
Yugos lav J ournal of p ration R parch
3 (1993), I 'umb r 2, 171-1 8

Large File Operations Support Using
Order Preserving Perfect Hashing Functions

. ,
Dusan 1 R ' l~ rc

Fa culty of Orsrunizntional 'cienccs. IJIl'ersity of!Jl..'lg7·;/dl'

Jo ve Iltc.: 15-1, 11 000 Belgr u de. Yug o. 1:J" J;/

Emil J

Miluijlo Pupin Ins t itu te
p. 0. Box 15, 11000 Belgrade. Yug i, '1.1I'M

Abstract.! Most compu te r a pplica tions r quire effic ient munugemcn of dn a and 1; 1, '

execution of basic tile ope ra ions over la r ge da ta volumes . • pecifica lly, In 1"(> 11 1 IIlW

enviro nmen t applications a re 1', ced wit h s v ' re co nst ra in for ot al «x CU lU ll ime (If

basic ope ra t io ns. T his pa per introduce me t hod for ph 's lca l o rgn mza IO n of IlIr 'T('

da tabase tiles , ba ed on order pre se rving hash ing sch ' 1Il '. Hus hin g sch -rne curnlnne.
two fun ctions : an orde r prese rv ing a nd a n urd u ary hush ing fu ncu on . An onb'l na l (·t III

algo rithms take udvuntuge of impleme nted physica l orgun izuuu n to ach ieve ef fici en

basic file upera t ru ns. Proposed met hod gu uruntee retrieval uf a ny record III a IIl gl '
dis access , a nd nununu rn num b ' I' of disk accesses for range S ' lI rch and key ' 'quentl.tl
ope ratio ns for large dynamic fi les .

Keywords: Physical file organization, hash ing, B- tree a lgori t hms, sorti ng, da ta mnnagement

sys te ms .

1. INTROD U TIO

Extend ing possibilities of present compute r ystems made po sible n ' w

applicatio n a reas Ii ce CAD sys tems, mu ltimedia, real t ime process co nt ro l and ur ttficial

intelligence. BaSiCcharacte rist ics of these applicatio ns is work with large data fil es a nd

exte ns ive data processing. For real tim e a pplications, process co n t rol and multimedia .

1This work was suppoorted in part by the ra t iona l Science Fou ndauon of S rbia under

Grant. ' 0 . 1002B.

172 D.Starcevic, E.Jovanov / Large file operations using hashing functions

every object from the very large set of objects must be retrieved within a certain time
interval [11J. To fulfill this requirement two approaches could be followed: first , recor d
position is calculated through supporting access da ta structure which is preferably in
main memory, and second, record position on a disk is a function of primary key value
only.

I t is well known that B- trees are the most accepted access method [1, 17).
Moreover, they are most often used in contempor ary multiuser da tabase systems as
concurrent search structures [12]. These algorithms provide fast access to a record
with a particular key value, and also efficient retrieval of a set of records within a given
range of key values. It is possible because of order preserving access data structure
that is embedded in B-tree algorithms. Unfortunately, associated data structure is too
large to be placed in main memory even in a case of m oderate size data flies.
Therefore, every retrieval can requ ir e more than one disk access which is unacceptable
for most multimedia and real-time applications [23,24).

One of the most frequently used data access techniques suitable fo r guaranteed
tune retrieval is hashing. Although hashing resolves problem of single key value
retrieval, or reports that such record does not exist, it is inappropriate for set re trieval
opera tions. In orde r to gu aran tee Ot l) access time specific hashing techniques shou ld
be applied [I G, 17 J. There is a number of algorithms that support large static file
organizution [61. On the other hand, applications that use very large files with t ime
dependent number of records require dynamic hashing schemes, as a combina tion of
hashing techniques with tr ie structure [3]. Dynamic hashing fu nctions cou ld be divided
according to the use of overflow area. If a hashing function does not cause overflo w
records for a given set of keys, it is called pe rfect. According to the use of main
memory, hashing functions could be fu rther divided to directory based and non­
directory based.

One of the earliest perfect hashing schemes that uses index structu re stored in
main memory was proposed by Larson [18]. Also , extendible hashing scheme based on
collapsed tr ie sto red in main memory guarantees 0(1) access t ime [5] . Fagin proposed
use of fir s t h binary digits of the hashed key to find hash table entry. Each index entry
contains the address of a data bucket. In a case of da ta bucket .over flow, the index
could be dou bled or a new bucket is a lloca ted. Deficiency of this algorithm is poor space
u tilization in the index. In orde r to limit directo ry size Lomet introduced mult ipage
nodes [20, 211. Data node cons ist of variable- size bucket, and the size of the bucket is
wri t ten in index ent ry. Therefore, the first h bits of a ha hod key point to the index
table entry , and the fo llowing w bits point to the selected page in a bucket.

Litwin and Lumet introduced concept of bounded disorder file organ ization [19].
Bounded disorder files are compromise between B-tree and hash table tech niques.
III te r nal memory based structu re is derivative of B+ - tree, but parent-of- leaf level
contains addresses of the contiguous set of the fixed number of buckets. Each bucket
in a data node is the same size tone or more pages). When single da ta bucket
ove rflows, all bu ckets in a node must increase number of pages. Gonnet and Larson
s tudied a problem of exte rnal hashing with limited internal memory, based on hash
sign a tu res 181. In addit io n to this concept Ramakrishnn and Larson proposed and

D.Starcevic, E .Jovanov / Large lile opera t ions us ing hashing functions 173

analysed a composite perfect hashing scheme to locate record within the bucket [26].
They make use of trial-and- error method to find perfect ha sh ing fu nction from set
universal class of hashing fun ctions. Cesarini and Soda use the signature techniqu e
and the hash function based on generalized spiral storage to achieve 0 (1) access while
main taining a high load factor (2).

Correct choice of hashing function may s ignificantly influence the perfo rmance of

the system. It is shown that for open addressing schemes uniform hashing is optimal

[28]. Simple uniform hashing can be achieved by circu lary shift and XOR operations on
key fragmen t s . This approach leads to the very effic ient hardwired so lution [10].

Pearson proposed an elegant implementa tion of uniform hashing using small random
look-up table and XOR operations on key fragm ents (25).

In addition to already m entioned or iginal contr ibutions, t here is a number of
surveys about physical database design. We suggest Salzberg' s practical guide for
implementation of large file systems based on analytical approach [27], and Graefe' s

su rvey [9].

In th is paper we propose an or iginal orde r preserving dynamic hashing a lgo rithm

for large data files. In Section 2 problem statement is given. Sect ion 3 outlines
proposed method for physical organization of large files . Algori thms of basic fil e

operat ions are presented in Section 4, and in Section 5 we give som e im plementa t ion

conside ra t ion for the proposed a lgorithm.

2. PROBLEM STATEMENT

Let us assume that file is collect ion of N arbitrary fixed size records. Every record

has a unique key h, and K is se t of all keys

K = {hi 1< i s N}

Key hi is a string of up to L cha racte rs:

ki = CiICi 2 . .. Ci/, i s t s L

Let file be accessed in three manners : random access, range search, and key

sequent ial access. Random access must be accomplished in close to one disk access for
most applications. To sa t is fy requirements of real- time mult imedia applications we

will consider here on ly algorithms tha t make possible random access in exact ly one
disk access. Execution time of m emory opera t ions compared to disk access time cou ld
be neglected. Generally, range sea r ch and key sequential access may requ ire m any disk
accesses, i.e., in a case of hashed files up to N accesses . H owever, in order to sa t isfy
limita t ions of real-time systems, we allow only a limited number of disk accesses in

implemented algorithms.

We will consider here that sin gle user applica t ion has limited amou nt of available
main memory. Having in mind effic iency of B +-tree algo rithms and support for all
three types of accesses, it seems that the best approach would be to organize B + - tree
structu re in main memory. However for large files it cannot be possible to place whole
index st ructu re in main mernorv and consequently ran dom access will be performed in. ,

174 D.Starcevic, E.Jovanov / Large file ope ratio ns usi ng hash ing functions

-

ev dclumte r
•

bucket fuc o r (nu mb ' r o f records lJ1 II bucke)

buck st "12e

lu id r ictor

tl e l lrge t po ib le t i b l« izo

1111 I.d purt it.io n load t: cto r

cri icn l lond factor for reha sh ing'

_ • r u n g bu ck -t addre .

nu m ber o f bu ck >t III a partit.io n

lJ1 ixim u m nu m b >r of bu cl ots in I p r t it ion

number of re .u rd - III 1I part.it tu n

n u m ber of tn b le m trre

nu m ber of records in a rue

available main memory ize

key valu e o f the cu r ren t ly se lected record

key le ngth (nu m ber of cha rac te rs)

nu m b r o f characte r u sed in hashing fu nctio n 11 1

widt h of ha h ing key fragm e nt

J- h characte r of kev h
- I

•
1

LV

\1

a

p

II

a

In

a"

tI
IIHl.l

In
"1 (l.l

No t at io n Definition

Tabl 1. oratio n used in this pape r

m ore than one disk access du e to access to index s t ructu re in secondary storage . Le t

lvlmax be maximum number of da ta bucke t pointers that can be placed in available

main m emory by B'" - t ree structure on parent-of-leaf node level. The ques tion is:

"How can we m odify BT - t r ee structure to preserve efficiency of the original B+- tree

algorithm when number of data buckets exceeds M max ?"

Ou r objectives here were to a chieve:

• an algo r ithm that will guarantee Ot l) s ingle record re trieval for rues of

differen t size,
• efficie n t range search and key sequ e n t ia l access, as well as support for sor t in g

a nd sort-based opera t ions ,
-

• fa t in ert and de le te opera tions.

Alzori t h rns under conside ration must take into account upper limit of availa ble

in e rnu l memory. Table 1 co ntains notation u sed in th is paper to provide ea y
refere ncing.

n., ' 1 Il r~ (' I • j., .J II III O\, I Lnr I fil . 0 p "r 111 011 \I III h n hlllf'llIllIll lIl1

3. '] II h PHOP S b J) 1E'IIIOJ)

1 I I

\ e propo ' h r e the m e thod thn t mu ke: u (' 01 It 'h I IlHlIltll, ·d B I"" IIld,,'

tructure bll ed on order pre l'rvin~ h I hinu funcu on to ','III'rll ,. ont, rr-d II/II I Ion o f

record , and p rfect ha hin e fun 'lio n t o pla '(' rvco rd \ I hill 111' pur I IlJII 'I h,

propos d method nvoid buck -t ove r flo w, lind ru t. her p.'r!onn ...·11lI huu- on II dlll"n 'lI

calc. In thi chnpt 'r w will d ': rib , np plicd h ll, hi ng lind ... 1111 11In' III 'on hm

3.1. H : 11 1 G L ;OHl TII

To a chi eve un ffici nt file or runizutio n WI' mtrnd uc« wo hn hlll~ func 101 II I II

an order pre e rving hn hing function , lind 112 n a n o r d inury pl' r fl' l't hn 11In' Iunc 1011 .

U ing II 1 ov r given key , t I we ~el1l'rntl' n num be -r o f pur illll, o rd o r r-d !-,. of

record, i. '., lIa ·1I all r .co r d o f th« file in t o partit ron s nlu« of II 1 lo r II pur iculur kvy

h, detormin the partition, and p -r f ct hn lung functio n 112 gl'/lI'rIl" tho idd r« 01

data bucket con t a in ing r cor d wi th l.o brive'1 koy ,vI hin hnt pur iuon I.... • ,. ich d.l II

bu cket con ta in up to b r co rd, and lo i he {' I) to 1 purt it.ion Pilch I h 1'11 11111'1 o f
lUlU ~

mmlU da huck t . Whol rang o f k y fro m ot K 18 then di ided III 0 /If paru Ion .

U ing (M- l) comparison valu o r k _ d limi ter I{D. I, un . Ion II 1 mu t no 'pnl rn "

more then M partition du to avuilab l m mory linn ation . All record I h k,·vmax '
value b tween adjac nt d limiter belong to he nrno pur i ion , lind 1111 par I Ion

hould hav nearly qual car d in a lity. Mor ov r , puru io n nre IJ1 prr-: or "d o rd , r

according to their k y valu . I wa s hown tha propo od "(II 11\1- lind 0 HIUI I'

techn iqu e mak po ihl an fficien rang a rch a nd or hn I'd opor It UJIl 1151 WI'

will define an ord r pr rvin r ha h ing func ion II 1 over key h. ha t reneruu- 1

different valu in the followin r way:

Algorithm 3.1: Hashing function II l(Jz)

i = Q.,
while « It > KD[il) && (i < (M - l)

i+ +.,
h1(1t) = i;

/ 'arch th rough key dolinutor t ihl« . /

/* Ha sh ing fun ction is the p IrtltlOn n u m be r /

There is a numb r of po ibl implem n tatio n o f hu hinz fu nct io n 112. TIll'

hashing function h2 mu t b a p rf c t ha hing fun ctio n for th >1 c 'd key et, , 0 t ha

no one of m datu buckets holds mor th n b r cord . For the riv n numb -r of r co rd

n, and fixed bucket factor b, we ar looking for nu mber of d t buckets In , wh 'n'

m S mmax' such that ha hing function h 2(k ,m) i p rf it for ch k y h . ' nrch for

perfect hashing function is compl t Iy dill r nt for static a nd dynamic fil is. Also ,

problem of finding minimal perfect ha hing function that is v ry important for tntie

mes, is of no relevance for dynamic file . In 8 ca I' of dynamic file s , nch pnrtition nHl

have some free space to accommodate following I' cords.

/* Rotate left one position */
/* XOR with the next key fragment */

•

176 D.Starcevic, E.Jovanov I Large file operations usi ng hash ing functions

To provide fast access to very large databases in real t ime environ ment, h2(h,m)

have to fulfill following conditions: fast calculation, machine independent .algor ith m ,
and good rantlomiza tion for different key distributions. Simple algorithm of choice is
the folding method. It divides keys into several short fragments and folds them using
the eXclusive-OR (XOR) operations. Unfo r tu na tely, that algorithm does not resolve
anagrams and could produce poor randomization. Therefore, intermedia te XOR
results are usually modified by bit shifting (10) or using table look-up random iza t ion
[25]. Algorithms based on XOR and sh ift ope-ritions are very fast, and cou ld be
efficient ly hardwarized. Hashing function h 2 based on sh ift and XOR operations is
described in Algorithm 3.2.

Algo r i th m 3.2: Hashing function h2(k,m)

h2(h,m) = hO) /* Take the first key fragment of width w */
for (i = 2; i <= L; i++) {

h2(h ,m) < < = 1;
h2(1l,m) = h2(k,m) 1\ k(i);

}
h2(h ,m) = h2(h,m) mod m;

Graphical illustration of the proposed large m e organization is given in F igure 1.
Ha hing function h Hh) makes use of (M - 1) av xiliary key delimiters to determine

•

a ppro pr ia te HT table entry, so hI can be considered as directory based ha hing
function . Each table entry contains a pair of parameters (p, m), where p addresses
tar,ting bucket position of the corresponding disk partition, and m is u ed by ordinary

perfect ha hing function h2(h,m) to determine the data bucket within the partition
wh ich hold the requested record. If hashing table HT is present in main memory ,

r-

ingle record retrieval with di k acces O(1) is guaranteed.

D term ining key delimiters set lill, is a very ensitive and da ta dependent
prob lem. If key di tribution i uniform, then whole range of key value can be simply
divided in 0 M subrnnge . For in tancc, if M = 2k , then in tead of whole key we can
like only the firs t h bits to create 2k partitions, as uggested by Lomet 120). However.

in mo t practical cases key di tribution i rarely u niform, so thi approach i useles
fo r original keys . ever t.he le , r gular partitioning can be used for ha hed keys, but
ncri ficcd key orde r.

II' w fIX k 'y delimiter values for arbitrnry cho en tile , the rcqu es ted neurly equal
partition ca rdinality will not b fu lfilled . I' course, it i po sible to obtain set of
optima l key d slimiter for a given tile in advance using stati tical analy is, but in th tt
CII e i is a ruther static til organization. In practice, due to variuble number of records
in II til it will be nee ssa ry to chang nu mber of partitions as well as par t it ion key
d -lim it i rs from time to tim . So, we have to provide IUl effi .ient way to dynamically
adjust I mgt.h nnd .ont nt of m 'IIWI}' bused key d elimitors set I D. Huvirur in mind
hat th is tnh l« can be v ' I}' la rg " c ptured comparison value must be riven in sorted

ordor 0 provide fast, S mrch within hushin' function h HI;). Delete and insert

D.Starcevic, E .Jovanov I Large fil e opera t ions us ing hashing functions 177

operations over key delimiters table must be very fast as well , so some kind of B-tree
structure is preferable, as it is noted earlier.

m
I

Disk .. '.;.; .. 0.:.:.:.', .;.':-:
.....;.. . :..', ' ... ' . ' .'

sno

h-i

KD HT 0 1 pno

K,
K,

-, v

... (---, \ .. . h2(k,m) '--..

K hl(k) p C)
, -"

m \.I
-,

... • ••

K\/_ ,

k

m-l

Figure 1. Large file organ iza t ion using hashing fu nct ions h H k) and h2(k ,m)

•

Tables lill and HT could be combined to generate a table with entr ies comprised
of three parameters ihd, p , m).. These parameters can be conside red as an aggregate
primary key of disk partition . It should be noted that the normal way of operation of
B+-tree is supported as long as the number of data buckets is less then M m ax . We can
star t from this point of view to find out the requested solutio n. For the sake of
simplicity, B+ -tree of order 2 used as a primary index is illustra ted in Figu re 2.
Beware that 01 Iy leaf level contains the data buckets. For a single disk access retrieval .
the whole index structure excluding leaf level must be in main memory. It is possible
as long as the number of data bucket allows that complete B" - tree index st ructure
could be placed in allocated main memory, so that address pointer points to the bu cket
of up to b records on secondary storage.

I !50 I
I
•

I
120I,

•

701 90 I

I i 90 1
I

95 1
1

Figure 2. Primary B+-tree index st ructure

178

-

D.Starcevic, E.Jovanov I Large file operations us ing hashing fu nctions

Problem under consideration is physical organiza tion of large files, where the
number of data buckets exceeds M . We can resolve this problem by "bruta l force",max

for instance by increasing the bucket size b. However, bucket size is n.ot arbitrary
chosen, and depends on physical disk character istics. Practically, size of disk buffer is
already selected for optimal B+- tree operation . Therefore, in proposed algorithm we
slightly modify the original B+-tree structure, so that each poin tel' p can address
contiguous set of m. data buckets. Number of da ta buckets in one partition is written
together with a pointer to the parti tion as a pair (P , m). In order to retain single disk
access retrieval and minimize main memory usage as well as data bucket transfer
time, we introduce now the second hashing function. h2. Function h2tk,rn) is a per fect
hashing function that generates an integer in a range [0, rn- I), which determines the
data bucket containing the record with a give n key value h,

Required modificatio n of B'" -tree me organization supporting variable number of
buckets per partition is illustrated in Figu re 3.

ke y m p

\ ... I, 130 I ., , .. . v anmt-oj-leajlevel-
11/a /11 meIIIorv

•

dISk I , 0 1 2 data buckets

I I 1
30 1 140 I 11 50 : I 1170: 180 : I I • • • I

Figu re 3. Fragment of a parent.-of-Ieaf and leaf level of the modified B+-tree

3.2. R I::: HASHING ALGORITHM

We already mentioned that hashing function h2(k,rn) is a perfect hashing
function . It is co nditio nally true, because the pruposed method uses overflo w
avoidance paradigm. The algorithm guarantees that every new record does not mak e
the bu cket overflow, but the data bucket must be checked for the number of records
afte r wri ting. If the data bucket became full, rehashing of corresponding partition is
necessary

Rehashing has to reconstru ct th par t it io ns and their corresponding data buckets,
to make fre« space In data buckets. Beware that this procedure shou ld not be time
co nsu ming, because of its cruc ial influence on system performance. In real time
Y"W ill" the uppe r time linu t fur this procedure is usually defined. The uther

Important factor IS frequ ency of rehashing, so the trade-off between rehashing
co mp lexity and frequency mu st be found.

R ' hash ing is necessary when some bucket accept b-th record (becomes full) .
Proposed rehashing method is described in Algorithm 3.3 . We designed two I vel
rehashing to sa t isfy r al-tim system constraints. Low level rehashinz perform single
partition r 'hashing while hi Th -I'vel rehashing reorganize mult iple partition and
ind sx s tructure (tabl 'S Ill' and KO). High-devol rehash in T is requ ired when partition.

D.Starcevic, E.Jovanov I Large fi le operations using ha hing functions 179

become extremely skewed or too large. This operation can be w~ry time consuming,
and it is desirable to perform it off-line.

Algorithm 3.3: Rehashing

/* Called when some bucket becomes full */
if (M < M max) then /* Split partition as normal mode of B+- t ree operation */

Insert new key delimiter in KD[ij ; /* Existing partition is split in two key ranges */
Singlepartitiorc reliash ing; /* Reh sh i-th partition */
Singlejiartitioti rehashing; /* Rehash (i + I)-th partition */

else r Index structure full */
if ((m. / a ') < mmax) then /* Expanded part ition could be placed in main memory */

Singleportitiori reliashing ; /* Rehash existing partition */
else

Merge_andJehash...fJartitions; /* Reorganize som partitions and index structure */
end·,

end;

General rehashing policy is to expand index structure (number of partitions) as
long as it is possible to place index st ructure in available memory. Whe n number of
partitions reach M max, partitions are enlarged by increasing number of data buckets.
Finally, when some partition get too many data buckets to be placed in main memory,
we have to reorganize it together with adjacent partitions to equalize partition load
factor. It will result in a change of key delimiters KD as well.

Single partition rehashing, presented in Algorithm 3.4, is an on-line procedure.
which enables hashing function h2(k ,m) to opera te without overflow buckets. Low
level rehashing starts with reading all data buckets from the requested partition into
main memory. We have to determine new number of data bucket (m) in the rehashed
partition, s6 that load factor a of the partition is close to initial (a S a'). Initial load
factor a ', is determined to allow a number of insertions without rehashing. In order to
determine distribution of hashed keys, we use rehash table (RT) to collect histogram
of hashed values. Number of RT table entries must be large enough (compared with
mmax) to provide uniform distribution. Having in mind tha t value of h2 must be in a
range [0 , m-I) table RT is split into m groups. Every group is associated with the
corresponding data bucket. Consequen tly, any bucket loading factor could be
calculated as su m of group counters divided by bucket size b. If maximum calculated
bucket load factor is greater than critical load facto r a", we have to further expand
partition size to decrease individual bucket load factors.

Critical load factor a" is determined as space/time trade- off, and depends on

particular application and system characteristics. Higher value of o" (~1) maximize
storage utilization, but on the other hand increase probability of rehashing, which
leads to the decreased system throughput. When number of data buckets in rehashed
partition is determined, we alloca te appropriate contiguous disk area. After that, we

180 D.Starcevic, E.Jovanov I Large file operat ions using hashing func t ions

collect records from the partition with the same hash value h2(k,m) and write them,
bucket by bucket, to the disk.

Algorithm 3.4: SingleyartitionJehashing (Low-level rehashing)

r Increment rehash table cou nter */

/* Calculate tem porary number of buckets as RT table length */
/* Initialize partition record cou nter */

/* Generate histogram of hash values */
/* Get next record within the partition "!

/* Update partition record cou nter */
get_nextJ ecord;
n++',
Calculate h2(k ,mt);
RTI h2(k,mt)) + +;

} while! end_ofyartition;
m := n / (b . a');

do {
/* The lowest expected number of buckets */

/* Searching for opt imal partition size */
m + +; /* Increment number of buckets in the partition */
Split rehash table RT entries into m groups; /* All records with keys

that belong to a group, are to be placed in one bucket */
} while (maxtc) > a"); /* Part ition grows while any bucket load factor is cr itical */
/* Bucket load factor is su m of corresponding counters in rehash table group */
Allocate m fr ee disk buckets for rehashed partition;
Insert all records from old partition into the new disk partition, according to h 2(k,m).

mt = size(RT);
n = 0;
do {

In a presence of data skew, nonuniform key value distribution, number of buckets
for some partitions can be prohibit ively large. As a consequence, the performance of
the key sequent ial and key range access becomes very poor. Partitions with large
nu mber of records will require less frequent but more complex rehashing, and the time
fo r rehashing will increase. This problem is resolved using high level rehashing.

High level rehashing i requested in t hree cases. First, it is necessary when initial
number of data buckets is larger then allowed number of data buckets m mn.t: ' as given
in previous analysis. Second, h igh- level rehashing could be required during execution
of single partition rehashing, if number of data buckets exceeds mmn.t:' Finally , it is
advisable to perform high level rehashing off- line from time to t ime to optim ize bucket
distribu t ion within partitions. As a consequence, better balancing of da ta bucket s will
decrease cost of on-line high- level rehashing in real- t ime systems, and increase
system performanc .

The first step of high- level rehashing determines q adjacent partit ions, so that
average number of data buckets per partition is less then Inm ax• It is very fast
op ration , xecuted sim ply by reading parameter In from q adjacent entr ies of HT
table. The n xt step merges records from adjacent partitions, and modify
corr isponding key delimiters from KD table. Records t hat should b moved to another
part it ion are obta ined applying fast pu rt i II "ort ing based on modified radix sort [13,
221· T he final step applies already pr ' 8 nted single part ition rehashing to generate q
new par ti t ions. Init ia l file loading CHn be consid sr ed as II high I vel r rhash in T problem.

Algorithm 4.2: Retrieval of a set of records with key range [kl , k2]

Algorithm 4.1: Retrieval of a single record with key k

Retrievals are the basic m e operations. Presented here are: Retrieval of a single
record, Set retrieval, Set retrieval in a sor ted order, Inser tion and Deletion. Afore
mentioned Algorithm 3.4 guarantees single disk access ret r ieval for any requested
record, provided that HT and KD data structu res reside in main memory. Elementary
sor t and select operations used in a basic algorithms are described in [13;15].

181•

4. BASIC OPERATIONS

D.Starcevic, E.Jovanov / Large fil e operations using hashing funct ions

I
Algorithm 4.3: Retrieval of a set ofrecords with key range [k l, k2] in sorted order

Calculate starting and ending partition given by hl(kl) and hl(k2);
From starting partition i = hI(k I) sort all records with corresponding key k satisfying

condition k ;:: kl
/* Suggested sort algorithm implements select & sort operat ion */
While partition number i < h2(k ,m) /* partitions are already in sorted order! */

Sortyartit ion ; /* Sort records from partition i */
From ending part ition i = hl(k2) sort all records with corresponding key k satisfying

condition k :5 k2

Calculate starting and ending partit ion given by h l(kl) and h l(k2);
From starting partition i = h l(k1) select all records with corresponding key k

satisfying condit ion k ;:: kl.
While partition number i < h2(k,m) /* partitions are already in sorted order! */

Select all records from partition i
From ending partition i = hl(k2) select all records with corresponding key k satisfying

condition k :5 k2.

Calculate hl(k), h2(k,m); /* Calculate hash funct ions hI and h2 */• •
p = HT[h1 (k)] .p; /* Pointer to the disk partition */
m. = HT[h1 (k)] . m; /* Number of buckets in the disk partition */
Compute the bucket address A := p + h2(k,m); /* Bucket logical address */
Read in the bucket with address A;
Search bucket for a record with a given key k ; /* if not found there is no record

with key k */

182 D.Starcevic, E.Jovanov / Large file operations using hashing funct ions

Algorithm 4.4: Insertion of a record with key k

Calcu late h1(Jl), h2(1l ,m); /* Calculate hash functions hI and h 2 */
/* Find a bucket within the partition */
p := HT[hI (k)] . p;
m. : = HT[h l(k)] . m;

Cumpute the bucket address A := p + h2(k,m); /* Bucket logical address */
Inser t record in the bucket ;
if buchet ful l then /* No free space in a bucket, rehash required */

Rehashyartition;
end,,

•

Algorithm 4.5: Deletion of a record with key k

/* Calculate hash functions h I and h2 */Calculate h 1(h), h2tk ,m);
/* Find a bucket with in the partit ion */
p : = HT[hl(h) I · p;

tri : = HT[/d lll) I . m ;

Compute the bucket address A := p + h 2lh ,m); / * Address of the bucket
with the given key value */

Head in the bucke t with address A ;
Search for record with key k in the bu cket ;
if [ourul then { / * Record with key k found in the bucket */

Delete record in the bucket;
if buck et_empty t hen

RehashyartilLOI! ; /* Optional rehashing, possible ofT- line processing */
end,,
I

else
re turn not found;

end;
/* Record with key k is not found in the bucket */

5. IM PLEMENTATION CONSIDERATIONS

Practical imp lementat ion of the proposed algorithm must take into consideration
physica l system constra in ts, such as amou nt of available memory, disk access t ime and
I/O transfe r rate. We will present here some hin ts based on ou r exper ience in database
machine real iza t ion [14].

In a case that fil e has more t he n M buckets, tables HT and KD are fix ed size
111ax

and the binary search is the fastest way to retrieve data from tables. However, we are
dealing with dynam ic fil es , and therefo re the length and content of memory based
tables a re var iable. Accordingly , modified B" - t ree structu re ou tlined in previou s
sect ions IS better so lutio n for differen t nu mber of records .

D.Starcevic, E .Jovanov / Large fil e operat ion using hashing fun ctions 183

Our idea was to extend exist ing information in B+- t ree stru cture algori thm , to
support ba ic operations on both moderate an d large size files at the sa me till e. Yu has
shown that average key length in cur rent da tabases is 9.5 byt , and majori ty has le
then 20 bytes [291 . T herefore, typical addit ional byte of information about number of
da ta bucke t III in a parti tion requires approximately 5% mol' of key space in a table

5.1. HOO 1 G SYSTE I P ARAMETER

Bucket size (C) is dependent of sys tem characteristics, for ins ta nce disk sec ur
size, 1/0 device buffer size, etc. Anyway, larger bucket size means slower random
reading by record, but fas ter random reading by bucket. Usua lly, bucket size 1

between 512B <U1d several tenths of kilobytes .

Maximum number of buckets in a partitio n (ln
m tLr

) depends on number uf buck ts
tha t could be placed in main memory of size MS and proces ed at he same ime. It is
particularly important for sort operat ion. Consequently, it is desirable tha t the
number of bu ckets in a partition of the file sa t isfy:

MS
In s m max = - 1

C

T he second impurtunt const rain t origina tes from initial load or mul tiple paru IOn
rehashing requ uements. T he best approach would be tu execute these operuuous lI1

two phases:

1 Hash all records into .\1 buffers using hashing fun ction It 1(/~)

II Hash records frum each buffer into In data buckets using hashing fu ncuor

1t2 (/~ ,In)

T he maximum
fo llowing relation :

number of partitio ns tM) could be calculated according tu he
n Ull

N' s b -rn · M =b ·- max max

MS
!If s M max = - 1

C

It should be noted in previous formulas tha t one bu cket ta l' size C) is reserved for
input or output data. Finally, having in mind above constrain ts, proposed algori thm
guurantees that performance would nut be sacrificed as long as the number of record
in a file sa t isfies the following conditions :

2

MS - 1
C

The former formula for records of fixed size record) engt lt can b' r ewri t ten as:

C

record _ len /:,rth
•

2
MS - 1
C

E XA.\1 PLE: Let us cons ider tha t system has available main memory of 4MB , and
let the bucket size be 4KB . If record length is 200B, then applying derived formulas we
have that the number of file records N could be as large as 20x 106 records, where total

whe re A. is :

5.2. ACCELER·\TION OF BASIC OPERATIONS

D.Starcevic, E.Jovanov I Large file operations using hashing functions184

A. = n
In

During rehashing load factor of all buckets must be lower then the critical bucket
luad factor a". Let us assume tha t h2 is an ideal hashing function , generating In

differen t valu es. umber of collisio ns of function h 2 can be approximated with Poisson
•

distribu tiun [-11 . Probability that in a partition of n. records, there is !l collisions , is
given by:

b'
- 5: a " 5: 1
b

file size is up to 4GB. At the same time, required hash table size is approximately 1K
entries, or probably less then 30KB for key length of 20B! For the purpose of
illustration only, classical B +-tree allowing 0 (1) single record disk access would
require more then 25MB of main memory.

Above calculation is not optimal from the point of view of total I/O cost. It is
shown that larger bucket is more convenient for sorting and set retrieval operations.
Consequently, optimal bucket size depends on mix of basic file operations in given
applications [9].

For fixed bucket size C and bucket factor b, expected upper number of records per
bucket b' is function of number of records n and buckets In in the partition. To
minimize number of requests for rehashing, we introduce critical bucket load factor a"

as:

Proposed large file organ izat ion is designed to sa tisfy requirements for random
access, range search and key seque ntial access with minimal number of disk accesses.
Runge sea rch . key sequent ia l access as well as rehashing relies on efficient partial
sor t ing of data records. Al thou gh quicksort and heap sort are usually used, we
implemen ted modified radix sort algorithm as described in [14, 15]. The main reasons
fo r applying this algor ithm to accelerate basic operations are:

Gonnet derived a rather com plex formula for the length of the longest probe
sequence in a case of hashing with separate chaining [7]. It was shown that for fixed n

. inc reasing number of bu ckets will decrease the expected longest probe sequence
(expected upper number of records in a bucket). On the other hand, for the fixed load
factor a , increasing In will cause very slow growth of upper number of records in a
bucket with order Otln In / In In m). This dependency should be taken into
consideration to determine cr it ical bucket load factor a" . Critical table load factor must
be chose n to sa t isfy the condition tha t the longest probe sequence cou ld be placed in a
bucket.

•

D.Starcevic, E .Jovanov I Large fil e operat io ns using hash ing fu nctions 185

• extremely fas t gene ration of partial ordering,

• possible hardwariza t ion,

• fast so r t ing for large number of records, du e to OlM algori thm complexity.

Large file organization with applied extended radix sort mechanism is illustra ted
in Figure 4. Let us have n records to be sor ted in main memory. The proposed so rting
algorithm makes use of first k 1 characters (key prefix) of each key to generate set of
classes . All members of a class has equal key prefix on first III characte rs, and classe
are in sorted order in rela tion to corresponding prefixes, Size of table RT depends on
key prefix length (Ill). T able RT contains headers of all classes, while other class
members are chained using pointers placed in chain table CT .

•

I

Tc...

•
I

,
I

RT
!

m- Ipno

\

Disk

I-__t sno

L-..._...J b- I

I----j 0

.r L
(h2(k,m))

m

1

HT I

•• •

~

I P In

0
• ••

,
,

-,

•

hi (k} .
,--.--

~ "'" ­, .,
•

(

_ r-

k

Figu re 4. La rge file organization with applied extended radix sort mechanism

6. CONCLUSION

In this paper we proposed a novel method for physical file organ iza t io n, based on
• • •

order preserving hashing scheme. Having in mind that present inforrnutiun systems
make use of eve r increasing data rue sizes, with Limited amount of main memory, we
evaluated a unique and adaptable method that can be applied for files ranging from
moderate to very large tiles. Moreover, for real- time and mul timedia systems fast
retrieval of s ingle record must be bTtWran teed independently from file size .

•

-

•

uperutio ns .

D.Starcevi c, E.Jovanov / Large file operations using hashing functions186

The m ethud combines an order preserving and an ordinary perfect hashing

function , to ach ieve single disk a ccess retrieval and support other file operations u sing

m odified B'" - t ree structure . In addition to already proposed hashing schemes, our

m ethod provides an effic ien t su ppor t for sorting and sort-based me operations, as

range search and key sequential oper a t ions . The performance is nearly the same as

B +-tree algorithms , and penalty is only 5-10% of key space in tree structure. In

comparison to s tan da r d B'"-tree technique , where single disk access retrieval can be

achieved on ly for limited number of records determined by the amount of available

main m emory , uu r approach guarantees one disk access retrieval almost for any

number of records using the same main memory.

We also in troduced a new rehashing policy to increase the overall system

per fo rmance. It ma kes u se of two level rehashing. Low-level rehashing reorganizes

limited number of records in real time , while high-level rehashing reorganizes both

records and t ree structu re. Rehashing procedure is accelerated u sing an improved
sorting a lgor ithm, based on modified radix- sort.

It is shown that the proposed m ethod is convenient for r eal-time a s well as
•

multimedia svs ems. Ou r cu rrent research covers influence of skewed distribution of-
key values on syste m per fo rmance, and possible hardware su ppor t for basic fil e

REFERE CES

III Buyer.R.. and McCreigh t ,.!:: .• I. . "Organ ization and m ain tenance of large or dered
indices '. Ada l n], 1/3 (19 72) 173-1 9.

I~ I esa r im.F" , a nd uda.G., "A Dynamic Has h Method with Sign a ture", A CM
T ransactions on Database Systems 16/2 June (1 99 1) 309-337.

131 Enbody,R.J ., a nd Du, H . ., "Dynam ic Hashing Schemes", A CAl Computing
Surve\'s~OI2 J u llel 19) 5-113 .

•

14 1 Feller,\\·. All l ntroductton to Probability Theory and Its Applicau ons , J ohn Wiley
& So ns . ~ew York , Y, Vo!' 1, 1968.

1.51 Fugrn.I .. . ' le \'e r~e l t.J. , Pippenger, ., a nd t ru ng.H .1\.. "Extendib le hashing - a

fast access me thod fo r dynamic files", AC.U Trans. Database S vst. 4/3 (1979)
•

315- 34 ·1

llil Fux.E .A.. Heath.L. i ., hen.Q .F., a nd Daoud.Afvl .. "P rac t ical Minimal Per fect

Hash Functions for Large Databases". Conun untcations of the A CJl 35/1
.I a n ua ry t 1992) .5-121.

[71 Gonner .G .H ., "Expected Lengt h o f the Lon ges t Probe Sequence in Hashe Code
.a rclun g", Journal of the AC.U 2 /2 April U98l) 289-304.

181 GO llnet .G .H .. a nd La rso n. l"; "Exte r n ul Hashing with Limited In ternal • torugc",
Journal oft lie A CM 35/1 J nll l1 l1ry (1 988) 1G1 -1 84 .

191 sral'l'c , I. . "Ql1 -ry Evuluuuo n 'I'ech m ques fo r Large Dntah ise ". A M Camp.
Su roevs :25/'2 .I u n« (199:3) 7:1 159.

•

D.Starcevic, E .Jovunov / Large file operat ions usi ng hash ing fun ct ions 187

[10J

[l1J

[12J

1131

[14J

[15]

[16]

[17]

1181

[191

[20]

[211

1221

1231

1241

[25]

Inoue,U., Satoh ,T. , Hayami,H ., Takeda,H ., Nakamura ,T., and Fukuoka ,H.,
"RINDA: A Relational Database Processor with Hardwar e Specialized for
Searching and Sorting", IEEE Micro December (1991) 61-70.

Ishikawa,H., Suzuki,F. , Kozakura,F. , Makinouchi,A., Miyagichima.M; Izu mida ,Y.,
Aoshima,M., and Yamane,Y., "T he Model, Langu age, and Implementa t ion of an
Object-Oriented Multimedia Knowledge Base Management System", A CM
Transactions on Database Systems 18/1 March (1993) 1- 50.

J ohnson.T", and Shasha,D., "T he Performance of Concu rrent B- tree Alzorithms"o ,

A C.\1 Transactions on Database Systems 18/1 March U993) 51-101.

J uvanuv,E. , Aleksic.T ", Stojkov,Z., and St.arcevic.D,, "A So rting Prucessor fur
Microcornpu tel's", Microprocessing and Microprogram m ing 23/1-5 U988 l,

273-278.

.Jovanov.E., Starcevic.D ., Aleksic,T" , and Stojkov,Z., "Hardware Implemen ta tion of
Some DBMS func tions Using SP R", in T wen ty - fifth Hawaii i nternational
Conference on System S ciences , Kau ai, Hawaii , YoU, J anuary (1992) 328-337.

J ovanov,E., "Architectu re of Accelerator for Database Operations", P h .D. Thesis,
School of Electrical Engineering, University of Belgrade, 1993.

Knott,G .D. , "Hashing Functions", Computer J ournal 18/3 August U975)

265-2 7.

Knuth ,D.E., Th e Art of Computer Program m ing, Vol. 3, Sorting and Searching,
Addisun Wesley, Reading Massachu setts, 1973.

Larson.P . A. , "Dyn am ic hashing", BiT 18/2 (1978) 184- 20 1.

Litwin ,W., and Lornet.D; "A new method fur fast da ta searches with keys:', iEEE

SOIL 4/2 March ~ 1 987) 16- 24.

Lomet,D.B., "Bounded index expo nential hashing", A CM T ransactions on
Database Systems 8/1 March (1983) 136-165.

Lomet,D.B., "A Simple Bounded Disorder File Organization wit h Good
Performance", AC.",J Transactions on Database Systems 13/4 December (1988 l

525-551.

l\lacLaren,M.D.. "In ternal Sur t ing by Radix Plus Sift ing", Journal or the AC.\l

13:3 July ~ 1 9 6 6) 404-411 .

t\l iknk ll vIC.C . . Slarc.: vic .D ., "Computer System Archi tecture for Multimedia
Information Systems", in Proc. of the iSMM i n ti. Symposium on Microcomputers

and their Applications, Cairo, Egypt, March 3-5 (1987).

Milenkovic.C; Starcevic.D i, Mu eibabic.B; "PC-based Mult imedia Messaging
Systems", in Proc. of the Thirteenth Symposium on Microprocessing and
Microprogramming Euromicro 87, Portsmouth, Great Britain, September 14- 17

(1987). .

Pearson ,P.K., "Fast Hushing of Variable-Length Text S tr ings", Communications

of the ACM 33/6 June (1990) 677-680.

188 D.Starcevic, E.Jovanov I Large tile operations using hashing functions

[26/ Ramakrishna,M.V., and Larson,P., "File Organization Using Composite Perfect
Hashing", ACM Transactions on Database Systems 14/2 June (1989)
231-263.

127) Salzberg,B., File structures: .4n analytical Approach, Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

[281 Yao,A.C., "Uniform hashing is optimal", Journal of the ACM 32/3 July (1985)
687-693.

1291 YU ,P.S., Chen ,M.S., Heiss,H.U., and Lee,S., "On Workload Characterization of
Relational Database Environments", IEEE Trans. on Software Engineering 18/4
April l1992) 347-355.

-

