Yugoslav Journal of Operations Research
3 (1993), Number 2, 171-188

Large File Operations Support Using
Order Preserving Perfect Hashing Functions

Dusan STARCEVIC

Faculty of Organizational Sciences, University of Belgrade
Jove llica 154, 11000 Belgrade, Yugoslavia

Emil JOVANOV

Mihajlo Pupin Institute
P.O. Box 15, 11000 Belgrade, Yugoslavia

Abstract:! Most computer applications require efficient management of data and fast
excecution of basic file operations over large data volumes. Specifically, in real-time
environment applications are faced with severe constraints for total execution time of
basic operations. This paper introduces method for physical organization of large
database files, based on order preserving hashing scheme. Hashing scheme combines
two functions: an order preserving and an ordinary hashing function. An original set of
algorithms take advantage of implemented physical organization to achieve efficient
basic file operations. Proposed method guarantees retrieval of any record in a single
disk access, and minunum number of disk accesses for range search and key sequential
operations for large dynamic files.

Keywords: Physical file organization, hashing, B-tree algorithms, sorting, data management
systems.

1. INTRODUCTION

Extending possibilities of present computer systems made possible new
application areas like CAD systems, multimedia, real time process control and artificial
intelligence. Basic characteristics of these applications is work with large data files and
extensive data processing. For real time applications, process control and multimedia,

1This work was suppoorted in part by the National Science Foundation of Serbia under
Grant No. 1002B.

172 D.Staréevié, E.Jovanov / Large file operations using hashing functions

every object from the very large set of objects must be retrieved within a certain time
interval [11]. To fulfill this requirement two approaches could be followed: first, record
position is calculated through supporting access data structure which is preferably in
main memory, and second, record position on a disk is a function of primary key value

only.

It 1s well known that B-trees are the most accepted access method [1, 17].
Moreover, they are most often used in contemporary multiuser database systems as
concurrent search structures [12]. These algorithms provide fast access to a record
with a particular key value, and also efficient retrieval of a set of records within a given
range of key values. It is possible because of order preserving access data structure
that is embedded in B-tree algorithms. Unfortunately, associated data structure is too
large to be placed iIn main memory even in a case of moderate size data files.
Therefore, every retrieval can require more than one disk access which is unacceptable

for most multimedia and real-time applications [23, 24].

One of the most frequently used data access techniques suitable for guaranteed
tune retrieval is hashing. Although hashing resolves problem of single key value
retrieval, or reports that such record does not exist, it is inappropriate for set retrieval
operations. In order to guarantee O(1) access time specific hashing techniques should
be applied (16, 17]. There 1s a number of algorithms that support large static file
organization [6]. On the other hand, applications that use very large files with time
dependent number of records require dynamic hashing schemes, as a combination of
hashing techniques with trie structure [3]. Dynamic hashing functions could be divided
according to the use of overflow area. If a hashing function does not cause overflow
records for a given set of keys, it is called perfect. According to the use of main
memory, hashing functions could be further divided to directory based and non-
directory based.

One of the earliest perfect hashing schemes that uses index structure stored in
main memory was proposed by Larson [18]. Also, extendible hashing scheme based on
collapsed trie stored in main memory guarantees O(1) access time [5]. Fagin proposed
use of first & binary digits of the hashed key to find hash table entry. Each index entry
contains the address of a data bucket. In a case of data bucket overflow, the index
could be doubled or a new bucket is allocated. Deficiency of this algorithm is poor space
utilization in the index. In order to limit directory size Lomet introduced multipage
nodes (20, 21]. Data node consist of variable-size bucket, and the size of the bucket is
written 1n index entry. Therefore, the first £ bits of a hashed key point to the index
table entry, and the following w bits point to the selected page in a bucket.

Litwin and Lomet introduced concept of bounded disorder file organization [19).
Bounded disorder files are compromise between B-tree and hash table techniques.
Internal memory based structure is derivative of B*-tree, but parent-of-leaf level
contains addresses of the contiguous set of the fixed number of buckets. Each bucket
in a data node is the same size (one or more pages). When single data bucket
overflows, all buckets in a node must increase number of pages. Gonnet and Larson
studied a problem of external hashing with limited internal memory, based on hash
signatures [8]. In addition to this concept Ramakrishna and Larson proposed and

D.Starcevié¢, E.Jovanov / Large file operations using hashing functions 173

analysed a composite perfect hashing scheme to locate record within the bucket [26].
They make use of trial-and-error method to find perfect hashing function from set
universal class of hashing functions. Cesarini and Soda use the signature technique
and the hash function based on generalized spiral storage to achieve O(1) access while
maintaining a high load factor [2].

Correct choice of hashing function may significantly influence the performance of
the system. It is shown that for open addressing schemes uniform hashing is optimal
[28]. Simple uniform hashing can be achieved by circulary shift and XOR operations on
key fragments. This approach leads to the very efficient hardwired solution [10].
Pearson proposed an elegant implementation of uniform hashing using small random
look—up table and XOR operations on key fragments [25].

In addition to already mentioned original contributions, there is a number of
surveys about physical database design. We suggest Salzberg's practical guide for
implementation of large file systems based on analytical approach [27], and Graefe's

survey [9].

In this paper we propose an original order preserving dynamic hashing algorithm
for large data files. In Section 2 problem statement is given. Section 3 outlines
proposed method for physical organization of large files. Algorithms of basic file
operations are presented in Section 4, and in Section 5 we give some implementation
consideration for the proposed algorithm.

2. PROBLEM STATEMENT

Let us assume that file is collection of N arbitrary fixed size records. Every record
has a unique key k&, and K is set of all keys

K={k,—|15isN}

Key k. is a string of up to L characters:

kf=C“Cig...C“, 1<l< L

Let file be accessed in three manners: random access, range search, and key
sequential access. Random access must be accomplished in close to one disk access for
most applications. To satisfy requirements of real-time multimedia applications we
will consider here only algorithms that make possible random access in exactly one
disk access. Execution time of memory operations compared to disk access time could
be neglected. Generally, range search and key sequential access may require many disk
accesses, i.e., in a case of hashed files up to N accesses. However, in order to satisfv
limitations of real-time systems, we allow only a limited number of disk accesses 1n

implemented algorithms.

We will consider here that single user application has limited amount of available
main memory. Having in mind efficiency of B"-tree algorithms and support for all
three types of accesses, it seems that the best approach would be to organize B -tree
structure in main memory. However for large files 1t cannot be possible to place whole
index structure in main memory, and consequently random access will be performed in

174 D.Starcevic, E.Jovanov / Large file operations using hashing functions

more than one disk access due to access to index structure in secondary storage. Let

M . be maximum number of data bucket pointers that can be placed in available

main memory by BT-tree structure on parent-of-leaf node level. The question is:
"How can we modify BT-tree structure to preserve efficiency of the original B™-tree
algorithm when number of data buckets exceeds M, 7"
Our objectives here were to achieve:
e an algorithm that will guarantee O(1) single record retrieval for files of
different size,
e efficient range search and key sequential access, as well as support for sorting
and sort-based operations,
e fast insert and delete operations.

Algorithms under consideration must take into account upper limit of available
internal memory. Table 1 contains notation used in this paper to provide easy

referencing.

Table 1. Notation used in this paper

. S

Notation Definition
| N number of records in a file d
| MS available main memory size |

k kev value of the currently selected record
{ key length (number of characters)

k, number of characters used in hashing function /i1 |
w width of hashing key fragment

¢ J-th character of key &, |
kd keyv delimiter |
b bucket factor (number of records 1n a bucket)

G bucket size

a load factor |
a initial partition load factor |
a" critical load factor for rehashing '
p starting bucket address l'
m number of buckets in a partition

m, . maximum number of buckets in a partition
n number of records in a partition
M number of table entries J
| S the largest possible table size

D.Staréevi¢, E.Jovanov / Large file operations using hashing functions 176

3. THE PROPOSED METHOD

We propose here the method that makes use of slightly modified B-tree indes
structure based on order preserving hashing function to generate ordered partitions of
records, and perfect hashing function to place records within the partition. The
proposed method avoids bucket overflow, and rather performs rehashing on a different
scale. In this chapter we will describe applied hashing and rehashing algorithms.

3.1. HASHING ALGORITHM

To achieve an efficient file organization we introduce two hashing functions: /i1 as
an order preserving hashing function, and A2 as an ordinary perfect hashing function.
Using A1 over given key set K we generate a number of partially ordered sets of
records, i.e., hash all records of the file into partitions. Value of h1 for a particular key
k, determines the partition, and perfect hashing function A2 generates the address of
data bucket containing record with the given key within that partition. Let each data
bucket contain up to b records, and let it be4'p to M partitions each with capacity of
m, . data buckets. Whole range of keys from set K is then divided into M partitions
using (M-1) comparison values or key delimiters KD. Function A1 must not generate
more then M partitions due to available memory limitations. All records with key
value between adjacent delimiters belong to the same partition, and all partitions
should have nearly equal cardinality. Moreover, partitions are in presorted order
according to their key values. It was shown that proposed "divide and conquer”
technique makes possible an efficient range search and sort based operations [15]. We
will define an order preserving hashing function hl over key k, that generates M
different values in the following way:

Algorithm 3.1: Hashing function h1(k)

1= 0;

while ((2 > KD[i]) && (i < (M-1)) /* Search through key delimiter table */
34+

h1(k) = i /* Hashing function is the partition number */

W

There is a number of possible implementations of hashing function h2. The
hashing function A2 must be a perfect hashing function for the selected key set, so that
no one of m data buckets holds more then b records. For the given number of records
n, and fixed bucket factor b, we are looking for number of data buckets m, where
m <m,__ . such that hashing function h2(k,m) is perfect for each key k. Search for
perfect hashing function is completely different for static and dynamic files. Als?.
problem of finding minimal perfect hashing function that is very important‘ t?or static
files, is of no relevance for dynamic files. In a case of dynamic files, each partition must
have some free space to accommodate following records.

176 D.Starcevié, E.Jovanov / Large file operations using hashing functions

To provide fast access to very large databases in real time environment, h2(k,m)
have to fulfill following conditions: fast calculation, machine independent .algorithm,
and good rantlomization for different key distributions. Simple algorithm of choice is
the folding method. It divides keys into several short fragments and folds them using
the eXclusive—-OR (XOR) operations. Unfortunately, that algorithm does not resolve
anagrams and could produce poor randomizal.on. Therefore, intermediate XOR
results are usually modified by bit shifting [10] ox using table look-up randomization
(25]. Algorithms based on XOR and shift ope~ations are very fast, and could be
efficiently hardwarized. Hashing function h2 based on shift and XOR operations is
described in Algorithm 3.2.

Algorithm 3.2: Hashing function A2(k,m)

h2(k,m) = k(1) /* Take the first key fragment of width w */
for (i=2;i <=1L;i++) {
h2(k.m) <<= 1; /* Rotate left one position */
h2(k,m) = h2(k,m) * k(i); /* XOR \yith the next key fragment */

|
h2(k,m) = h2(k,m) mod m;

Graphical illustration of the proposed large file organization is given in Figure 1.
Hashing function A1(k) makes use of (M-1) axiliary key delimiters to determine
appropriate HT table entry, so Al can be considered as directory based hashing
function. Each table entry contains a pair of parameters (p, m), where p addresses
starfing bucket position of the corresponding disk partition, and m is used by ordinary
perfect hashing function h2(k,m) to determine the data bucket within the partition
which holds the requested record. If hashing table HT is present in main memory,
single record retrieval with disk access O(1) is guaranteed.

Determining key delimiters set KD, is a very sensitive and data dependent
problem. If key distribution is uniform, then whole range of key values can be simply
divided into M subranges. For instance, if M = 2% | then instead of whole key we can
take only the first & bits to create 2* partitions, as suggested by Lomet [20]. However,
in most practical cases key distribution is rarely uniform, so this approach is useless

for original keys. Nevertheless, regular partitioning can be used for hashed keys, but
sacrificed key order.

[t we fix key delimiter values for arbitrary chosen file, the requested nearly equal
partition cardinality will not be fulfilled. Of course, it is possible to obtain set of
optimal key delimiters for a given file in advance using statistical analysis, but in that
case it 1s a rather static file organization. In practice, due to variable number of records
in a file it will be necessary to change number of partitions as well as partition key
delimiters from time to time. So, we have to provide an efficient way to dynamically
adjust length and content of memory based key delimiters set KD. Having in mind
that this table can be very large, captured comparison values must be given in sorted
order to provide fast search within hashing function h1l(k). Delete and insert

D.Starcevic, E.Jovanov / Large file operations using hashing functions 177

operations over key delimiters table must be very fast as well, so some kind of B-tree
structure is preferable, as it is noted earlier.

Disk ==
=

L

— | sno f
| b-1

pno m-1]

KD HT

& 9

| - &

Sy izt
<l % o A et
Ky | e

| I ok I

Figure 1. Large file organization using hashing functions A1(k) and hA2(k,m)

Tables KD and HT could be combined to generate a table with entries comprised
of three parameters (kd, p, in). These parameters can be considered as an aggregate
primary key of disk partition. It should be noted that the normal way of operation of
BT-tree is supported as long as the number of data buckets is less then M, . We can
start from this point of view to find out the requested solution. For the sake of
sunplicity, BT-tree of order 2 used as a primary index is illustrated in Figure 2.
Beware that only leaf level contains the data buckets. For a single disk access retrieval,
the whole index structure excluding leaf level must be in main memory. It is possible
as long as the number of data bucket allows that complete B*-tree index structure
could be placed in allocated main memory, so that address pointer points to the bucket

of up to b records on secondary storage.

150

Figure 2. Primary BT -tree index structure

178 D.Staréevié, E.Jovanov / Large file operations using hashing functions

Problem under consideration is physical organization of large files, where the
number of data buckets exceeds M __ . We can resolve this problem by "brutal force",
for instance by increasing the bucket size b. However, bucket size is not arbitrary
chosen, and depends on physical disk characteristics. Practically, size of disk buffer is
already selected for optimal B*-tree operation. Therefore, in proposed algorithm we
slightly modify the original B*—tree structure, so that each pointer p can address
contiguous set of m data buckets. Number of data buckets in one partition is written
together with a pointer to the partition as a pair (p, m). In order to retain single disk
access retrieval and minimize main memory usage as well as data bucket transfer
time, we introduce now the second hashing function ~22. Function A2(k,m) is a perfect
hashing function that generates an integer in a range [0, m-1], which determines the -
data bucket containing the record with a given key value k.

Required modification of BT —tree file organization supporting variable number of
buckets per partition is illustrated in Figure 3.

Key m p

S ‘ 304- BI \ parent-of-leaf level

main nwmon’
disk | |' data buckets

T e T TR

Figure 3. Fragment of a parent-of-leaf and leaf level of the modified BT -tree

3.2. REHASHING ALGORITHM

We already mentioned that hashing function A2(kyn) is a perfect hashing
function. It is conditionally true, because the proposed method uses overflow
avoldance paradigm. The algorithm guarantees that everv new record does not make
the bucket overflow, but the data bucket must be checked for the number of records
after writing. If the data bucket became full, rehashing of corresponding partition is
NECeSsSary.

Rehashing has to reconstruct the partitions and their corresponding data buckets,
to make free space in data buckets. Beware that this procedure should not be time
consuming, because of its crucial influence on system performance. In real time
systems the upper ume limit for this procedure is usually defined. The other
unportant factor 1s frequency of rehashing, so the trade-off between rehashing
complexity and frequency must be found.

Rehashing is necessary when some bucket accepts b-th record (becomes full).
Proposed rehashing method is described in Algorithm 3.3. We designed two level
rehashing to satisfy real-time system constraints. Low level rehashing performs single

partition rehashing while high-level rehashing reorganize multiple partitions and
index structure (tables HT and KD). High-level rehashing is required when partitions

D.Starcevi¢, E.Jovanov / Large file operations using hashing functions 179

become extremely skewed or too large. This operation can be very time consuming,
and it 1s desirable to perform it off-line.

Algorithm 3.3: Rehashing

/* Called when some bucket becomes full */

if (M <M, _)then /* Split partition as normal mode of B*~tree operation */
Insert new key delimiter in KD[i]; /* Existing partition is split in two key ranges */
Single_partition_rehashing, /* Rehash i-th partition */
Single partition_rehashing; /* Rehash (i+1)-th partition */
else /* Index structure full */
if((m/a')<m,_ _)then /*Expanded partition could be placed in main memory */
Single partition rehashing; /* Rehash existing partition */
else

Merge_and_rehash_partitions; /* Reorganize some partitions and index structure */
end;
end;

General rehashing policy is to expand index structure (number of partitions) as
long as it is possible to place index structure in available memory. When number of
partitions reach M , partitions are enlarged by increasing number of data buckets.
Finally, when some partition get too many data buckets to be placed in main memory,
we have to reorganize it together with adjacent partitions to equalize partition load
factor. It will result in a change of key delimiters KD as well.

Single partition rehashing, presented in Algorithm 3.4, is an on-line procedure,
which enables hashing function h2(k,m) to operate without overflow buckets. Low
level rehashing starts with reading all data buckets from the requested partition into
main memory. We have to determine new number of data buckets (m) in the rehashed
partition, so that load factor a of the partition is close to initial (a < «'). Initial load
factor ¢, is determined to allow a number of insertions without rehashing. In order to
determine distribution of hashed keys, we use rehash table (RT) to collect histogram
of hashed values. Number of RT table entries must be large enough (compared with
m_) to provide uniform distribution. Having in mind that value of 22 must be in a
range [0, m—1] table RT is split into m groups. Every group is associated with the
corresponding data bucket. Consequently, any bucket loading factor could be
calculated as sum of group counters divided by bucket size b. If maximum calculated
bucket load factor is greater than critical load factor a", we have to further expand
partition size to decrease individual bucket load factors.

Critical load factor «' is determined as space/time trade-off, and depends on

particular application and system characteristics. Higher value of « (~]) maximize
storage utilization, but on the other hand increase probability of rehashing, which
leads to the decreased system throughput. When number of data buckets in rehashed
partition is determined, we allocate appropriate contiguous disk area. After that, we

180 D.Staréevié, E.Jovanov / Large file operations using hashing functions

collect records from the partition with the same hash value A2(k,m) and write them,
bucket by bucket, to the disk.

Algorithm 3.4: Single partition rehashing (Low—level rehashing)

mt = size(RT); /* Calculate temporary number of buckets as RT table length */
n'= 0; /* Initialize partition record counter */
do { /* Generate histogram of hash values */
get_next_record, /* Get next record within the partition */
n++; /* Update partition record counter */
Calculate h2(k,mt);
RT[h2(k,mt)] + +; /* Increment rehash table counter */
} while ! end_of partition;
m:=n/0b-a); /* The lowest expected number of buckets */
do { /* Searching for optimal partition size */
m ++; /* Increment number of buckets in the partition */
Split rehash table RT entries into m groups; /* All records with keys
that belong to a group, are to be placed in one bucket */
! while (max(a) > a"'); /* Partition grows while any bucket load factor is critical */

/* Bucket load factor is sum of corresponding counters in rehash table group */
Allocate m free disk buckets for rehashed partition;
Insert all records from old partition into the new disk partition, according to h2(k,m).

In a presence of data skew, nonuniform key value distribution, number of buckets
for some partitions can be prohibitively large. As a consequence, the performance of
the key sequential and key range access becomes very poor. Partitions with large
number of records will require less frequent but more complex rehashing, and the time
for rehashing will increase. This problem is resolved using high level rehashing.

High level rehashing is requested in three cases. First, it is necessary when initial
number of data buckets is larger then allowed number of data buckets m_ _ , as given
in previous analysis. Second, high-level rehashing could be required during execution
of single partition rehashing, if number of data buckets exceeds m__.. Finally, it is
advisable to perform high level rehashing off-line from time to time to optimize bucket
distribution within partitions. As a consequence, better balancing of data buckets will

decrease cost of on-line high-level rehashing in real-time systems, and increase
system performance,

The first step of high-level rehashing determines ¢ adjacent partitions, so that
average number of data buckets per partition is less then m__ . It is very fast
operation, executed simply by reading parameter m from g adjacent entries of HT
table. The next step merges records from adjacent partitions, and modify
corresponding key delimiters from KD table. Records that should be moved to another
partition are obtained applying fast partial sorting based on modified radix sort [13,
22]. The final step applies already presented single partition rehashing to generate g
new partitions, Initial file loading can be considered as a high level rehashing problem.

D.Starcevic, E.Jovanov / Large file operations using hashing functions R {11

4. BASIC OPERATIONS

Retrievals are the basic file operations. Presented here are: Retrieval of a single
record, Set retrieval, Set retrieval in a sorted order, Insertion and Deletion. Afore
mentioned Algorithm 3.4 guarantees single disk access retrieval for any requested
record, provided that HT and KD data structures reside in main memory. Elementary
sort and select operations used in a basic algorithms are described in [13,15].

Algorithm 4.1: Retrieval of a single record with key &

Calculate h1(k), h2(k,m); /* Calculate hash functions 21 and h2 */
p =HT[hl(k)].p; /* Pointer to the disk partition */
m = HT[h1(R)].m; /* Number of buckets in the disk partition */
Compute the bucket address A := p + h2(k,m); /* Bucket logical address */
Read in the bucket with address A;

Search bucket for a record with a given key & ; /* if not found there is no record

— —
— —

~ with key & */

e — ——
—————

Algorithm 4.2: Retrieval of a set of records with key range [k1, k2]

Calculate starting and ending partition given by A1(k1) and A1(k2);
From starting partition i = A1(k1) select all records with corresponding key £k
satisfying condition & > k1.
While partition number i < h2(k,m) /* partitions are already in sorted order! */
Select all records from partition i

From ending partition { = h1(k2) select all records with corresponding key £ satisfying
condition & < k2.

e _— = ——
— ——

|
Algorithm 4.3: Retrieval of a set of records with key range [£1, £2] in sorted order

Calculate starting and ending partition given by A1(k1) and h1(k2);

From starting partition i = h1(k1) sort all records with corresponding key % satisfying
condition & = k1

/* Suggested sort algorithm implements select & sort operation */

While partition number i < h2(k,m) /* partitions are already in sorted order! */

Sort_partition; /* Sort records from partition 1 */

From ending partition i = h1(k2) sort all records with corresponding key k satistying

condition k& < k2

-

I ——

182 D.Starcevié, E.Jovanov / Large file operations using hashing functions

Algorithm 4.4: Insertion of a record with key &

Calculate Al(k), h2(k,m); /* Calculate hash functions A1 and 22 */
/* Find a bucket within the partition */

p:=HT[h1(R)].p;

m := HT[h1(k)]. m;

Compute the bucket address A := p + h2(k,m); /* Bucket logical address */

Insert record in the bucket;

if bucket full then /* No free space in a bucket, rehash required */
Rehash _partition;

end;

Algorithm 4.5: Deletion of a record with key &

Calculate h1(k), h2(k,m); /* Calculate hash functions 21 and 22 */
/* Find a bucket within the partition */
p:= HT[hl(k)]. p;
m .= HT| h1(k)|. m;
Compute the bucket address A := p + h2(k,m); /* Address of the bucket
with the given key value */
Read in the bucket with address A;
Search for record with key % in the bucket;
if found then | /* Record with key £ found in the bucket */
Delete record in the bucket;
if bucket_empty then

Rehash_partition; /* Optional rehashing, possible off-line processing */
end;
|
else
return not_found; /* Record with key £ 1s not found in the bucket */
end;

—
— ————

5. IMPLEMENTATION CONSIDERATIONS

Practical implementation of the proposed algorithm must take into consideration
physical system constraints, such as amount of available memory, disk access time and
[/0 transfer rate. We will present here some hints based on our experience in database
machine realization [14].

In a case that file has more then M, buckets, tables HT and KD are fixed size
and the binary search is the fastest way to retrieve data from tables. However, we are
dealing with dynamic files, and therefore the length and content of memory based
tables are variable. Accordingly, modified B*-tree structure outlined in previous
sections 1s better solution for different number of records.

D.Starcevi¢, E.Jovanov / Large file operations using hashing functions 183

Our idea was to extend existing information in B*-tree structure algorithm, to
support basic operations on both moderate and large size files at the same time. Yu has
shown that average key length in current databases is 9.5 bytes, and majority has less
then 20 bytes [29]. Therefore, typical additional byte of information about number of
data buckets /n In a partition requires approximately 5% more of key space in a table.

5.1. CHOOSING SYSTEM PARAMETERS

Bucket size (C) 1s dependent of system characteristics, for instance disk sector
size, I/O device buffer size, etc. Anyway, larger bucket size means slower random
reading by record, but faster random reading by bucket. Usually, bucket size is
between 512B and several tenths of kilobytes.

Maximum number of buckets in a partition (m,) depends on number of buckets
that could be placed in main memory of size MS and processed at the same tune. It 1s
particularly important for sort operation. Consequently, it is desirable that the
number of buckets in a partition of the file satisfy:

MS

m < m =|—-1
= max
- C

The second important constraint originates from initial load or multiple parttion
rehashing requirements. The best approach would be to execute these operations in
two phases:

I Hash all records into M buffers using hashing function A 1(%)

II Hash records from each buffer into m data buckets using hashing function

h2(k,m) |

The maximum number of partitions (M,) could be calculated according to the
following relation:

MS

M S My =| "1

- S

It should be noted in previous formulas that one bucket (of size C) is reserved for
input or output data. Finally, having in mind above constraints, proposed algorithin
guarantees that performance would not be sacrificed as long as the number of records

in a file satisfies the following conditions:

2
MS
N< b myay Mpax = b‘(-(:—-1”

The former formula for records of fixed size record_length can be rewritten as:

, 2
N < h__ g — [ﬁ_lJ]
| record _length | C

EXAMPLE: Let us consider that system has available main memory of 4MB, and

let the bucket size be 4KB. If record length is 200B, then applying derived formulas we
have that the number of file records N could be as large as 20x10° records, where total

184 D .Starcevié, E.Jovanov / Large file operations using hashing functions

file size is up to 4GB. At the same time, required hash table size is approximately 1K
entries, or probably less then 30KB for key length of 20B! For the purpose of
illustration only, classical B*—-tree allowing O(1) single record disk access would

require more then 25MB of main memory.

Above calculation is not optimal from the point of view of total I/O cost. It 1s
shown that larger bucket is more convenient for sorting and set retrieval operations.
Consequently, optimal bucket size depends on mix of basic file operations In given
applications [9].

For fixed bucket size C and bucket factor b, expected upper number of records per

bucket &' i1s function of number of records n and buckets m in the partition. To
minimize number of requests for rehashing, we introduce critical bucket load factor "

as.
br
— <a"<1
b

During rehashing load factor of all buckets must be lower then the critical bucket
load factor a". Let us assume that 22 1s an ideal hashing function, generating m
different values. Number of collisions of function A2 can be approximated with Poisson
distribution [4]. Probability that in a partition of n records, there is % collisions, is

aiven by:

where A 1s:

7l
1=—
I

Gonnet derived a rather complex formula for the length of the longest probe
sequence 1n a case of hashing with separate chaining [7]. It was shown that for fixed n
“increasing number of buckets will decrease the expected longest probe sequence
(expected upper number of records in a bucket). On the other hand, for the fixed load
factor a , increasing m will cause very slow growth of upper number of records in a
bucket with order O(n/m/Inln/m). This dependency should be taken into
consideration to determine critical bucket load factor a". Critical table load factor must
be chosen to satisfy the condition that the longest probe sequence could be placed in a
bucket.

5.2. ACCELERATION OF BASIC OPERATIONS

Proposed large file organization 1s designed to satisfy requirements for random
access, range search and key sequential access with minimal number of disk accesses.
Range search, key sequential access as well as rehashing relies on efficient partial
sorting of data records. Although quicksort and heap sort are usually used, we
implemented modified radix sort algorithm as described in [14, 15]. The main reasons
for applying this algorithm to accelerate basic operations are:

D.Staré¢evi¢, E.Jovanov / Large file operations using hashing functions 185

e extremely fast generation of partial ordering,

e possible hardwarization,
e fast sorting for large number of records, due to O(N) algorithm complexity.

Large file organization with applied extended radix sort mechanism is illustrated
in Figure 4. Let us have n records to be sorted in main memory. The proposed sorting
algorithm makes use of first k1 characters (key prefix) of each key to generate set of
classes. All members of a class has equal key prefix on first k1 characters, and classes
are in sorted order in relation to corresponding prefixes. Size of table RT depends on
key prefix length (k1). Table RT contains headers of all classes, while other class
members are chained using pointers placed in chain table CT.

RT CT

it

Figure 4. Large file organization with applied extended radix sort mechanism

6. CONCLUSION

In this paper we proposed a novel method for physical file organization, based on
order preserving hashing scheme. Having in mind that present information systems
make use of ever increasing data file sizes, with limited amount of main memory, we
evaluated a unique and adaptable method that can be applied for files ranging from
moderate to very large files. Moreover, for real-time and multimedia systems fast

retrieval of single record must be guaranteed independently from file size.

186 D.Starcevié, E.Jovanov / Large file operations using hashing functions

The method combines an order preserving and an ordinary perfect hashing
function, to achieve single disk access retrieval and support other file operations using
modified B*-tree structure. In addition to already proposed hashing schemes, our
method provides an efficient support for sorting and sort-based file operations, as
range search and key sequential operations. The performance is nearly the same as
B*-tree algorithms, and penalty is only 5-10% of key space in tree structure. In
comparison to standard B™-tree technique, where single disk access retrieval can be
achieved only for limited number of records determined by the amount of available
main memory, our approach guarantees one disk access retrieval almost for any

number of records using the same main memory.

We also introduced a new rehashing policy to increase the overall system
performance. It makes use of two level rehashing. Low-level rehashing reorganizes
limited number of records in real time, while high-level rehashing reorganizes both
records and tree structure. Rehashing procedure is accelerated using an improved
sorting algorithm, based on modified radix-sort.

It 1s shown that the proposed method is convenient for real-time as well as
multimedia svstems. Our current research covers influence of skewed distribution of
key values on system performance, and possible hardware support for basic file

operations.

REFERENCES

1] Bayer R.. and McCreight,E. M., "Organization and maintenance of large ordered
indices”, Acta Inf. 1/3 (1972) 173-189.

12] CesariniF., and Soda,G., "A Dynamic Hash Method with Signature", ACM
T'ransactions on Database Systems 16/2 June (1991) 309-337.

(3] Enbody,R.J., and DuH.C., "Dynamic Hashing Schemes", ACM Computing
Surveys 20/2 June (1988) 85-113.

14| FellerW., An Introduction to Probability Theory and Its Applications, John Wiley
& Sons, New York, NY, Vol. 1, 1968,

15| Fagin R.. Nievergelt,J., Pippenger,N., and Strong,H.R., "Extendible hashing - a
tast access method for dynamic files", ACM Trans. Database Syst. 4/3 (1979)
315-344.

6] Fox,E.A., Heath LS., Chen Q.F., and Daoud,A.M., "Practical Minimal Perfect
Hash Functions for Large Databases', Communications of the ACM 35/1
January (1992) 95-121,

(7] Gonnet,G.H., "Expected Length of the Longest Probe Sequence in Hashe Code
Searching’, Journal of the ACM 28/2 April (1981) 289-304.

(8] Gonnet,G.H., and Larson,P., "External Hashing with Limited Internal Storage",
Journal of the ACM 35/1 January (1988) 161-184.

9] Graefe,G., "Query Evaluation Techniques for Large Databases", ACM Comp.
Surveys 25/2 June (1993) 73-159.

D.Starcevi¢, E.Jovanov / Large file operations using hashing functions 187

(10] Inoue,U., Satoh,T., HayamiH., Takeda,H., Nakamura,T., and FukuokaH.,
"RINDA: A Relational Database Processor with Hardware Specialized for
Searching and Sorting”, IEEE Micro December (1991) 61-70.

[11] Ishikawa,H., SuzukiF., Kozakura F., Makinouchi,A., Miyagichima,M., Izumida,Y.,
Aoshima,M., and Yamane,Y., "The Model, Language, and Implementation of an
Object-Oriented Multimedia Knowledge Base Management System', ACM
Transactions on Database Systems 18/1 March (1993) 1-50.

(12] Johnson,T., and Shasha,D., "The Performance of Concurrent B-tree Algorithms",
ACM Transactions on Database Systems 18/1 March (1993) 51-101.

[13] Jovanov,E., Aleksié,T., Stojkov,Z., and Starcevi¢,D., "A Sorting Processor for
Microcomputers"’, Microprocessing and Microprogramming 23/1-5 (1988),
273-2178.

[14] Jovanov,E., Starcevic¢,D., Aleksié¢,T., and Stojkov,Z., "Hardware Implementation of
Some DBMS functions Using SPR", in Twenty-fifth Hawait International
Conference on System Sciences, Kauai, Hawalii, Vol.1, January (1992) 328-337.

(15] Jovanov,E., "Architecture of Accelerator for Database Operations”, Ph.D. Thesis,
School of Electrical Engineering, University of Belgrade, 1993.

[16] Knott,G.D., "Hashing Functions", Computer Journal 18/3 August (1975)
265-287.

(17] Knuth,D.E., The Art of Computer Programiming, Vol. 3, Sorting and Searching,
Addison Wesley, Reading Massachusetts, 1973.

18] Larson,P. A., "Dynamic hashing", BIT 18/2 (1978) 184-201.

19] Litwin,W., and Lomet,D., "A new method for fast data searches with kevs', IELE
Soft. 4/2 March (1987) 16-24.

[20] Lomet,D.B., "Bounded index exponential hashing", ACM Transactions on
Database Systems 8/1 March (1983) 136-165.

(21] Lomet,D.B., "A Simple Bounded Disorder File Organization with Good
Performance". ACM Transactions on Database Systems 13/4 December (1988)
025-95901.

122] MacLaren,M.D., "Internal Sorting by Radix Plus Sifting", Journal of the ACM
13/3 July (1966) 404-411.

(23] Milenkovié.C., Staréevié.D., "Computer System Architecture for Multimedia
Information Systems", in Proc. of the ISMM Intl. Sympostum on Microcomputers
and their Applications, Cairo, Egypt, March 3-5 (1987).

[24] Milenkovié,c, Starcevié,D., Mucéibabié,B., "PC-based Multimedia Messaging
Systems", in Proc. of the Thirteenth Symposium on Microprocessing and
Microprogramming Euromicro 87, Portsmouth, Great Britain, September 14-17
(1987).

[25] Pearson P.K., "Fast Hashing of Variable-Length Text Strings", Communications
of the ACM 33/6 June (1990) 677-680.

188 D.Starcevié¢, E.Jovanov / Large file operations using hashing functions

|26] Ramakrishna,M.V., and Larson,P., "File Organization Using Composite Perfect
Hashing", ACM Transactions on Database Systems 14/2 dJune (1989)

231-263.

|27] Salzberg,B., File structures: An analytical Approach, Prentice Hall, Englewood
Cliffs, New Jersey, 1988.

(28] Yao,A.C., "Uniform hashing is optimal", Journal of the ACM 32/3 July (1985)
687-693.

29] Yu,P.S., Chen,M.S., Heiss,H.U., and Lee,S., "On Workload Characterization of
Relational Database Environments", IEEE Trans. on Software Engineering 18/4

April (1992) 347-355.

