNCTIONS

In this section a new method for unstable m.achine identification in power system
transient stability studies is presented. I¢ is based on the use of supervised learning
neural-net technology, and the adaptive pattern recognition concept. The
identification of the mode of instability plays the essential role in the process of
generating principal energy boundary hypersurfaces. It is demonstrated that using
individual energy functions as pattern features, an appropriately trained neural-net
can retrieve the reliable estimates of the critical clearing time parameters.
Generalization capabilities of the neural-net processing allow for these assessments to
be independent of load levels.

The critical value of the total energy of machine ¢ at the instant of fault clearing
V. .. 1s defined to be equal to the maximum value of the potential energy along the
post-disturbance trajectory V p., ... Mode of instability is indicated at the instant of
fault clearing, by the total transient energy of individual generators which exceeds
critical energy for generators belonging to the critical group. The concept of individual
energy functions introduces characterization of stability as a local phenomenon in
contrast to total energy function. This way, loss of stability occurs when the absorption
capability of the cutset that encircles the group of machines becomes less than kinetic
energy of that group on generators. Relying on local characterization of (in)stability we
select individual energy functions at the moment of fault clearing, normalized by
critical energy of global energy function as adequate input features which contain in

condensed form all relevant information about consequences of given fault on stability
of power system.

In order to eliminate necessary numerical integration because of existence of path
dependent integrands we propose the following expression for individual energy

functions in COI reference frame using the assumption of a linear trajectory in the
angle space:
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It should be noted that power system's.state at fault clearing time (¢) is
calculated analytically using Taylor's series expansion and so individual energy
functions at fault clearing time are computed in a straightforward manner.,

In order to define features which properly reflect:

— 1impact of fault on individual generators,

= electrical distance between individual generators and faulted bus,

— changes in network topology,

we selected the following expressions:

E n I d
By =B = B0 )|/ 84 = | 3 B = 3 Rul07) |/ Mo (¥, 1Y)
| g=] =1 J
P (8)
where:
Y .- 1s admittance distance from generator i to faulted bus,

tf

Y - 1s self admittance of generator bus i.

On the other hand for proper characterization of degree of stability we used
individual energy functions at time of fault clearing, normalized by critical energy of
global energy function V,,,..

VI--=VEC/VC,; i=1,...,n (9)

For given fault and fault clearing time (determined by acting of ‘protective
devices) we propose two-step procedure for transient security assessment and
determination of mode of instability. In the first step, the mode of instability and the
CCT parameter are determined using the real-time data. Second step transforms the
individual machine energies, for given fault clearing time, into the energy margin (EM)
and classifies the system's status as being either stable or unstable. This concept for
identification of mode of instability and transient security assessment is summarized

in Figure 5.
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Figure 5. Concept for identification of mode of instability and
transient security assessment using individual energy functions

The performance of the ANN for new cases, not presented during the training
session 1s 1llustrated in Table 1.

It should be observed that the exact prediction of the mode of instability is

achieved by ANN even in the case when actual mode of instability changes with the
change of load level.

The estimated critical clearing time agrees with the value obtained by numerical
integration procedure,

The quality of the ANN based estimation of the energy margin reveals the high
generalization power of distributed supervised learning systems.

Advantages of the proposed approach come from the parallelism which is inherent
to this method and which provides simple and faster solution to the unstable machine
identification and transient security assessment problem. During consulting phase
neural-net retrieves mode of instability, energy margin and critical clearing time with
order of magnitude more speed than the classical numerical integration method. The

speed of exccution is an essential requirement of real-time dynamic security
assessment schemes,
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Table 1. The comparison of actual and estimated CCT, energy margin
and mode of instability

209

Load | Actual | ANN | TEF Actual ANN Actual | ANN
level CCT CCT | Method | Mode of | Predict. Energy | Energy
CCT Insta- of MOI | Margin | Margin
(p.u) (8 1 is) l (s) bility | |
E— FAULTED BUS-35 (FAULT CLEARING WITHOUT LINE SWITCHING)
0.95 0.28 | 0.27 0.281 G1-G9 | G1-G9 -0.27 2081
0.85 0.32 0.32 0.318 G1-G9 | G1-G9 +0.06 +0.06
0.75 0.37 0.37 | 0.358 G1-G9 | Gi1-G9 +0.31 | +0.30
| 065 | 041 I 041 | 0.392 G6 G6 +046 | +0.47
| 055 0.46 0.45 | 0.447 G6 G6 +0.63 | +0.62
| Load | Actual | ANN | TEF [ Actual ANN Actual | ANN
level CCT CCT | Method | Modeof | Predict. | Energy | Energy
| CCT Insta- | of MOI | Margin | Margin
- (p.u) (s) (s) (s) bility
FAULTED LINE 4-14 (FAULT CLEARING WITH LINE SWITCHING)
0.95 0.26 0.25 0.248 E1=GY G1-G9 1 -0.08
0.85 0.30 0.31 0.298 | G1-G9 G1-GY +0.25 +0.27
0.75 0.35 0.35 0.351 G1-G9 G1-G9 +0.47 +0.46
0.65 0.38 0.38 0.398 | G9 G9 +0.42 +0.41
0555 | 1036 ] 110i37.44]..,0:369 GY G9 +0.56 | +0.55

. 3. ARTIFICIAL NEURAL NETWORK BASED CALCULATION OF
GENERATOR-SHEDDING REQUIREMENTS

IN POWER SYSTEM EMERGENCY CONTROL

This section presents an application of artificial neural networks in support of a
decision-making process of power system operators directed towards fast stabilization
of multi-machine systems in emergency control situations. The proposed approach
considers generator shedding as the most effective discrete supplementary control for
improvement of dyvnamic performance of faulted power systems and preventing
instabilities. Learning capabilities of artificial neural networks are used to establish

complex mappings between fault information and the amount of generation to be shed
suggesting it as the control signal to the power system operator. Generalization
capabilities of ANN-s allow for control decisions to be independent of operating

conditions.
We propose an emergency control system based on the use of associated
memories. Its schematic diagram is shown in Figure 6.



210 M.Dukanovié et al. / Applications of neural-net in electric power systems

MODEL OF ELECTRIC POWER SYSTEM I

| S

| CONTROL DECISION

FAULT DETECTION (NUMBER OF UNITS
AND IDENTIFICATION AND GENERATION TO

PART BASED ON BE SHED) AP
UNSUPERVISED LEARNING m

ASSOCIATIVE MEMORY SYSTEM By
T2 e e L. A D LA e ., 1. 28 S T B
|
ALUATION O UPERVISED LEARNIN |
SOCIATIVH [
EE:UIN:EATURE SYSTEM T T A
| INPUT OUTPUT |
it el B o B NUDE" " Frggees b PANE. s §
MEMORY
CONFIGURATION
| AND TRAINING

Figure 6. The use of associative memory system for emergency control (AMEC)

The role of fault detection and identiitcation unit (FDI) is to measure the
electrical output powers P of generators =1,...,n) and mechanical inputs P, . during
a fault and to identify type and location of fault. This information together with the
information about topological observability and network connectivity (available from

state estimator) is used to calculate input features for a neural net associate memory
system according to (8).

The AMEC system consists of two modules. The first one comprises a supervised
learning net trained with multi-pass learning methods. Its inputs and outputs
(targets) are defined in terms of F.—coefficients and shed generation, respectively. As
the result of learning process a unique set of weights and thresholds is established on
the basis of presented data collected under various operating conditions, fault types
and network (power) topologies. During a consulting phase, trained net is able to
synthesize appropriate emergency control measures, i.e., amounts of shed generation
corresponding to new and previously "unseen" circumstances. It should be noticed that
the character of the learned map is "analog-to-analog”. The nature of the problem

dictates quantization of estimated control signals so that shed generation amounts
become practically feasible,

The quantization is carried out according to nominal apparent power and number

of generator units in power stations which are selected for generator shedding. Then
the associate decisions or actions are related to quantization intervals. This is the task

of a second module, where the output of a supervised learning system serves as a cue
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for the associative decision retrieval, If the o - tput node of a supervised network should
cause an associated control action to be activated, an message such as "shed 2 units in

power station A with mechanical power of 250 MVA" may be recalled providing the
output falls within the appropriate quantizea interval.

The numerical experiments are carried out on the New England test system [2),

O
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Figure 7. The New England test system

If a 3-phase short-circuit fault occurs on line 29-26 and the faulted line is tripped
in by = 0.12 seconds, we attempt to stabilize the system by shedding a part of
generation at bus 38. In fact we considered the power station at bus 38 to contain
8 x 125 MVA identical generator units and the generation shedding is executed
simultaneously with the fault clearing. It should be noted, that fault on line 29-26
with fault clearing policy of isolating fault by tripping the faulted line, causes single
mode of instability (generator 9 loses synchronism).

Using a transient stability program the minimum amounts of shed generation are
determined necessary to prevent loss of synchronism.

The performance of the neural-net system for new cases, not presented in the
training session i.e. for load levels 0.55 0.65 0.75 0.85 and 0.95 | p.u ] is illustrated in
Table 2.
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Table 2. Results of the calculation of the required amount of generation to be shed
in the power station G9 for a fault at line 29-26 with £ = 0.12 s

Load level Lines out Minimum amount of Number of

[ p.u] of service | shed generation disconnected units |

required to stabilize needed to stabilize the
the system calculated system calculated
__by by
Transient | Neural-net | Transient | Neural-net
stability system stability system
program [ MW ] | program [ MVA |
[ MW ) [MVA )

0.95 = 203 205 2x125 2x125
0.85 = 241 233 | 3dx125 3 x 125
0.75 - 266 267 3 x 125 3 x 125
0.65 - 299 295 3 x 125 3 x 125
0.55 - | 357 346 4 x 125 4 x 125
0.75 3-18 n 256 271 3x 125 3 x 125
0.65 4-5 321 318 4 x 125 4 x 125
0.65 23-24 305 285 3 x 125 3x125
0.85 26-27 339 362 1 L. 4x 125 4 x 125
0.85 3-4 236 246 3 x 125 3 x 125
0.95 14-15 239 220 [t 3 xeledy 3x125
0.75 5-8 17-27 846: | 3370 4x125 4 x 125

The joint activation FLN-net with 10 input nodes and 45 enhancement was
allowed to train itself until the least square error is reduced to 0.0000785 in 906
iterations with learning rate 0.7 and momentum 0.5. The maximum pattern error is
2.56 x 107 and the minimum pattern error 1.735 x 1075,

We see that the estimated control signals agree with the results calculated by
transient stability program even in cases when some lines are out of service.

4. NEURAL-NET BASED CALCULATION OF VOLTAGE DIPS AT
MAXIMUM ANGULAR SWING
IN DIRECT TRANSIENT STABILITY ANALYSIS

In this section we report our investigation of the problem of voltage degradation
during system transients. We present a novel approach to estimate the amount of the
worst transient voltage dip and the instance of its occurrence. This information is used
to activate undervoltage protective devices and update network configuration if
necessary and provide the input to the conventional transient security assessment
(TSA) routine to evaluate asymptotic stability of the post-fault transient behavior. We
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propose further to store the outcomes of different simulation runs onto the associative
memory appropriately designed as a feedforward neural-net system. Once the
"correctness” of the memory has been verified it serves as a fast and reliable estimator
of transient voltage characteristics and can be used as a building block in a memory-
based design of TSA package for use in real-time conditions.

A parallel hetero-associative memory can be realized using the architecture of a
feedforward neural-net system. Stored data can be always retrieved upon the
presentation of a cue (input to the neural-net system). More interesting and useful
capability of these systems is demonstrated when a new cue is presented, which
doesn't match any of the previously stored data points. Due to the ability to generalize
the memory will exhibit the outcome which will be equivalent to the one obtained after
running an entire power system simulation case. Savings in computation time and
complexity are enormous. In our early studies of memory-based load-flow analysis we
observed efficiency ratios around 1000 : 1.

Here, our goal is to examine the generalization capabilities of neural-nets in the
scope of being able to deal with a large range of operating conditions with different

load levels. Our focus is on estimation of the worst' maximum angular swings 6 | the

worst voltage dips, the voltage dip critical clearing time t;', the transient energy

as

margin \ V¢, = ¢, ), and the voltage dip stability margin A yDIP(; = t;) using neural-
nets.

The critical clearing time (t,) is the maximal fault duration for which the system

is transiently stable and transient energy margin greater then zero.

The voltage dip critical clearing time (¢. ) is maximal fault clearing time beyond
which the worst voltage in the network dips below 0.8 p.u.

The voltage dip stability margin is defined by expression:

NG NG-1 NG
A YDIP _ -ZR—(GmM‘ - 9;")-— > Z[Ci}-(cos Omax,; — €OS HJ) —~
i=1 i=1 =i+l
¢ + 6 -6 -0° 1 5
ol VR 5 i, : . D;-J-(sin Omax; ~ sin 9‘;) = -Z-Meqwsq (10)
gmax._: E Hij 1

The voltage dip stability margin is introduced to indicate how far is the system
from the critical voltage value below which some load elements will trip. Physically,

when the fault clearing time has lasted ¢, > t." then A VPIP <0 and network bus

voltage magnitudes will dip beyond acceptable level of 0.8 p.u.
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In other words we provide a set (pattern) of system description parameters as
input to a neural-net and the net returns an estimate of 6y ., t;', AV(t;'), t;,
A VDIP(,7)

The neural-net used in this study consists of three layers, consisting of the input
layer with 20 units, one hidden layer with 15 units and a 5 units in the output layer.

Schematically, this concept is illustrated in Figure 8.

Generalized delta rule (GDR) net

Single hidden layer with 1S nodes
learning rate = 0.9, momentum=0.7

Figure 8. Generalized Delta Rule Net with training parameters

where:

2
E = R,“—Pe,(o*)] /M, i=1,..NG (11)

The performance of the neural-net system for new cases, not presented during
the training session i.e. for load levels 0.85 and 0.55 [ p.u | is illustrated in Table 3.

In following we display the results of quick prediction of voltage dip stability

margin (A VP'P) for different fault clearing times (Z,), in order to evaluate the quality

of our proposed system in comparison with time-domain simulations. The results are
shown in Figure 9,
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Table 3. The c01?1parison of actual values (calculated by time domain simulations =TD)
and estimated values (calculated by neural-net -NNET) for cases not
presented to neural-net during training phase
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" LOAD | METHOD [ @ T - DIP(,*| |
LRVEY. 9 max L. AV(tc ) . AV Lp(tc)
[p.u] [degree] (s] |
- — [p.ll] [S] [pll]
085 |TD | 896 0.115 081 0.140 ~1.04
-4 NNET | 8938 0.3 T bz 0183 0.142 ~1.08
055 |TD | 884 0090 | 061 | 0110 [ -0.68
NNET 88.5 0.089 0.62 0.100 5 by 2~0.67
1.90 :
...‘_‘PL =0.85 — — —Neural -net prediction
Time domain simulations
c 0.90+
24
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Figure 9. Comparison of voltage dip stability margins (A pR2s ),

obtained by time domain simulations and calculated by neural-net

0.04

0.08

Clearing times (s)

0.12

The guality of the ANN based estumation of the voltage dip parameters reveals
the high generalization capability of distributed supervised learning systems.

Artificial neural network

unconventional space
functions into the space of essential parameters for

5. CONCLUSIONS

s have been proven to be a powerful tool for building the

transformations such as the one from individual energy

stability / instability




216 M.DPukanovié et al. / Applications of neural-net in electric power systems

characterization such as energy margin, critica. ¢ earing ti~..c and a mode of instability.
The present approach performs successiull;” cven in cases when actual mode of
instability changes with total power syste.a loau lever change.

The associative memory system implemen‘2d on the computational platform of
artificial neural networks is proposed for the fast determination of generator-shedding
requirements in power systems. The critical amount of generator-shedding required
to prevent the loss of synchronism is deterinined using the Functional Link Net
architecture within the supervised learning f.ocess. The complex mappings between
fault information and amount of generation t2%e shed is efficiently learned by neural-
nets which are able to suggest the control acticn after appropriate training.

A new concept for an evaluation of voltage dips at maximum angular swings has
been presented suitable for treatment of lurge disturbances in direct analysis of
transient stability.

The validity of the proposed approaches is tested on the New England power
system example, by comparison with the time-domain simulations, demonstrating
close agreements of neural-net predictions and actual power system transient stability
parameters.
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