
Yugoslav J ournal of Operations Research
3 (1993), Number 2,159- 170

A ALGO FOR CONSTRUCTION OF 0
DIGITAL CONVEX 2K-GONS

Dragan M. ACKETA, Snei.ana MATI6 - KEKI6

Institute of Msthemscics, University of No vi Sad
Trg Dositeja Obredovica 4, 21(;00 N ovi Sad, Yugoslavia

Jovisa D. ZUNI6

Institute of Applied Basic Disciplines, Faculty of Engineering, University of No vi Sad
Veljka Vlahovica 3, 21000 No vi Sad, Yugosla via

Abstract: This paper gives a linear algorithm (w.r. t . the number of vertices) for a
construction of optimal digital convex 2k-gons, that is, those digital convex polygons,

rh ich have the smallest possible diameter with a given even number of edges. The
construction for k even is based on the efficient construction of Farey sequence, while

•

the construction for k odd uses, in addition, two families of auxiliary 6-gons.
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1. INTRODUCTION •

Recently there have been a lot of papers which deal with some optimization
problems on digital shapes. One of such problems will be studied here. It is related to

•
convexity, one of the basic computational geometry properties ([11]).

A digital convex polygon (short ly: d.c. polygon ) is a polygon, all the vertices of
which are points on the integer grid and all the interior angles of which are strictly less
than 1t radians. The diameter of a digital convex polygon is the minimal edge size of the
enscribed digital square with the edges parallel to the coordinate axes.

This paper gives a linear algorithm for the construction of optimal d.c. 2k-gons
(kE N) , in the sense that these polygons have the smallest possible diameter with
respect to the given even number of vertices.
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In part icu lar, if the po lygon Q has a Lower horizontal edge (V V ) ( V = l r )' )
0' \ 0 . 0' \'

VI = lx l .>' \ ) , Xo < Xl ), then this edge is udditiuna lly considered to be the first edge of
•

The diameter of a d.c, po lygon Q is equal to

max max{x, - xJI .!y, -YJ!}' where (xi.YJ,( xj, y) is a pair Ofvertices of Q}.

ote that the diameter is taken in the se nse of the maximum distance.

Let YI/I11I and XI/IlI I respectively denote the minimal y-coordinate and the maximal
x-coordinate of the conside red d.c. pulygon Q. Generally, the SE-arc lsouth-east arc)
ufQ is the sequence of co nsecutive edges lVi • Vi + 1) , 1 s i ~ h- 1 , where:

• VI denotes a vertex (Xi ' Yi ) of Q

A similar problem : What is the minimal possible area of a d.c. polygon with the
given even number of vertices - has been studied in [13J. A method for the
co nstruction of such a d.c. polygon has been given in the same paper.

Some of the other opt imiza tion problems related to convexity on the integer grid
have been considered in a number of recent papers (see, for example, (4], [5J, (6], (12]).

Motiva tion for considering such questions comes from several sources, in
particular fro m integer programming and computer graphics.

The relationship between the number of edges and the diameter of optimal d.c.
polygons was studied in papers [14J, (2), [3). In particular. an effect ive lower bound for
the diameter of a d.c. polygon has been introduced in the paper (3). That lower bound

. is the key concept for the construction of optimal d.c. polygons and it is called "greedy
lower bound", since it is derived by a variant of greedy approach, known from theory of
matroids and greedoids l[15J, (9]) .

T ime complexi ty of the algorithm proposed here is linear W.r.t. the number of
vert ices of the 2h- gon, which is being constructed. Linearity is reached by using an
efficie nt construction u1)) of the Farey sequence as an auxiliary tool, as well as the
observatio ns from Sect io n 3.

T he input for the algorithm is an even number 2h of vertices. If the number h is
even, then the algorithm for co nstruc tion of optimal d.c. 2h-gons is a generalization of

•

the a lgorith m proposed in (2) for the constructio n of those optimal d.c. polygons, which
are members of a special sequence Ptt ), t = 1, 2, .... Two families of auxiliary 6-gons
l( 3)) are used in the algori thm proposed here in order to cover the cases when the
nu mber h is odd. The algorithm also incorporates a.n efficient determination of the
parameter of the Farcy eque nce.
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the SE-arc. The NE-arc, the NW-arc and the SW-arc of a d.c. polygon are defined in
the analogous way I .

Given an edge e = [ (x l' Y l)' (Xz' Yz )] of a d.c. polygon, the edge slope of e denotes
the fraction:

if e ENE - or SW - arc ; if e ESE - or NW - arc,

•

while bd-length of the edge e denotes the sum Ix 1 - xzl + b1 - Y2 1 (length in the sense
of the block distance rnetrics).

A d ig ital square DS(p , q), where p and q are relatively prime natural numbers, is
a d.c. 4- gon with the property that each arc has exactly one edge with the edge-slope
q / p .

If the corresponding arcs of the two d.c. polygons Q1 and Qz have not common
edge slopes, then there exists a uniquely determined third d.c. polygon Q3' called the
sum. (M in lw wshi sum ) of Q1 and Qz (fo r more details see [10] or [7]) . Each arc of the
polygon Q3 includes all the edges of the corresponding arcs of Q 1 and Q z' sorted so tha t
the convexi ty conditio n is preserved. If Q3 is the sum of Q 1 and Q2' then Q2 is the
difference of Q3 and Q I ' T he diameter of Q3 is equal to the sum of the diameters of Q 1

and o;
Farey sequence of order t , (shor t ly Fit ), [8 ]) , is a s tr ictly increasing sequence of

fractions, which includes all the fractions of the form b / a , where the integers a and b
are relatively prime and 1 ~ b < a ~ t . It is convenient for our purposes to add the
fraction 0 /1 to be the first member of Fit ), for each t, Thus F(5 ) looks as follows:

0 /1, 1/ 5, 1 /4, 1/3, 2 /5 , 1 /2, 3 /5 , 2 /3, 3 /4, 4 /5 .

3. A CONSTRUCTION OF OPTIMAL DIGITAL CONVEX 2K-GONS

The diameter of a d.c. polygon Q cannot be smaller than one fourth of the
perimeter of a minimal rectangle MR (Q) with the edges parallel to the coordinate axes,
in which the polygon Q can be included. On the other hand, this perimeter is equal to

the su m S uf all Zll summands of the form p + q , where q / p is the edge slope of an
edge e of Q (Figure 1).

In orde r to minimize the diameter of Q, the summands p + q of the sum S should
be as small as possible. Such a choice of summands is naturally perfo rmed by the
fo llowing "greedy" algo rithm: choose as many summands equal to 1 as possible, then
proceed with summan ds equal to,2 and so on . Note that each one of the edge slopes
q / p may be used at most four times (once in each one of the four arcs), due to
convexity of polygon Q. It is also obvious that the numbers p and q should be rela tively
prime with all the edge-slopes q / p of an optimal d.c. polygon.

1If the polygon Q has a righ t vert ical edge, then it is considered to be the firs t edge of the NE-arc,

and so on .
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Figure 1. Orthogonal projection of edges of Q exactly cover the perimeter of the rectangle MR(Q )

When constructing optimal d.c. 21l-gons, we cah distinguish seven cases.

Case l. k is even.

An optimal d.c. 21l-gon can be constructed so that it has four equal arcs , i.e. , so
tha t all its arcs have the same number of edges with the same corresponding edge
slopes. The edge slopes q / p within an arc a-~ chosen so that the numbers p and q are
rela tively prime and that the sums p + q are as small as po sible.

An outstanding ubca e for Il even is tl-e family of optimal d.c. 2k-gons denoted by
PU), for t = 1,2, .... The edge slopes of each arc 6f P it ) are all different fraction q / p
with relatively prime q and p, which satisfy that 2 < p + q s; t . In addition , the edge
lope of the first edge in each nrc of p et) is equa l to 0 /1.

If ntt) and m (L ) respectively denote the number of edges and the diameter of the
polygon P i t ), then it is easy to show that

t

n(t) = 4 · 'L ¢(s),
8= 1

t

m(t}= 'Lk · ¢{Jl ),
k=1

where ¢its) denote the number of in tegers between 0 and s which are relatively prime
with s (the Euler function from number theory; e .g. ¢(1) = ¢I(2 ) = 1, ¢lt3) =¢I(4) = 2,
¢i( 5) = 4).

Not tha t p et) is the uniqu e d.c, n (i)-gOIl , which has the diameter less or equa l tu
mil), Num Iy, the on ly way to construct another d.c. /I(t)-gon is to replace an edge
with do' , slope not grea ter than t by an edge with edge lope greater than t . uch a
replnc im -nt nece ar ily increases the perimeter of p et) by at least 1, which implie
ha th din m tel' i also augmented by at lea. t r1 / 41 = 1.

In the remaining pa rt of thi s zction, let t denote the natural number such that
n(f - l) < 21l < n(f). .

If Il is svon, th n a n opt imal d . '. 2/l-gon with [our equal arcs is in fact equal to the
urn of th polygon PU-l ) nnd 80m arbitrarily chosen ( 21< - T1 t( -1 ) ) / 4 digital squares

of the for m DS(p, q), wh sre p + q = t .

usc 2. /l is odd, t = 2/1 + 1 fur 'om> /I •

n op imul d.c, Zlc - gon P ca n be obtained from nn optimal d.c. t2/; 2)- gllll q with
lou r equa l arcs, which if' const ruct -d us in a ' I., with tlie nddit.ional requireuiont
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that the edge slope U / tu + 1) is not u sed within Q ( quivalently, the digita l square
D'Siu + 1, rz ) is nut used a a umrnand of Q).

Namely, the minimal perimeter of a rectangle including some d.c, 2h-gon. is equal
to (per imete r of Q + 2 · l ). T his im plies tha t t he diameter of P cannot b smaller than
the sum of diameter of Q and the su m m and

2 · t

4

1
= u+ - =u+ l.

2

It follows tha t the addi tion of two edge slopes U / (/l + 1), which are inser ed into
two opposite arcs of Q, is an optimal choice. Namely, such an addition augments he
diameter of Q by exact ly u. + 1, which is t he minimal possible increase.

•

Case 3. h is odd, 2h = n U-I ) + 2, t = 2u for some uEM{ I}.

The greedy argument gives that the diameter of a d.c. (n(t-1) + 2 ) -gon cannot
be smaller than

± .(4 . m (t - 1)+2 .t ) =fm(t-1)+ul

We claim that this lower bound cannot be reached . Oth rwise a ll the possible
edges with bd-Iength not grea te r than t - I mus t be used , together with two edges uf
bd-Iongth Zu . If q + P = 211. then rnax jn , q} ~ u + 1 (Figure 1); the edge slope II II

cannot be u sed for u > 1, since the edge slope 1 /1 has been already used. This implies
that the addi tiun of two edges wit h bd-Iength t to the polygon P(t-l) augments us
diameter m(l-ll at leas t bv II T 1 2.

•

On the other hand, the inser t ion of two edges wit h edge s lope u / (u + II in to two
opposite arcs of P(l -I ) produces a d .c. 2/l-go n wit h the diameter m(t-ll + u + 1.

Case 4. his udd , 2/, =ntt) - 2, t = Zu for so me /lE.N\{ I} .

This case is analogou s to Case 3; we shall me n tion here only the differences

between the two cases:

The lower bound fbr diameter is equal to

~ '(4. m(t)-2 .t) =rm(t}-ul
4

The polygon P (t -1 ) should be replaced by an optimal d.c. ( nit) - 4 ) -gon with four

equal arcs .

Two families of auxilia ry d.c. 6-gons A 1(w ) and A 2(w ), w = 2,3, ... , are used fu r

Cases 5 th rough 7: (F igu re 21.

Case 5. k is odd, 2kE(n(t- I) + 6, n(t)-6j, t = 4w + 2 for some WE ',

An optimal d.c, 2k-gon can be represented as the sum of an optimal d.c,

(2h - 6)-gon Q, const ru cted as in Case 1. and t he d .c. 6-gon A1(w), where Q has nut

20 n the cont rary, observe that t he addi t ion of{our such edges (with the same edge slope) can always

inc rease t he diameter by exactly :!u .

•
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common edge slopes with' AI (w ). Namely, the diameter of a d.c. 2k-gon cannot be

smaller than

L(4. m(t- l)+(2k- 6- n(t- l)). t )+ 6. t = diameter of Q + (6w + 3 ) .
4

•

The second su mmand is equal to tne diametc- ofAI (w ).

Note that the (2k-6)-gon Q cannot have more than n et) - 12 edges, since it
cannot use the edges of those three digital squares D3(p, q), such that the edge slopes
q / p are used within Al (w). This construction therefore cannot be applied for

•
2h = n (t ) - 2.

2w+l
2w-l2w-12w-l

2w-3 2w+3 2w+3 2w+l 4w-1
1

2w-1 2w-l
2w-1

4w-l

2w+5 A1(w ) 2w+5 2w+l
A 2 (w )

2w+3 2w+3 2w-3 2w-l 2w+l 2w-ll

Figure 2. The families of auxiliary 6-gons
•

Case 6. k is odd, 2k eln(t-l) + 6, n(t)-IOI, t = 4w for some w eN.

This case can be solved analogously to the Case 5., by replacing the 6-gon A I (w)

with the 6-gon A 2(w), the diameter of which is equal to 6w. Note, however, that the
6-gon A 2(w ) uses {our different edge- slopes, which implies that the (2k - 6)-gon Q
cannot have more than n et ) - 16 edges. This requires a separate treatment of the last
case:

Case 7. k is odd, 2h = n et) - 6, t = 4w for some weN.

An optimal d.c. (n(t) - 6 ) - gon P can be represented as the difference of the
polygon p et) and the 6-gon A 2(w ). The diameter of P is equal to m et) - 6w. The
optimality of this diameter follows from the optimality of pet) and from the fact that
MR (P(t)) and MR (A2(w )) are squares, which implies that MR (P) is a square again.

4. ALGORITHM

The algorithm given in this section performs the construction proposed in
Section 3.

Input: a natural number k.

Output: a digital convex 2k-gon P with the minimal possible diameter.
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•

The algorithm has the following three stages:

Stage 1. Evaluation of the natural number t such tha t the number 2h be longs to the
half-open interval ( n (t- l), n tt ) 1

•

Stage 2. Recognition of the case from Section 3. (among Case 1., ..., Case 7. )

Stage 3. Generation of each one of the four arcs of the polygon P by one pass through
the Farey sequence F (t )

The number t in Stage 1. can be determined 3 by sum ming up the summands of

the form 4 . ¢its ), for s = 1,2, ..., until the sum (equal to nUl ) becomes grea ter than or
equal to the number Zh,

Recognition of the case in Stage 2. is easily completed by using the numbers 2h, t ,
nU -1 ) and n l t). The value of n ll -1 ) is determined as n (t ) - 4 · ¢itt).

•

Stage 3., which is the most interesting, will be described in more detail:

4.1. GENERATION OF THE ARCS OF THE OPTIMAL D.C. 2K-GON

The construction of the optima l d.c. polygo n P is separated into four independent
construct ions of its arcs (S£-, E- , NW- and SW- arc in tu rn ). Each arc is constructed
by using on ly one pass th rough the Farcy sequence F (l) . Each member b / a of F tt) is
mapped to q / p = b / (a-b ), a candidate for the edge slope of an edge within the arc.
Note that the used mapping is a bijection which preserves the orde r ing and that the
integers b and a are relatively prime if and only if the in tegers b and a - b are . For
example, the sequence F lS) is bijected to the sequence

0 /1 ,1 /4 , 1/ 3,1 /2 ,2 / 3, 1/1 , 3 /2 ,2 /1 , 3 /1 , 4 11 ,

which includes all the edge slopes q / p of the edges of an arc of the polygon P lS) in
increasing order .

The generation of consecutive vertices of an arc becomes in this way
computationally equivalent to the generation of consecutive members of the Furey
sequence, but the latter generation (in increasing order) is possible in linear t ime ([1]).
Thus the sor ting of vertices within an arc is avoided.

,

Depending on the case and on the cu rren t arc, let S = S tare, ease ) denote an
auxiliary set of specific edge slopes listed in the cor responding field of Table 1. Note
that the edge slopes in the las t two columns of the table are exactly those which are
present in the cor respo nding arcs of A1 lW) and A 2lW ) respectively.

The sequence Fit ) is primar ily initialized and the following scheme is used for the

general step of the constructio n of an arc of P:

• Construct the following member b / a of the sequence F l l) from the previous

member b: / a- by using the connections ([8]) :

J in accordance with the formula for nU ) given above
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Table 1.

\

C ase 2., 3. o r 4. 5. 6. or 7.

SE-arc It 2w- 1 2w+5 2w +1 4w- 1

It + 1 2w +3 2w -3 2w -1 1
NE- arc 2w +3

2w-1
NW-arc It 2w-1 2w +5 1 2w-1

u +1 2w+ 3 2w-3 4w -1 2w+ 1
SW-arc 2w +3 2w- 1 2w+1

2w -1 2w+1 2w- 1
•

b = X o + r · s: and a =Yo + r -a- , where

(x o' Yo) is ~n integral solution of the equa tion: a- · x - b: .y = 1 and

r = L(n - Yo) / a- J. As suggested in [1], one solution (x o' Yo ) can be obtained as
tb:>, a- - ), where tr : / a- - is the predecessor of b: / a- in Fti).

• Determine the cor responding edge slope q I p by u sing the equalities

q = band p = a-b.

• If the current case is Case 7. , then goto the fo u rth part of the scheme. In all
the other cases, let o: /p: denote t he edge slope correspo nding to the

(previous) member b: / a- of F(t ). If there exists an edge slope q" / p" in

S tart', case ) such that q / p - .... q " / p" : q / p ; then r egister the edge
corresponding tu q" / p •.

• If the'edge slope q / p is accep tab le , then r egister the corresponding edge.

We proceed with a mure detailed descriptio n of the Boolean function acceptable
and the procedure register :

In Case 7., the value of acceptab le is TRUE whenever q / p Il Stare,C ase 7. l.

In Case 3., the value of a cceptable is TRUE whenever q + p ~ t - 1.

In Cases 1., 2. , 4., 5. , 6., let e denote a counter, which is initialized by 0, and the
value of which is increased by 1 whenever q + P = t and q / p Il S tare, case ).

The value of acceptab le is TRUE IF F one of the following two conditions holds
with the edge slope q / p:

•

1) q+p <l- l

2) tq+p .=t)and q l p e S and e~t 2!l- n tt-1 )-j)1 4 , where :

j =O with Case 1.

j = 2 with Cases 2., 4.

j = 6 with Cases 5. , 6.

(t hus merely the lexicographically first ( 2h - n(i-l) - j ) / 4 digi tal
DS (p , q) with q + P = l a re used fo r the construction of P ).

•

squares
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The coordinates (xo' Yo) of the first vertex of the SE- arc of P are given in advance.
Given a cur rent vertex (x i ' Yi )' an edge with the edge slope q / p is register- ed by
producing the next vertex (x i + l ' Yi+l ) in accordance with the connections

x i+ 1 =xi + xdif and Yi+l =Yi + Ydif '

where the pair (xdif ' Ydif) is equal to (+p, +q), (-q, +p ), (-p, - q ), (+q , -p ) within
the SE-arc, NE-arc, NW-arc, SW-arc respectively.

We finish this section with some comments on small cases:

The smallest values of 2k to which Cases 1., 2. , ... , 7. are applied are in order: 4,
10, 18, 22, 118, 78 and 82.

The value 2k = 6 exceptionally satisfies all the conditio ns of Cases 3. and 4. ,
except for u > 1. This implies that the minimal diameter is equal to 2 = m(1) + 1; the
whole perimeter is covered by or thogonal projections of edges (Figure 1), which is not
satisfied with Cases :3. and 4..

The auxiliary 6-gons would not be well-defined for w = 1. Fo rtunately, they are
not necessary with that value. Namely, the intervals ( n(3), n (4 ) ) = 1I6, 24 ), (fo r
t = 4 ·1) and ( n(5 ), n (6 ) ) = (40 , 48) (fo r t = 4 · 1 + 2) do not allow the use of auxiliary
6-gons; the values 18 and 42 , respectively 22 and 46, are covered by Cases :3. and 4..
On the other hand, if w > 2, then there always exists an edge with a smaller bd-Icngth ,

•
which can be inserted between the two edges of auxiliary 6-gons belo nging to the same
arc; thus two edge slopes q" I p" in the third part of the general step of the construction
never exist.

5. COMPLEXITY OF THE ALGORITHM

THEOREM 1. The algorithm given in S ection 3. is linear with respect to the number or
edges of the constructed op tima l d. c. polygon.

PIW OF. The following asymptotic estimation for the number nst ) has been derived in
[2j : .

')

12t-
n(t} = 'r? +O(tlogt )

Since n (t - 1) < 2h :5 n ([) , the number of edges of the constructed polygon P is of
the same order of magn itu de (O (t 2) ). The presented construction of optimal d.c.
polygon P is asymptotically optimal in the se nse that the number of elementary steps
of the construction is also of order 0 (1 2) . Such a conclusion can be der ived by analyzing

the stages of the algorithm :

Stage 1. The number of elementary steps for calcula ting ¢(s ) (using the factorization

of s) is known to be bounded by O( j;). It follows that calculating ¢(s) for

s = 1, 2, ..., t, and consequently the calculating of t, nit ) and n(l -1) - requires

OCt Ii )elementary steps.
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S t a ge 2. Distinguishing between the cases 0. , 1., ..., 6. can obviously be performed in
constant time.

Stage 3. Given a member of the Farey sequence, the calculation of the next member is
performed in a constan t time [1]. On the other hand, the necessary calcula t ions
concerning q / p and rela ted to each member of the Farey sequence can also be
performed in a constant time; they may include merely the search of edges of a
fixed auxiliary 6-gon.

The sequence F(t ) is passed four times during the generation of P. Thus the
number of elementary steps used in Stage 3. is asymptotically equal to the 4-fold
number of members of the sequence F (t ). The lat ter number has been estima ted

as 3t 2J,-? + O(t log t ) ([8], Theorems 330. and 331.).

Since the com plexity of Stages 1. and 2., is smaller than 0 (l 2), it follows that the
numbe r of elementary step of the whole algorithm is linear with respect to the
number of edges of the constructed polygon.

Let be given '2h = 7 ,

6.• EXAM PLE

-
It can be derived in turn tha t t = ,flU ) = 8, flU- l) = 72. Case 6. is recogn ized

and the auxil iary polygon .4. 2(2) should be used with c = O. Thus the optim al d.c
7 - gon P can be represented as the sum of polygons P (7) and .4..)(2 ) (Figure 3).-

Figure 3. p \7J A} :! ), all optimal d.c, 7 -gon
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Those edges of P, the edge slopes of which oelong to the auxiliary polygon A
2
(2),

are marked by the letter "A". Those lengths of orthogonal projections of edges of P to
the square MR (P) (see also Figure 1), which are greater than 1, are written down. The
common points of neighbouring arcs are pointed to by arrows.
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