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Abstract: This paper gives a linear algorithm (w.r.t. the number of vertices) for a
construction of optimal digital convex 2k—gons, that is, those digital convex polygons,
which have the smallest possible diameter with a given even number of edges. The
construction for k& even is based on the efficient construction of Farey sequence, while
the construction for & odd uses, in addition, two families of auxiliary 6—gons.
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1. INTRODUCTION

Recently there have been a lot of papers which deal with some optimization
problems on digital shapes. One of such problems will be studied here. It is related to
" convexity, one of the basic computational geometry properties ([11]).

A digital convex polygon (shortly: d.c. polygon) is a polygon, all the vertices of
which are points on the integer grid and all the interior angles of which are strictly less
than « radians. The diameter of a digital convex polygon is the minimal edge size of the
enscribed digital square with the edges parallel to the coordinate axes.

This paper gives a linear algorithm for the construction of optimal d.c. 2k-gons
(keN), in the sense that these polygons have the smallest possible diameter with
respect to the given even number of vertices.
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A similar problem : What is the minimal possible area of a d.c. polygon with the
given even number of vertices — has been studied in [13]. A method for the

construction of such a d.c. polygon has been given in the same paper.

Some of the other optimization problems related to convexity on the integer grid
have been considered in a number of recent papers (see, for example, [4], (5], [6], [12]).

Motivation for considering such questions comes from several sources, 1n
particular from integer programming and computer graphics.

The relationship between the number of edges and the diameter of optimal d.c.
polygons was studied in papers [14], [2], [3]. In particular, an effective lower bound for
the diameter of a d.c. polygon has been introduced in the paper [3]. That lower bound
" 1s the key concept for the construction of optimal d.c. polygons and it is called "greedy
lower bound", since it is derived by a variant of greedy approach, known from theory of
matroids and greedoids ([15], [9]).

Time complexity of the algorithm proposed here is linear w.r.t. the number of
vertices of the 2k-gon, which is being constructed. Linearity is reached by using an
etficient construction ([1]) of the Farey sequence as an auxiliary tool, as well as the

observations from Section 3.

The input for the algorithm is an even number 2% of vertices. If the number % is
even, then the algorithm for construction of optimal d.c. 2k-gons is a generalization of
the algorithm proposed in [2] for the construction of those optimal d.c. polygons, which
are members of a special sequence P(¢), t = 1, 2, .... Two families of auxiliary 6-gons
([3]) are used i1n the algorithm proposed here in order to cover the cases when the
number % is odd. The algorithm also incorporates an efficient determination of the
parameter of the Farey sequence.

2. PRELIMINARIES

T'he diameter of a d.c. polygon @ is equal to
max{max{‘x, - .rjl,|y‘- - le}' where((x‘.,y‘. ),(xj.,yj)) 1s a pair of vertices of Q}.

Note that the diameter is taken in the sense of the maximum distance.

Lety, .. andx _ respectively denote the minimal y-coordinate and the maximal
x-coordinate of the considered d.c. polygon Q. Generally, the SE-arc (south—-east arc)

of @ 1s the sequence of consecutive edges Vi, Vi, 1), 1 <i <k-1, where:

® V,denotes a vertex (x;,y,) of @

’ X <. < X, = X ax Ymin = yl < e < Y

In particular, if the polygon @ has a lower horizontal edge (V. V) (Vg = (x5, 9,),
Vi = (x,), x5 < x, ), then this edge is additionally considered to be the first edge of
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the SE-arc. The NE-arc, the NW-arc and the SW-arc of a d.c. polygon are defined in
the analogous way !.

Given an edge e = [ (x,y,), (x5, ¥5) ] of a d.c. polygon, the edge slope of e denotes
the fraction:

X1 —X i
1 2' ifeENE_OrSW_arc; Y172 ifeeSE—orNW—arc,

- ¥l %, — Xo

while bd-length of the edge e denotes the sum |x, — x,| + v, —¥o| (length in the sense
of the block distance metrics).

A digital square DS(p, q), where p and q are relatively prime natural numbers, is
a d.c. 4-gon with the property that each arc has exactly one edge with the edge-slope
q/p.

If the corresponding arcs of the two d.c. polygons @, and @, have not common
edge slopes, then there exists a uniquely determined third d.c. polygon @, called the
sum (Minkowskt sum) of @, and Q, (for more details see [10] or [7]). Each arc of the
polygon @, includes all the edges of the corresponding arcs of @, and @,, sorted so that
the convexity condition is preserved. If @4 is the sum of @, and @,, then @, is the
difference of @, and @,. The diameter of @, is equal to the sum of the diameters of @,
and Q,.

Farey sequence of order ¢, (shortly F(¢), [8]), is a strictly increasing sequence of
fractions, which includes all the fractions of the form &6/a, where the integers a and b
are relatively prime and 1 € b < a < ¢£. It is convenient for our purposes to add the
fraction 0/ 1 to be the first member of F(¢), for each ¢. Thus F(5) looks as follows:

0/1, 1/5, 1/4, 1/3, 2/5, 1/2, 3/95, 2/3, 3/4, 4/5.

3. A CONSTRUCTION OF OPTIMAL DIGITAL CONVEX 2K-GONS

The diameter of a d.c. polvgon @ cannot be smaller than one fourth of the
perimeter of a minimal rectangle MR(Q) with the edges parallel to the coordinate axes,
in which the polygon @ can be included. On the other hand, this perimeter is equal to

the sum S of all 2k summands of the form p + g, where g/p 1s the edge slope of an
edge e of @ (Figure 1).

In order to minimize the diameter of @, the summands p + ¢ of the sum S should
be as small as possible. Such a choice of summands is naturally performed by the
following "greedy" algorithm: choose as many summands equal to 1 as possible, then
proceed with summands equal to-2 and so on. Note that each one of the edge slopes
q/p may be used at most four times (once in each one of the four arcs), due to
convexity of polygon Q. It is also obvious that the numbers p and g should be relatively

prime with all the edge-slopes g/ p of an optimal d.c. polygon.

e ——

1f the polygon @ has a right vertical edge, then it is considered to be the first edge of the NE-arc,

and so on.
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Figure 1. Orthogonal projection of edges of @ exactly cover the perimeter of the rectangle MR(Q)

When constructing optimal d.c. 2k-gons, we can distinguish seven cases.

Case 1. k is even.

An optimal d.c. 2k-gon can be constructed so that it has four equal arcs, 1.e., so
that all its arcs have the same number of edges with the same corresponding edge
slopes. The edge slopes g /p within an arc ave chiosen so that the numbers p and g are
relatively prime and that the sums p + g are as small as possible.

An outstanding subcase for & even is the family of optimal d.c. 2k-gons denoted by
P(t), fort = 1, 2, .... The edge slopes of each arc of P(f) are all different fractions q/p
with relatively prime ¢ and p, which satisfy that 2 <p + g <{. In addition, the edge
slope of the first edge in each arc of P(¢) i1s equal to 0/ 1.

If n(t) and m(f) respectively denote the number of edges and the diameter of the
polygon P(t), then it is easy to show that

pi)ads Sole) mid)s 'S R-olk),
s=1 k=1

where ¢(s) denotes the number of integers between 0 and s which are relatively prime
with s (the Euler function from number theory; e.g. ¢(1) = ¢(2) = 1, #(3) =¢(4) = 2,
¢(5) = 4).

Note that P(f) is the unique d.c. n(f)-gon, which has the diameter less or equal to
m(t). Namely, the only way to construct another d.c. n(f)-gon is to replace an edge
with edge slope not greater than ¢ by an edge with edge slope greater than ¢. Such a

replacement necessarily increases the perimeter of P({) by at least 1, which implies
that the diameter is also augmented by at least[1/4] = 1.

In the remaining part of this section, let ¢ denote the natural number such that
n(t=1) < 2k < n(t). '

If & is even, than an optimal d.c. 2k-gon with four equal arcs is in fact equal to the

sum of the polygon P(f-1) and some arbitrarily chosen ( 2k - n((-1) )/ 4 digital squares
of the form DS(p, q), wherep + q = {.

Case 2. kRisodd, t = 2u + 1 for some ueN.

An optimal d.c. 2k-gon P can be obtained from an optimal d.c. (2k - 2)-gon @ with
four equal ares, which is constructed as in Case 1., with the additional requirement
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that the edge slope «/(u + 1) is not used within @ (equivalently, the digital square
DS(u+1, «) 1s not used as a summand of Q).

Namely, the minimal perimeter of a rectangle including some d.c. 2k-gon is equal
to (perimeter of @ + 2-¢). This implies that the diameter of P cannot be smaller than
the sum of diameter of  and the summand
PR S P Y

—(=lu+—|(=u+l

1 2

It follows that the addition of two edge slopes « /(1 + 1), which are inserted into
two opposite arcs of @, 1s an optimal choice. Namely, such an addition augments the
diameter of @ by exactly « + 1, which is the minimal possible increase.

Case 3. kis odd, 2k = n(t-1) + 2, t = 2u for some ueN\{1}.

The greedy argument gives that the diameter of a d.c. (n(t=1) + 2) -=gon cannot
be smaller than

%.(4-m(t—1)+2-t) =[-m(t--l)+u.|.

We claim that this lower bound cannot be reached. Otherwise all the possible
edges with bd-length not greater than £ — 1 must be used, together with two edges of
bd-length 2u. If ¢ + p = 2u, then max{p,q} 2u + 1 (Figure 1); the edge slope w/ u
cannot be used for u > 1, since the edge slope 1/1 has been already used. This implies
that the addition of two edges with bd-length ¢ to the polygon P(f-1) augments its
diameter m(t-1) at least by « + 1 2.

On the other hand, the insertion of two edges with edge slope «/ (« + 1) into two
opposite arcs of P({-1) produces a d.c. 2k-gon with the diameter m(f-1) + « + 1.

Case 4. kisodd, 2k = n(t) -2, t = 2u for some weN\{1}.

This case is analogous to Case 3; we shall mention here only the differences
between the two cases:

The lower bound fbr diameter is equal to
1 5

Z-(él-m(t)—-:?.*r) =[m(:)-—u].

The polygon P(t-1) should be replaced by an optimal d.c. (n(f) - 4 ) -gon with four
equal arcs.

Two families of auxiliary d.c. 6-gons A, (w) and Az(w); w=2,8, ..., are used for
Cases 5 through 7: (Figure 2).

Case 5. k is odd, 2ke(n(t-1) + 6, n(t)-6], t = 4w + 2 for some welV.

An optimal d.c. 2k-gon can be represented as the sum of an optimal d.c.
(2k - 6)-gon @, constructed as in Case 1. and the d.c. 6-gon A,(w), where @ has not

e o L — e —— —

20n the contrary, observe that the addition of four such edges (with the same edge slope) can always

increase the diameter by exactly 2u.
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common edge slopes with’ A,(w). Namely, the diameter of a d.c. 2k-gon cannot be
smaller than

-
p—

741...(4.m(t-1)+(2k—6—n(t—1))-t)+6-t = diameter of @ + (6w + 3) .

The second summand is equal to tne diamete~ of A, (w).

Note that the (2k-6)-gon @ cannot have more than n(f) - 12 edges, since it
cannot use the edges of those three digital squares D3(p, q), such that the edge slopes
q/p are used within A,(w). This construction therefore cannot be applied for
2k = n(t) - 2. |

2w—3 2w+3 2w+3 2w+1 4w—1
‘ 1
2w —1 ‘210—-1
2w—1
2w—1 2w—1 2w—1
2w+3 2w+3 2w—3 ow—1 2w+l 2w—11

Figure 2. The families of auxiliary 6-gons

Case 6. kis odd, 2ke[n(t-1) + 6, n(¢)-10], t = 4w for some welN.

This case can be solved analogously to the Case 5., by replacing the 6—gon A, (w)
with the 6-gon A,(w), the diameter of which is equal to 6w. Note, however, that the
6-gon A,(w) uses four different edge-slopes, which implies that the (2k - 6)-gon @
cannot have more than n(¢) — 16 edges. This requires a separate treatment of the last
case:

Case 7. kisodd, 2k =n(t) -6, ¢t=4w forsomewel.

An optimal d.c. (n(f) —6)—-gon P can be represented as the difference of the
polygon P(f) and the 6-gon A,(w). The diameter of P is equal to m(t) — 6w. The
optimality of this diameter follows from the optimality of P(¢) and from the fact that
MR(P(t)) and MR(A,(w)) are squares, which implies that MR (P) is a square again.

4. ALGORITHM

The algorithm given in this section performs the construction proposed in
Section 3.

Input: a natural number £.

Output: a digital convex 2k-gon P with the minimal possible diameter.
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The algorithm has the following three stages:

Stage 1. Evaluation of the natural number ¢ such that the number 2k belongs to the
half-open interval (n(¢-1), n(t) |

Stage 2. Recognition of the case from Section 3. (among Case 1., ..., Case 7.)

Stage 3. Generation of each one of the four arcs of the polygon P by one pass through
the Farey sequence F(t)

The number ¢ in Stage 1. can be determined ? by summing up the summands of
the form 4 - ¢(s), for s = 1, 2, ..., until the sum (equal to n(¢)) becomes greater than or
equal to the number 2k.

Recognition of the case In Stage 2. is easily completed by using the numbers 2k, ¢,
n(t-1) and n(¢). The value of n(f—-1) 1s determined as n(f) — 4 - ¢(t).

Stage 3., which is the most interesting, will be described in more detail:

4.1. GENERATION OF THE ARCS OF THE OPTIMAL D.C. 2ZK-GON

The construction of the optimal d.c. polygon P is separated into four independent
constructions of its ares (SE-, NE-, NW- and SW-arc in turn). Each arc is constructed
by using only one pass through the Farey sequence F({). Each member b/a of F({) 1s
mapped to ¢/p = b/ (a-b), a candidate for the edge slope of an edge within the arc.
Note that the used mapping 1s a bijection which preserves the ordering and that the
integers b and a are relatively prime if and only if the integers 6 and a - b are. For
example, the sequence [7(5) 1s bijected to the sequence

0./ THEFAY JRBINL /25 -2/c3, 17 15322y 1,81, 4715

which includes all she edge slopes g /p of the edges of an arc of the polygon P(5) 1n
increasing order.

The generation of consecutive vertices of an arc becomes in this way
computationally equivalent to the generation of consecutive members of the Farey
sequence, but the latter generation (in increasing order) is possible in linear time ([1]).

Thus the sorting of vertices within an arc 1s avoided.

Depending on the case and on the current arc, let S = S(arc, case) denote an
auxiliary set of specific edge slopes listed in the corresponding field of Table 1. Note
that the edge slopes in the last two columns of the table are exactly those which are

present in the corresponding arcs of A,(w) and A,(w) respectively.
The sequence F(¢) is primarily initialized and the following scheme is used for the
general step of the construction of an arc of P:

e (Construct the following member &/a of the sequence F(f) from the previous
member b~ /a~ by using the connections ([8]):

3in accordance with the formula for n(¢) given above
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Table 1.

) Case e 3. Or 4. 5._ " 6. or 7.
SE-arc u 2w-1 2W+ 5 2w +1 4w -1
L . w+1 2w +3 2w -3 2w -1 155
NE-arc ' 2w + 3

| 2w—-1

NW-arc u 2w—-1 2W+5 1 2w -1

| u+l 2w+3  2w-3 dw-1 2w+l |

SW-arc 2w+ 3 2w -1 _.‘_2w+1

2w -1 2w +1 2w-1
b=x,+r-b- and a=y,+r-a ,where

(xg,¥p) 1s an integral solution of the equation: e -x-b6"'y=1 and
r =L (n -y, /a l As suggested in [1], one solution (x,, y,) can be obtained as
(b~",a "), where b~ /a " is the predecessor of 5~ /a~ in F(¢).

Determine the corresponding edge slope ¢/ p by using the equalities

gq=>b and p =a-b.

If the current case is Case 7., then goto the fourth part of the scheme. In all
the other cases, let ¢"/p~ denote the edge slope corresponding to the
(previous) member b7 /a™ of F(£). If there exists an edge slope ¢°"/p® in
Slarc,case) such that  q /p -q"/p*-q/p, then register the edgec
corresponding toq*/p".

If the edge slope g/p is acceptable, then register the corresponding edge.

We proceed with a more detailed description of the Boolean function acceptable
and the procedure register:

In Case 7., the value of acceptable is TRUE whenever q/p ¢ S(arc,Case 7.).
In Case 3., the value of acceptable is TRUE whenever g + p <t - 1.

In Cases 1., 2., 4., 5., 6., let ¢ denote a counter, which is initialized by 0, and the
value of which is increased by 1 whenever ¢ + p = t and ¢ /p ¢ S(are, case).

T'he value of acceptable is TRUE IFF one of the following two conditions holds
with the edge slope g/ p:

1)

q+pst-1

2) (@q+p=and g/peS and c<(2k-n(t-1)-;j)/4, where:

J=0 with Case 1.
J=2 with Cases 2., 4.
J=6 with Cases 5., 6.

(thus merely the lexicographically first (2k - n(¢-1) - J )/ 4 digital squares
DS(p, q) with ¢ + p = t are used for the construction of P).
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The coordinates (x,, y,) of the first vertex of the SE-arc of P are given in advance.
Given a current vertex (x,y;), an edge with the edge slope ¢/p is register-ed by
producing the next vertex (x; _;, ;. ;) in accordance with the connections

Xig] =% T Xy and ¥, =Y, ™ Ydif

where the pair (x;;r, ¥,/ is equal to (+p, +q), (-q, +p), (-p, —q), (+q, -p) within
the SE-arc, NE-arc, NW-arc, SW-arc respectively.

We finish this section with some comments on small cases:

The smallest values of 2k to which Cases 1., 2., ..., 7. are applied are in order: 4,
10, 18, 22, 118, 78 and 82.

The value 2k = 6 exceptionally satisfies all the conditions of Cases 3. and 4.,
except for « > 1. This implies that the minimal diameter is equal to 2 = m(1) + 1; the
whole perimeter 1s covered by orthogonal projections of edges (Figure 1), which is not
satisfied with Cases 3. and 4..

The auxiliary 6-gons would not be well-defined for w = 1. Fortunately, they are
not necessary with that value. Namely, the intervals (n(3),n(4)) = (16, 24), (for
t=4-1) and (n(5), n(6) ) = (40, 48) (fort = 4-1 + 2) do not allow the use of auxiliary
6-gons; the values 18 and 42, respectively 22 and 46, are covered by Cases 3. and 4..
On the other hand, if w > 2, then there always exists an edge with a smaller bd-length,
which can be inserted between the two edges of auxiliary 6-gons belonging to the same
arc; thus two edge slopes ¢*/ p* in the third part of the general step of the construction

never exist.

5. COMPLEXITY OF THE ALGORITHM

THEOREM 1. The algorithun given itn Section 3. is linear with respect to the number of
edges of the constructed optimal d.c. polygon.

PROOF. The following asymptotic estimation for the number n(f) has been derived 1n
12]:

12¢2
n(t) =
7
Since n(t-=1) < 2k < n(t), the number of edges of the constructed polygon P is of
the same order of magnitude (O({%)). The presented construction of optimal d.c.

polygon P is asymptotically optimal in the sense that the number of elementary steps
of the construction is also of order O(¢£4). Such a conclusion can be derived by analyzing

the stages of the algorithm:

+O0(tlogt)

Stage 1. The number of elementary steps for calculating ¢(s) (using the factorization

of s) 1s known to be bounded by Of Js). It follows that calculating ¢(s) for
s =12 ..t and consequently the calculating of ¢, n({) and n(¢{-1) - requires

O(ty/t ) elementary steps.
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Stage 2. Distinguishing between the cases 0., 1., ..., 6. can obviously be performed 1n
constant time.

Stage 3. Given a member of the Farey sequence, the calculation of the next member 1s
performed in a constant time [1]. On the other hand, the necessary calculations
concerning g/p and related to each member of the Farey sequence can also be

performed in a constant time; they may include merely the search of edges of a
fixed auxiliary 6—gon.

The sequence F(¢) is passed four times during the generation of P. Thus the
number of elementary steps used in Stage 3. is asymptotically equal to the 4-fold
number of members of the sequence F(¢). The latter number has been estimated

as 3t°/ 7 +O(tlogt) ([8], Theorems 330. and 331.).

Since the complexity of Stages 1. and 2., is smaller than O(t%), it follows that the
number of elementary steps of the whole algorithm 1s linear with respect to the
number of edges of the constructed polygon.

6. AN EXAMPLE

Let be given 2k = 78.

It can be derived in turn that ¢ = 8, n(f) = 88, n(t-1) = 72. Case 6. is recognized
and the auxiliary polygon A,(2) should be used with ¢ = 0. Thus the optimal d.c
78-gon P can be represented as the sum of polygons P(7) and A,(2) (Figure 3).

223 43 5 25 34 85 6 7 6 5§ 4 3 5 23 4 322

D e e W N wWw e W ww

(=1 B e W wWe e W @ W

N LW A D W WA
MW e W O W O @ & O

2 323 4 3 5 28 34 5 8 0 5 4 3 5 23 4 3323 1

Figure 3. P(7) + A,(2), an optimal d.c. 78-gon
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Those edges of P, the edge slopes of which belong to the auxiliary polygon A,(2),

are marked by the letter "A". Those lengths of orthogonal projections of edges of P to
the square MR (P) (see also Figure 1), which are greater than 1, are written down. The
common points of neighbouring arcs are pointed to by arrows.
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