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1. INTRODUCTION

The problem of fixed point for a given mapping f of a partially ordered set P to
itself is very easy to formulate: the question is if some (e P verifies f({) = £ It is
interesting that many problems are reducible to the existence of fixed points of certain
mappings. The question remains whether each statement could be equivalently
expressed in the fixed point language as well. The answer is affirmative, the answers
were given in [55]. |

Let X and Y be Hausdorff topological spaces and S,7:X—>Y two set-valued
transformations from X to Y. The coincidence problem for (S, T) is concerned with
conditions which guarantee that the pair (S, 7') has one or more coincidence points,
that is points (x,, y,) € X x X such that Sx, Ty, is nonempty. Geometrical problems
of this type in an approximate context turn out to be intimately related to some basic
problems arising in convex analysis. This important fact was discovered by John von
Neumann in 1937, who established a coincidence statement in R” and made a direct
use of it in the proof of his well-known Minimax Principle. ¢f [41]. In this sense, In
paper [42] von Neumann investigated the concept of a saddle point for a mapping
f:AxB — R, where A and B are nonempty sets. A point (x,,y,) € Ax B 1s called a
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saddle point of f:AxB —> R if
(g, y) < f(xy, ¥) <%, 50) for all (x,y) € A x B.
This condition 1s equivale‘nt with the following equality

max min f(x, y) = min max f(x, y),
xeA yeB yeB x€A

i.e., with the following double equality
max f(.:t'o, y) = f(xO: yO) = ml};l f(I, yO)

yeB XE

Since then, geometrical problems of a similar kind (as well as their analytic
counterparts) have attracted broad attention and remarkable progress has been made
both in generalizing the original results as well as in finding new applications in a
variety of mathematical areas, see [6] and [18].

In connection with the preceding, in this paper we consider a concept of
transversal points, for the mapping f of a nonempty set X into a partially ordered set P.
A map f of a nonempty set X into a partially ordered set P has a transversal point e P
if there is a decreasing function g : P? - P such that the following equality holds

max min{ f(x), f(y), g(f(x), F() } =

x,yeX

min max{ £(x), f(y), g(£(x), f(») } :=¢ _ 1)

x,yeX

Also, in this paper, we consider some other points of this type. Applications in

nonlinear functional analysis, specially, in minmax theory and convex analysis are
considered.

2. FUNDAMENTALS OF NEW MINIMAX THEORY

Let (P, <) be a partially ordered set by the ordering relation <. The function
g :P* 5 P (kis a fixed positive integer) is decreasing on the ordered set P ifa;, b. € P
anda;<b; ¢ = 1, ..., k) implies g(b,, ... ,0,) < g(ay, ..., ap).

Let L be a lattice and g a mapping from L? into L. For any g : L? - L it is natural

to consider the following property of local comparability, which means, if ¢e L is
comparable with g(¢, ¢) € L then ¢{'is comparable with every ¢ € L.

We begin with the following essential statements.

LEMMA 1. (Sup-Inf Inequalities). Let (L, <) be a lattice and let g2:L*>L be a

decreasing mapping. If L has property of local comparability, then for arbitrary

functions p:X—>L and ¢:Y—>L (X and Y are arbitrary nonempty sets) the
following relations are valid:

£<g(( & implies ¢< sup{ p(x), g(y), g(p(x), a(y) }, (2)

and
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~ g¢os¢  implies inf{ p(x),qly), &lp(x),q(y) }<¢, 3)
for all x € X and for all y € Y. Hence, in particular, ¢ = g(¢, ¢) implies

inf { p(x), 4(»), £(p(), q(y)) } < ¢< sup{ p(), aly), &lp(x), ) @
for allx eX and for all y €Y

From assertions (2), (3) and (4) we obtain the following interesting conclusions
(which, incidentally are their equivalent formulations for X = Y):

;<g(s 0 implies < x’?efx sup{ p(x), q(v), g(p(x), ay))}, 5
and
g 0<¢ implies Sup. inf{ p(x), q(»), g(p(x), a(»)) | PY ()

and g(¢, {) = {implies the following inequalities

sup inf{ p(x), 9(y), £(p(x), als) }< <

inf_sup{ plx). a(y), £(p(x), aly) } g

On the other hand, we note, that it is easy to construct a decreasing mapping on a
complete lattice which is not a totally ordered set but the property of local
comparability is fulfilled, see Figure 1.

0
Figure 1.

Example 1. Let L be the lattice on Figurc 1 and let g:L — L be defined by g(0) = 1,
gla) = b, glb) =a, gle) =0, g(1) = 0. Evidently, g is decreasing and the property of
local comparability is fulfilled, but the set L is not totally ordered.
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REMARK. The above statements (Lemma 1) still hold when g: L* 5L (kis a fixed
positive integer) is a decreasing function. The proof is quite similar; the assertions

corresponding to (2) and (3) look as follows

£ S g6 s 5 C) implies Q'Ssup{ﬂ.l,...,ﬂk,g(ll,...,ﬂ.k)},and (8)

g(;'! ...,(:)SC: imp]'ies inf{ll!'“!’lk:g(’ll:-“:’lk)}sc (9)
for arbitrary functions A,, ..., 4, :X— L, where X is an arbitrary nonempty set. Also,

in particular, £ = g({ ..., {) implies
inf{’llr---:lkr g(’lls-“:’lk)}ggs Sup{;ll’---’"a'k! g(j'l:“-:lk)}’ (10)

for arbitrary functions A.: XL (@ =1,..,k), where X is an arbitrary nonempty set.
To simplify the notation we will give the proof only for the case & = 2.

PROOF OF LEMMA 1. Implication (2). Let {<g({, ) and A = sup{ plx), g(y) }, where the

elements x €X and y €Y are arbitrarily chosen. If {< A, then

= SUP{ p(x), q(), g(p(x), () } for allx eX and y €Y, (11)

obviously holds. If A< ¢, then {<g((, {) <g(p(x), g(y)) and (11) holds too. We see that
the comparability of elements A and { is possible as a consequence of the property of
local comparability.

One gets the implication (3) by applying the above results to the case where the
relation < is replaced by the relation >; in fact, after this change, every supremum
bécomes an infimum and the function g remains decreasing with respect to each

argument. Thus, we have (3). The last assertion (4) is evident. Thus, the proof is
complete.

LEMMA 2. ([55]). Let P be a totally ordered set by the order relation <, and let
g : L* - L be a decreasing mapping. Then, the following conditions are equivalent:

min{ ¢, g(t,t) } < ¢<max{¢, g(t, 1) }, (12)

for all t € P and the following condition
¢=min P, or ¢ = max P*, (13)
where P,:= {teP | g(t,t)<t} and Pf€:=(teP |tsglt,t))}.
From this assertion as a direct consequence it follows that:

= The number of points ¢ e P with characteristic (12) can be 0, 1 or 2.
— Each of these cases can be realized.

— If P is an everywhere dense set of points, the number of points with
characteristic (12) is 0 or 1.

— If the set P has the characteristic of density (:= that is for every Dedekind's

cross section the lower class has the maximum or the upper class has a
minimum) the number of points is 1 or 2.



M.Taskovi¢ / Minimax theory with transversal points 133

— If e P is the fixed point of the mapping g : P?* > P, then ¢ is the point with
characteristic (12), and then (12) holds if and only if

maxmin{:r, g(x,x)}= minmax{x, g(x,x)}= g.

xeP xeP
REMARK. In Lemma 2 the assumption that (P, <) is totally ordered cannot be replaced
by the weaker assumption that (P, <) is a lattice. More precisely, the implication
(12) = (13) holds true in the case of any poset, while the implication (13) = (12) is in
general false even for lattices. Indeed, from (12) it follows that each element ¢ € P is
comparable with g(Z, t) so that (e Pg or {€ P8, in the first caset € P, 1.e., g(t, 1) <t; so

we have (< max{ t, glt,t) } =1, and hence { = min Pg. A symmetric proof shows that

e P§ implies ¢ = max P%. On the other hand, the structure on Figure 2 is obviously
a lattice and the function g:P —> P defined by g(a) =¢, gb) = g(d) = b, glc) = a,
where P = {a,b,c,d}, 1s decreasing. In this case we have also Pg = {b,c},
P& ={a,b}and thus b = minPg = max P?, i.c., (13) holds. However (12) is false since
d is not comparable with b = g(d).

a

Figure 2.

PROOF OF LEMMA 2. (13) = (12). Let { = min Pg or = max Pf. Now, let x € Py PE,
and y < x. Then g(y,y) <y < x < glx, x), i.e., gy, y) < glx, x) is in contradiction with the
decreasing of the function g. Then, for all x € o and y € P8 it follows that x <y. Let

¢ = max Pg, then if t € P& we have ¢t < { and from that min{t, g(t,t)}s:c,, and then
max{t, g(t,t)}=g(x, x)2g(¢¢)=2¢. If tePg, we have (<t, and from that

CE max{ t, g(t, t) }

-

For ¢ < t, we have g(t,t) <g(¢, §) < ¢ and from that min{ t, glt, t) }5 {. The case
¢=min P, is symmetrical with previovs one.
(12) = (13). Let the point (€ P have characteristic (12). Then x € P implies

x<g(x,x), that 18, x= min{ x, g(x, x) }s {, and x € Pg implies g(x, x) <x, that 1s,
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x=max{x,g(x,x)}2§. Then for all xe P¢ is {<x, and for all xeP, 6 is {=<x.

Accordingly, as for all x e P and ye P, x <y holds, we have the following: if {e P5,
then ¢ = max P¢; if (e P, then = min P,. Owing to that, if the point b > £ satisfies
the condition (12), then we must have ¢ = max P&, b = min Pg, and there cannot be
any third point with characteristic (12). Thus, the proof is complete.

SoME COMMENTS. That two different points with characteristic (12) may exist proves
the following example: P = {a,b },a < b, gla) = b, g(p) = a. In that case both points a
and b have characteristic (12). But, if (P, <) is an everywhere dense set (x <y =
(3zeP) x<z<y for all x,y€ P), then there can be at most one point of

characteristic (12).

Let us now give an example which shows that the points with characteristic (12)
may not be fixed points. Let the mapping g be defined by g(x) =1 (0<x<%) and
g(x) =0 (% <x<1). Then on the set P = [0,1] the point { = %, has characteristic (12),
but it is not the fixed point of the mapping g : [0,1] — [0,1]. |

With the help of the preceding statements we now obtain the fundamental fact of
this section.

THEOREM 1. (Sup-Inf Theorem). Let (L,<) be a lattice and let g:L?—>L be a
decreasing mapping. If L has property of local conparability, then for some arbitrary
functions p: X > L and q: X —> L (Xis arbitrary nonempty set) the equality

sup inf { plx) (), (pl), a(v)) }

: ‘}f 4 sup{ p(x), ¢(y), g(p(x), ¢()) } (14)

holds if and only if p(x;) = q(y,) := ¢ = g({, §) for some x,, y, € X.

PROOF. This follows at once from (7) of Lemma 1 and the trivial fact that the strict
inequality cannot hold in (7).

An immediate consequence (special case) of the preceding statement is the
following principle.

THEOREM 2. (Minimax Principle). Let P be a totally ordered set by the order relation <,
and let g:P>*—>P be a decreasing mapping. Then for some arbitrary function
p:X—P and q: X—> P (Xis arbitrary nonernpty set) the equality

max min{ p(x), a(5), #(p(x), a() } -

min max{ p(x), q(y), g(p(x), ¢(y)) ] (15)

x,yeX

holds if and only if p(x,) = qW) := ¢ = g((, ¢) for some x,, y, € X.

The statement above still holds when g:P¥— P (& is a fixed positive integer).
The proof is quite similar. Therefore, let (P, <) be a totally ordered set by the order
relation <, and g : P* 5 P (k € N) be a decreasing mapping. Then, the equality
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max min{/ll,...,Ak,g(ﬁlw--:lk)}=

Al,...,ikeP
mi 7 PR F - | R | |
g i sy, 80y, i)} 16
holdsif and only if 2,(x,) = ... = 4,(x,) := { = g((, ..., §) for somex,, ..., x, € X, where

A:X—P (i=1,..,k) are arbitrary functions and X is a nonempty set.
We remark that when X = P, p(x) =x and g(y) =y Theorem 2 reduces to the
following result.

COROLLARY 1. ([55]). Let P be a totally ocdered set by the order relation <, and let
g : P2 5 P be a decreasing mapping. Then the equality

max min{ Xy s g(x, y)} = min max{x, Ys g(x, J’) }r
x,yeP x,yeP

holds, if and only if there is ¢ € P such that g(¢, &) = ¢

In connection with the preceding, we note that we can give an extension of the

preceding Theoreml, as a direct consequence of the preceding facts, in the following
sense.

THEOREM 3. (General Sup-Inf Theorem). Let (L, <) be a lattice and let g:L?* > L be a

mapping. Then for some arbitrary p: X—L and g : X— L (X is arbitrary nonempty
set) the following equality holds

sup inf{ p(x), o(y), g(p(x), () } =

x,yeP

xli']g v sup{ p(x), a(»), g(p(x), q(»)) } (17)

if and only if the following inequalities holc's

inf { p(x),q(y), g(p(x), q(»)) } <
plxg) =qly) :=¢=g(¢¢)<
sup{ p(x), a(»), #(p(x), a() B

for some x, y,€ X and for allx,y € X.
On the other hand, condition (18) is equivalent with the following equality

max inf { p(x), a(y), g(p(x), () } =

min sup{ p(x), a(y), g(p(x), o(»)) }

Also, in connection with the preceding equality (16), if g:P*—P (k is a fixed
positive integer) is not decreasing mapping, we can extend equality (16). In this sense,
if g:P*—>P (kis a fixed positive integer) is some arbitrary mapping then equality
(16) holds if and only if the following inequalities hold
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iR by (Aags s Ay) 18
Alx) == Aplmg) s=6=8l4:54) S
max{/""l: :’F{'kr g(ila :Ak) }:

for some xy, ... ,x, € X, where 1; X—>P (¢ =1, ..., k) are arbitrary functions and X is a
nonempty set.

On the other hand, the next result follows from the preceding statements.

COROLLARY 2. Let L be a lattice with the order relation <. Then for some arbitrary
mappings p:X—>L and ¢g:X—>L (X is arbitrary nonempty set) the following
equality holds |

Sup, inf { p(x), q(y) } = Jnf sup{ plx), q() }

if and only if the following inequalities hold
inf { p(x), q(y) } < plxo) = a(3o) < sup{ p(x), a(») }

for some x,, y, € X and forallx,y € X.

We note, in the preceding statements (as in Corollary 2) we can define the
preceding functions p,q:X—>L on different sets, in sense that p:X—>L and
q:X—L (X andY are arbitrary nonempty, sets). Then the preceding statements hold

too. In this sense, for some arbitrary functions f;:X;: > L @ =1, ..., k) the following
equality holds

Sup inf{fl(xl)!“'rfk(xk)}z inf Sup{fl(xl):“-:fk(xk)}

x, €Xy,.. X €X, X1 €X,. Xy €X,

if and only if the following inequalities hold

mf{fl(xl): ---,fk(xk)}ﬂﬂ(fl) = e =fk(fk)SSUP{ fl(xl):-'-:fk(xk)}
forsomet, e X; G =1,..,k) and forallx. e X. ¢ = 1, ... , k).
In this part of the section, we show that existence of separation in the preceding

sense, 1s essential for applications of the preceding statements.

THEOREM 4. (Statement of Separation). Let L be a lattice with the order relation <.

Then for some arbitrary mapping p: X —L and g:Y—> L (X and Y are two arbitrary
nonempty sets) the following equality holds

sup p(x) = inf g(y) (19)
xX€E yeY

if and only if there exists a function g:L*— L such that the following inequalities
holds

plx) < gl p(x), ¢(y)) < q(y) (20)

for allx € X and y € Y and there is { € L such that ¢ = pxy) = q(y,) for some x, € X and
Yo € Y.
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PROOF. Necessity. Let the inequalities (20) hold and let, from the conditions, there

exist points x,€ X and y,eY such that {=p(x,) =q(y,). Thus, we obtain the
following inequalities and equality

inf{ p(x), q(»), g(p(x), qa(y) } < c= g5, I < sup{ p(x), q(»), g(p(x), a(»)) }

for some x, € X and y, € Y, and for all x € X and y € Y. This means, from Theorem 3,
that the equality (17) holds, which gives the equality (19) of this statement.

Sufficiency. Assume that equality (19) holds. Thus, there is ¢e L such that
px) <{<q(y) for all xe X and y € Y, where p(x,) = q(y,) = ¢ for some x € X and
y, € Y. If the function g:L?*— L is defined by g(s, t) =¢, then, directly, we obtain
inequalities (20). The proof is complete.

At the end of this section, based on the preceding statements, as an immediate
consequence we have the following statement.

THEOREM 5. Let P be a set totally ordered by the order relation <, and let g:P? > P
be a decreasing mapping. Then the following equality holds

max min g(x, y) = min max g(x, y),
{sx y<( ys¢ ¢sx

if and only if there is € P such that g(C, §) = C.

3. SUP-INF INEQUALITIES

We give now some immediate applications of the preceding statements to Sup -
Inf inequalities; other applications will be given in the next sections. As an immediate
consequence of Lemma 1 we obtain the following inequalities.

LEMMA 3. Let P be a totally ordered set by the order relation < and let g: P? > P be a
decreasing mapping. If for some arbitrary mapping f:P?—>P is f({, () < and

flG, ) <g(C, ©), then
(¢, &) < max{ p(x), a(3), g(p(x), a(») } 1)

for all x, y € X where p,q : X —> P (X is an arbitrary nonempty set).
Quantifying the preceding assertion (21) we obtain the following conclusion that
f(G, ©) <€ and f(C, §) < g(C, §) implies

(¢, 9)< min max{ p(x),a(y), &(p(x),a(») }

X, Y

PROOF. Let 2 = max { p(x), g(y) } where the elements x € X and y € Y are arbitrarily
chosen. If f(C, &) <A, then (21) obviously holds. If A <f(C, €), then {(C, £) <g(C, Q) <
g(p(x),q(y)) and (21) holds too.

In connection with this, we now obtain the fundamental fact of this section.
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THEOREM 6. (Sup-Inf Inequality). Let (L, <) be a lattice with zero and unit and let
A B:XxY—>L (X and Y are arbitrary nonempty sets). Then for some arbitrary
mappings a,c¢: X — L and b,d : Y — L the following inequality holds

i e;(n—g % sup{ a(x), b(y), Alx,y)} < s inf{c(x), d(y), B, )}, (22)

if and only if the following inequality holds
sup{a(x), b(), Alx,y) } < inf{c(x), d(y), B(x,y) } (23)

forallxe XandyeY.

PROOF. Since inequality (23) holds for all x € X and y € Y, directly, quantifying this
inequality we obtain the preceding inequality (22). On the other hand, if (22) holds, we
assume that inequality (23) does not hold. Then there is some x, € X and y, € ¥ such
that

o= inf{c(xo), d(yp), B(xo,yo)} < sup{a(xo), b(yy), A(xo,yo)}:= B.

Thus, we obtain the following consequences,

inf{ c(x), d(y), B(x, y) } < a < p< sup{ a(x), b(y), Alx, ) }

for all x € X and for all y € Y. Quantifying the inequalities we obtain the following
inequality

SEp inf {c(x), d(y), Blx,y) } < k3 sup{a(), b(y), Ax, y) }

which is a contradiction with (22). Thus, this statement is proved.

As an immediate consequence of the preceding statement we obtain the following
statement.

THEOREM 7. Let (L, <) be a lattice with zero and unit, and let A, B: XxY > L (X and

Y are arbitrary nonempty sets). Then for some arbitrary mappings a,c¢: X — L and
b,d:Y — L the following inequality holds

inf sup{a(x), b(y), A(x,y)} < Ssup SUP{C(-’C), d(.}’), B(x,y)},
xeX yeY xeX,yeY

if and only if the following inequality holds .
sup{a(x), b(y), Alx,y) } < sup{e(x), d(y), B(x,)}, (24)

for allx eX and y €Y.

At the end of this section, we give a separation statement for separation of the
preceding inequalities.

THEOREM 8. (Separation of Inequalities). Let L be a lattice with the order relation <,
with zero and unit, and let the functions ¢: X > L and 6:Y— L (X and Y are two

arbitrary nonempty sets) satisfy the inequality b(y) < c(x) for all xeX and yeY. Then
the following inequality holds
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inf b(y) < sup ¢(x) (25)
yeY X€E

if and only if there exist functions A,B: XxY—>L, a:X—>L and d:Y —L such
that the following inequalities hold

a(x) <Alx,y) <b(y) <c(x) <B(x,y) <d(y), (26)
for allx eX and for all y €Y.

PROOF. Let inequality (25) holds, and let a:= in£ b(y) and B=supc(x). If we define
ye€ xXe

functions A(x,y) = a(x) = @ and B(x,y) = d(y) = 3, we obtain, directly, that inequalities
(26) hold. On the other hand, if the inequalities (26) hold, from Theorem 6 and
inequality (23), we directly obtain inequality (22), ie., inequality (25) of this
statement.

4. VON NEUMANN'S MINIMAX THEORY

John von Neumann's Minimax Theorem [42] can be stated as follows: if X and Y
are finite dimensional simplices and f'is a bilinear function on X x Y, then f has a saddle
point, 1.e.,

st iy (x, y) = L (x, ¥). (27)

There have been several generalizations of this theorem. Ville [61] and Wald [66]
extended in various ways von Neumann's result to cases where X and Y were allowed
to be subsets of certain infinite dimensional linear space. The functions they
considered, however, were still linear. Shiffman [53] seems to be the first to consider
concave—convex functions in a minimax theorem. Kneser [26], Fan [18] and Berge [8]
(using induction and the method of separating two disjoint convex sets in Euclidean
space by a hyperplane) got minimax theorems for concave—convex functions that are
appropriately semi—continuous in one of the two variables. Although these theorems
include the previous results as special cases, they can also be shown to be rather direct
consequence of von Neumann's theorem. Kakutany [29] and Nikaido [44], on the other
hand, using Brouwer' s fixed point theorem, proved the existence of a saddle point for
functions satisfying the weaker algebraic condition of being quasi concave-convex, but
the stronger topological condition of being continuous in each variable.

Thus, there seems to be two essential types of arguments: one uses some form of
separation of disjoint convex sets by a hyperplane and yields the theorem of Kneser-
Fan, and the other uses the fixed point theorem and yields Nikaido' s results.

In [52], Sion unified the two streams of thought by proving a minimax theorems
for a function that is quasi-concave—convex and appropriately semi-continuous in
each variable. The method of proof differs radically from any used previously. The key
tool used is a theorem due to Knaster, Kuratowski, Mazurkiewicz based on Sperner's
lemma.
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In [24] and [14], Sion' s minimax theorem is extended for non—compact sets, and
for certain two person zero — sum games on constrained sets a sequential
unconstrained solution method is given.

Granas and Fon-Che Liu [23] discuss some new general minimax results which
are of von Neumann's type too.

In connection with the preceding, evidently, our statements of separation give
methods for proof of all theorems of von Neumann's type. Thus, this new minimax
convex theory extends the theory of von Neumann's type. In this section we give
proofs for the preceding facts.

Let f be a real-valued function defined on the product set X x Y of two arbitrary
sets, X, Y (not necessarily topologized). The function f is said to be convex on X, if for
any two elements x,,x, € X and two numbers ¢; 29, {20, with ¢, + ¢, = 1, there
exists an element x,e€ X such that flx, y) < flx;,y) + & flx,,y) for all yeY.
Similarly, f is said to be concave on Y, if for any two elements y,,y, € Y and two
numbers 7,20, 7,20 with 7, + 7,=1, there exists an y,€Y such that
flx,yy) 2 n, flx,5,) + n,yflx,y,) for all x € X. Recall that a real valued function f: X 5> R
on a topological space is lower (respectively upper) semicontinuous if {x € X : flx) > r}
(respectively {x € X : flx) < r}) is open for each r € R; if X is a convex set in a linear
space, then [ 1s quasi—concave (respectively quasi—convex) if {xeX:flx) > r}
(respectively {x € X : flx) < r}) 1s convex for each r € R.

The following result of Sion [52] is the best representative of von Neumann's
theory.

COROLLARY 3. ([52]). Let XcE and Y c F be two nonempty compact convex sets in
linear topological spaces E and F, and f:XxY 5> R be a real-valued function

satisfying:
(a) ¥y flx, y) 1s lower semicontinuous and quasi-convex on Y for each x € X:

(b) x> flx, y) is upper semicontinuous and quasi-concave on X for each y € Y.

Then the following equality holds

max min f(x, y) = min max f(x, y).
xeX yeY f( y) yeY xeX f(x y) (28)

We shall use the notation as in [564]. Let (P, <) be a partially ordered set. For
x,y € P and x <y, the set Jx, y[ is defined by |x,y[ := {¢ | tePand x < ¢ < y}. Call a
poset P conditionally complete when every nonempty subset of P with upper bound
has its supremum in P. The proof of this fundamental statement in von Neumann's
minimax theory we begin with the following essential lemma.

LEMMA 4. (Coincidence Lemma). Let (P, <) or Jx,y[ be a conditionally complete
partially ordered set and let f, g : P —» P be two mappings such that
a <b implies [/la), g(b)] < [a, b], foralla,b e |x, y|. (29)

If for a # b the preceding inclusion ¢ is strict, then there exists a point ¢ € P with
the property 1) = g({) = ¢
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PROOF. From condition (29) we have a < fla) < g(b) <b. Applying again condition (29)
we get the following relations (inequalities):

a<fla) <f%a) <..<g%b) <gb) <b. (30)

Hence the set Pf:= {a, fla), f%(a), ...} is nonempty and bounded from above, and
= sup P/ exists, by conditional completeness of P (or lx, ¥[). Also, flP/)c Pl. Since
x < s for all x € P/, we have x < flx) < f(s) for all x € P/. Hence f(s) 1s a majorant for the
set flP/). Also, from the preceding inequalities, we have s < sup flP/) < fls). Thus
s € Plcx,y[. Applying condition (29) it follows that fls) £s. We conclude s = f(s).
Further, let g = (b, g(b), g%(b), ...}. Hence the set P, is nonempty and bounded from
above and I = Inf P, exists, by conditional completeness of P (or |x,y[). Also
g(P, )cP and / <g(x) <x for all x € P,. Analogous to the proof of the preceding fact,
dually we have further that g(I) = I w1th property s <1, If s < I (strictly), then from
condition (29) we obtain [f(s), g(I)] = [s,I] which is in contradiction with strict
inclusion [f(s), g(I)]c[s,I]. We conclude s = I, i.e., there exists point (e P with
property f(¢) = g(£) = ¢. This completes the proof.

PROOF OF COROLLARY. (Application of Theorem 4 and Lemma 4). Because of upper and
lower semicontinuity

p(x):=min f(x, y) and q(y):= max f(x, y) exist for eachx € X and y € Y.
yeY xeX
On the other hand, since p(x) < flxy) < q(y) for all x € X and for all y € Y, we obtain
the following inequalities

p(x) < max p(x) <ming(y)<q(y), forallx e Xandy e Y.
xeX yeY

Suppose that p(x) #qg(y) for all xe€X and ye Y. Then we can find a strictly
increasing sequence of real numbers a_ = p(x_) for a<w, and a strictly decreasing

sequence of real numbers &_ = g(y ) for a<w, where w is any (finite or transfinite)
ordinal.

Since X and Y are two nonempty compact (convex) sets, we obtain, also, that p(X)
and g(Y) are two nonempty compact sets. Thus p(X)ug(Y) cR is a conditionally
complete set. We define two mappings F' and G from p(X) u ¢(Y) into itself by

=F(a), a,= G(a,, bﬂ= G®b,) and b =F(b ) for a< f<w,

where w is any (finite or transfinite) ordinal. It is easy to see that F' and G satisfy all
the required hypotheses in Lemma 4. Applying Lemma 4, in this case, we obtain that
then there exists a point ¢ e p(X)uq(Y) with property F({) = G({) = £ From the
construction of functions F and G it follows that point ¢ must be element of
p(X) N q(Y), ie., e pX)nq(Y). On the other hand, if we define a function g:R? 5 R
by

g(s, t) =© €| max p(x), ming(y) | (31)
| yeY xeX
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it is easy to see that all the required hypotheses of Theorem 4 are satisfied and we
obtain that equality (19) holds, which is equivalent, In this case, with the equality (28).
The proof is complete.

In connection with the preceding, from the proof of Corollary 3 and from
Theorem 4, we have directly two following statements:

THEOREM 9. Let X E and YcF be two nonempty compact sets in the topological
spaces E and F; and let f: XxY — R satisfy:

(a) For each fixed x € X, f(x, y) is lower semicontinuous on Y, and f is a mapping of
Y onto R.

(b) For each fixed y € Y, f(x, y) is upper semicontinuous on X, and fis a mapping of
X onto R.

Then the equality (28) holds.

THEOREM 10. Let X~ E, YcF and Zc G be three nonempty compact sets in the
topological spaces E, F and G; and let f: X x Y xZ — R satisfy

(a) For each fixedx € X and y € Y, f(x, y ,2) is lower semicontinuous on Z, and f'is a
mapping of Z onto R.

(b) For each fixed z € Z, f(x, y ,2) is upper semicontinuous on X and Y and f is a
mapping of X, Y onto R.

Then the following equality holds

max minflx, y,z)=min max X, &)
xeX,yeY zeZ f( 44 ) zeZ xeX,erf( & )

The proof is analogous to the proof of the preceding statements.

5. MINIMAX INEQUALITIES

In this part we establish some minimax inequalities in topological spaces, as
consequences of former results of separation for inequalities.

As an immediate consequence of Theorems 6 and 8 we obtain the following result.

COROLLARY 4. ([22]). Let k,h: XxY > R (X and Y are two nonempty compact convex

subsets in linear topological spaces A and B, respectively) be two real-valued functions
such that

k(x,y) <h(x,y) forallxe Xandye.

If x> k(x,y) is upper semicontinuous and quasi-concave on X for each y € Y and
if ¥y h(x,y) is lower semicontinuous and quasi—convex on Y for each x € X, then

inf sup k(x, y) < sug ing h(x, y) (32)
Ye

yeY xe xX€E

PROOF. (Application of Theorem 8). Because of upper and lower semicontinuity

p,*(-r)=ir;1f, i(x, y) and qi(y)=fgi(x, y) fori =k, h.
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exists for eachx e Xandye Y. Since p,,(x) < k(x,y) <q,(y) <p,(x) < h(x, y) < q,, () for all
xeX and ye Y, it is easy to see that all the required hypotheses of Theorem 8 are

satisfied. Applying Theorem 8 we have the preceding inequality (32) of Granas and
Fon-Che Liu.

Also, as an immediate consequence of Theorems 7 and 8 we obtain the following
results of Granas, Fon—-Che Liu and Ky Fan.

COROLLARY 5. ([22]). Let X be a nonempty compact convex set in linear topological
space E and Y be a subset of E containing X. Let f,g:XxY —> R be two real-valued
functions satisfying the following inequality

[lx,y) <glx,y) forallx e Xandye Y,

where x> g(x,y) 1is quasi-concave on X for each ye Y and y flx,y) is lower
semicontinuous on Y for each x € X. Then

inf sup f(x, y) < sup g(x, x)

yeY x xX€E

We remark that, in case X = Y, Corollary 5 gives a generalization of the Ky Fan
Minimax Inequality due to Yen [64].

COROLLARY 6. ([18]). Let X be a nonempty compact convex set in a linear topological
space E and Y be a subset of E such that Xc Y. Assume f: XxY — R is a real-valued
function such that y flx,y) is lower semicontinuous on Y for each x € X and
x - f(x, y) is quasi—concave on X for each y € Y. Then

inf SLGI‘B flx, y)< sug fl(x, x).

yeY x xe

6. EXISTENCE OF TRANSVERSAL POINTS

In connection with the preceding, in this part we continue the study of the
preceding minimax problems. In this section we consider a concept of transversal
points for the mapping f of a nonempty set X into partially ordered set P. A map fof a
nonempty set X into partially ordered set P has a transversal point ¢ € P if there is a
decreasing function g : P> - P such that the following equality holds

max min{ 7(x), f(5), &(£(x), () } =

x,yeX

min max{ f(x), f(y), g(f(x), f(%)) } :=¢ (33)

x,yeX

On the other hand, in our paper [55] we investigated the concept of fixed apices
for a mapping f of a set X into itself. A map f of a set X to itself has a fixed apex « € X if
for u € X there is v € X such that f(u) = v and f(v) = u. The points u, v € X are called
fixed apices of f if flu) = v and f(v) = . In this sense, 4 nonempty set X is apices set if
each of its points is an apex of some mapping 7': X > X. If 7:8" - 8" is the map
such that 7x = -x for x € §”, then §” is an apices set.

Otherwise, a function f:X—> P has a Sl-transversal point if the preceding
equality (33) holds with sup and inf instead max and min, respectively. If the preceding
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equality (33) holds for points x, —x € X (X is a linear space) ¢'1s A-transversal point;
more generally ¢ is R-transversal point for f:X— P if the equality (33) holds for
points x, Tx € X. A function f:X—>P (X 1Is a linear space) has a pair of antipodal
points p, —p € X if the following equality holds fip)=f(-p).

We note that from the second section, i.e., from Corollary 1, we obtain that the
function flx)=idg:R—> R has a transversal point {€R if and only if for some
decreasing function g: R*—> R we have g(¢{, ) = ¢

Let E be the normed space of all those sequences x = (x4, Xy, ...) of real numbers

having at most finitely many x_# 0, with the norm ||x || = le |. The subset {x € £ |
x. = 0 for all i>n} is denoted by E™ or R™; the unit n-ball is V* = {x e E" : ||x || £ 1}.
lhe unit n-sphere S*= {xeE"*l:|x| =1}; its upper hemisphere is
S.,"={xeS":x,_,20}, and its lower hemisphere is S " = {x € S" : x, . ; < 0}; clearly
S*=S8.," uS ™ Observe that for any k£ < n, we have

= (0}
n+l
and that S 1=S," nS_". Recall that a map f:S8" - S" is antipodal-preserving if
fla) = alf), for some a:S™ —> S,

Results equivalent to the Lusternik Schnirelman and Borsuk statement use the
notions of extendability and homotopy in their formulation. For the convenience of the
reader, and to establish the terminology, we recall the relevant definitions. By space

we understand a Hausdorff space; unless specifically stated otherwise, a map is a
continuous transformation.

Let X, Y be two spaces and AcX. Amap f:A —Y is called extendable over X if
thereisamap F: X > Y with FIA = f. Two maps f,g: X — Y are called homotopic if
thereisamap H:XxI—> Y with H(x, 0) = flx) and H(x, 1) = g(x) for each x € X. The
map H is called homotopy (or: continuous deformation) of f to g, and written H:f=g.
For each ¢, the map x —» Hl(x, 1) is denoted by H,:X > Y; clearly the family (H)),_,.,

determines H and vice versa. Thus, the relation of homotopy decomposes the set of all

maps of X into Y into pairwise disjoint classes cailed homotopy classes and f: X > Y
homotopic to a constant map is called nullhomotopic.

Sk = {x e S™| Xprog= .o =X

We now prove Borsuk's antipodal theorem and also show that it is equivalent to
various geometric results about the n-sphere.

THEOREM 11. Let S" denote the n-sphere. Then the following statements are
equivalent:

(a) (Lusternik-Schnirelman-Borsuk theocem). In any closed covering

My, ..., M} of S" by (n+1)-sets, at least one set M; must contain a pair of
antipodal points.

(b) (Borsuk antipodal theorem). An antipodal - preserving map f: S*! - S§*1 is
not nullhomotopic.

(¢) (Borsuk-Ulam type theorem). Every continuous map f:S8" - R sends at
least one pair of antipodal points to the same point.

(d) ([56]). Every continuous map f: 8" — R has at least one A-transversal point.
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In connection with the proof of this sta’ement, first, we note that the following
fact holds.

LEMMA 4. Let f:S8" - R" be a continuous mapping. Then f has an A-transversal
point if and only if all projections pr'(f) : S* ~ R defined by pr'() = pri(a,, ..., a,) =
(z =1, ..., n) have an A-transversal point.

PrOOF. If f has an A-transversal point {e R", then from Theorem 2, we obtain
C:=f(t) = fi-t) for some teS™ Thus, pt(ft)) = pri(fl-t)) for some teS" and
i =1,..,n. Therefore we choose for g:R?* - R the function g(s, ) = n:=
pri(f()) = pr'(fi-t)), such that g(n, n) = n. Thas, from Theorem 2 we obtain that all
projections of f have an A-transversal point. On the other hand, if all projections of f
have an A-transversal point ne R, from Theorem 2, we obtain 7:= pr(fl{)) =
pri(f(-t)) for some t € S®” and i = 1, ..., n. Again applying Theorem 2, analogous to the
preceding case, we choose for g: R? x R® - R the function g(s, t) = {:= fit) = f(-1) for
some { € 8™ and we obtain that f has an A-transversal point.

PROOF OF THEOREM 11. From Dugundji-Granas [17], Ea) 1s equivalent to (b), Thus, we
need only to show that (b) implies (¢), (¢) implies (d) and that (d) implies (a).

" First, (b) = (c). Assume f:S8" > R is such that flx) # f(-x) for every x e S”".
Define F: 8" —» S* 1 by

J@-ra)]
S

Then F|S™1:8"1 8% 1 is antipodal-preserving and, since F|S," is an
extension over V", F|S"1 would be null-homotopic, contradicting (b).

Second, (¢) = (d). Suppose that the map f:S" - R does not have A-transversal
points, i.e., assume f:S" - R is such that

max min{ f(x), f(~x), g(f(x), f(-=)) } #

xeS"

min max { f(x), f(~=), &(f(x), f(~=)) }, (34)

xeS

On the other hand, from (¢) f has a pair of antipodal points such that f(¢) = f(-f)
for some ¢t € S™. Thus, from Theorem 2 (Minin_lax Principle) for ¢ := f({) = fl-t) and
some decreasing map g : R? > R the following equality holds

max min { f(x), f(~#), £(f (x), f(-x)) } =

xeS”

mu% max { f(x), f(—x), g(f(x), f('x)) }r

xeS

contradicting (34). Thus, f:S* >R has at least one A-transversal point, ie., (d)
holds.

Third, (d) = (a). Assume there were some closed covering M, ... ,M, ., of S" with
no M. containing a pair of antipodal points, i.e., M;n a(M,) = @ for each i, where
a(x)—-x Let h.:S™—[0,1] be a function with A, LM =0 and h|M.. ,=1 for each
p= 1, s T Deﬁne h:S" 5 R" by hix) = (h,(x), ..., h,(x)). Then, according to (d) all
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projections of h have an A-transversal point. Tl-srefore, from Lemma 4, we obtain
that » has an A-transversal point. According to Theorem 2, there must be a z € 5"
with h(z) = h(a(2)), so that h.(2) =h,(az)) for i=1,..,n and therefore

n+1

._, cover S", the point

ze St - OM‘ — UG((MJ Since both {Ml'}?:ll and {O‘(M;)}
g=t] 1=1

z € S" must belong to bothM_ ., and a(M, ,,), which is the desired contradiction.
This completes the proof.

In the connection with the former results of Lusternik, Schnirelman, Borsuk and
Theorem 11, as an immediate consequence we obtain the following fact.

COROLLARY 7. Let S" denotes the n-sphere. Then the following statements are
equivalent:

(a) (Borsuk-Ulam Theorem). Every continuous map f:S8” - R" sends at least
one pair of antipodal points to the same point.

(b) ([56]). Every continuous map f: S™ — R has at least one A-transversal point.

On the other hand, analogous to the preceding statement, we obtain the following
extension of the former results.

THEOREM 12. Let X be an apices set in sense of fixed point free map 7': X - X and let
Card X = continuum; then the following statements are equivalent:

(a) In any closed covering {M,, ... , M, ,} of X by (n+1)-sets, at least one set M,
must contain a pair of points x, Tx e X. ‘

(b) Every continuous map f:X — R has at least one pair of points p, Tp e X
such that f(p) = AATp).

(¢) Every continuous map f: X — R has at least one R-transversal point.

The proof is analogous to the proof of the preceding Theorem 11.

In connection with the transversal points, in this part we consider some other
concepts of points for the mapping f of a nonempty set X into a partially ordered set P.

Amap f: X — P has a furcate point { € P if for some function T : X - X the following
equality holds

max min{ f(z), f(Ty) } = min max{ f(x), f(Ty)} :=¢ (35)
x,yeX X, yeX
Otherwise, a function f:X — P has a SI-furcate point if the preceding equality
(35) holds when instead max and min stand sup and inf, respectively. If the preceding
equality (35) holds for points x, -x € X (X is a linear space) then ¢ is A-furcate point;

or generally ¢ is R-furcate point for f:X — P if the equality (35) holds for points
x, I'x € X.

From the sezond section, i.e., from Theorem 3, we obtain that for the function
[:X— L (X is an arbitrary nonempty set and (L, <) is a lattice) the following

inequalities  hold inf { flx), ATy) } < flx,) = [Ty, <sup { ix), ATy)}, for some
Xy Yo € X and for all x, y € X,
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Thus, if f: X — L has an R-furca‘e‘poin* then f has at least one pair of points
p, Tp € X such that f{p) = fiTp). Reverse does ..ot hold. Figure 3 shows the mapping f

of complete lattice I into itself with f(p) = f{lTp) for some p € I, but without furcate
points.

Figure 3.

For two mappings f: X -5 P ¢#nd g:Y > P (X and Y are arbitrary nonempty sets
and P is a partially ordered set) we have commr ¢ (coincidence) furcate points. Namely,
two mappings f: X —> P and g:Y —> F have a coincidence furcate point { € P, if the
following equality holds

xé}li’iymin{f(x)’ g(y)}=x€1£f;leymaX{f(x), gly)} :=¢

In general, the mappings f;: X. > P ( =1, ..., k) (X, are arbitrary nonempty sets
and P is a poset) have a coincidence furcate point { € P if the following equality holds

max  min{ f(x,),...,f(x)}= min  max{f(x),...,f(xx)} :=¢

X, EXI,...,xkEX, Ilexl,...,x* EX,

We notice‘ that from Theorem 3, we obtain that the function f:X —> P and
g : Y - P have coincidence furcate poing if and Caly if the following inequalities holds

min{ f(x), gly) } <flxg) = glyo) < max{ f(x0), &(x0) },

for some x, € X, y, € Y and for all x € X, y € Y. in connection with this, we notice that
there are some continuous functions f,g:1—>1 (Figure4) which map compact
interval into itself, but f and g have not coincidence furcate points.

Figure 4.
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It is also possible to introduce the concept of general transversal point in the
following sense: the function f: X — P (X 1s a nonen.pty set and P a poset) has a quasi
transversal point £ € P, if for some function g : P? 5 P the following equality holds

max min{ £(x), f(5), &(f(x), F() | =

x, yeX

min max{ 7(x), (), g(f(x), f()) ] :=¢

x, yeX

If in this equality g(f(x), f(y)) = gy,lx,y) then ¢ is TD-transversal point. In
connection with this see paper of Arandelovi€ [5].

We notice, from Theorem 3, that mapping f:X — P has a general transversal
point ¢ € P if and only if the following equality holds

min{ £(x), 7(y), g(f(2), f(5)) } <
flxo)=rf(y) :=¢=g(¢ ¢ <
max{ £(x), F(»), g(f(x), F(»)) },

for some x,, ¥, € P and for all x, y € P. Also, we can introduce SI-general transversal
points, A-general and R-general transversal points.

7. GENERALIZED CONVEX FUNCTIONS

In this section we introduce and consider a new concept of convexity. First, we
introduce a concept of e~general convex functions and general convex functions.

In second part we prove a stability theorem of Hyers-Ulam type for general
convex functions. First, we prove an extremal principle. Hyers and Ulam [25] have
introduced the notion of approximately convex function. A function f: D - R where R

denotes the real line and D is a convex subset of R", is said to be g-approximately
convex provided it satisfies the inequality

fUx + (1-A)y) S L flx) + (1-2) fly) + &,

for allx, y € D, for all A € [0,1], and some & > 0. For £ = 0 the definition reduces to that
of convex function. On the other hand, in what follows we assume that D is nonempty

convex subset of R" and ¢ is a positive constant. Recall that a function f:D —> R is
said to be g~quasiconvex if

[(Ax + (1-A) y) < max { flx), f¥) } + &,

for allx, y € D, and all A € [0,1]. For & = 0 this definition reduces to that of quasiconvex
function, cf. Roberts—Varberg [49].

In this section we introduce and consider a concept of &-general convex functions.

Recall that a function f:D — R is said to be s&~general convex if for some & > 0 there
is a function g :f(D)? - R such that

[(Ax + (1-4) y) < max { fix), fy), (), f¥) } + &, (36)

for all x, y € D, and for all A € [0,1]. For & = 0 this definition reduces to that of general
convex function.
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We notice that the set of all convex and quasiconvex functions can be a proper
subset of the set of all general convex functio=s. £1so, an s-quasiconvex function is an
g-general convex function. If the preceding i :equalities hold for all x, ye D and 1 = ¥

then f(x) is &-general J-convex function, and for &= 0, flx) is general J-convex
function.

On the other hand, recall that a fuacion f:D - R is said to be s-general
concave if for some & > 0 there is a funct’'on g : flr’)? - R such that

min { flx), Ay), 8(fx), f¥)) } + & < fllx + (1-2) y) (37)

for all x, y € D and for all A € [0,1]. For ¢ = ( (his definition reduces to that of general

concave function. If f 1s general convex ai.d _2neral concave function then f is general
inner function.

7.1. AN EXTREMAL PRINCIPLE

Let X be a Banach space and let f: M - R U {+} be a map from a closed convex
set M in X, and set

M, := {x e M | max { f(x), g(f{x), fx)) } < ¢}

where g:f(M)? >R is a continuous funcu~n. The map [ is called g-lower
semicontinuous if the set M; is closed for all ¢t € R; and the map f is called g—quasi
convex if the set M; is convex for all £ € R.

Let f: M — R be continuous and convex on a closed, convex set M in the Banach
space X. Then the map f is both g-lower semicontinuous and g—quasi convex. Indeed,
the map f is g—lower semicontiauous, for ir (x,) is a sequence in M, such that x —x

as n — o, then x € M. The map f is also g—quasi convex, for if x, y € M,, then for all
A e [0,1],

flix + (1-A) y) < max { f(x), fiy), 8(flx), fy)) } <1,
which means that Ax + (1-1) y € M, so that M, is convex.

LEMMA 5. (Extremal Principle). Let X be a reflexive Banach space, and let M be a
nonempty, closed, bounded and convex set in X. If f: M —> Ru {+o} 1s a g-lower
semicontinuous and g—quasiconvex function, than f has a minimum on M.

PROOF. The set M is weakly compact, because M is bounded, closed and convex set 1n
reflexive Banach space X. Further, M, is closed and convex, and hence weakly closed.
Therefore fis g-lower semicontinuous in the weak topology on M. The conclusion now
follows from the Weierstrass theorem.

7.2. APPROXIMATELY GENERAL CONVEX FUNCTIONS

The classical stability theorem of Hyers and Ulam [25] states that, if f: D — R 1s an &-
convex function, where D is a convex subset of R"?, then there exists a convex function

n:D—->R such that 7#nx)<flx)<nkx)+k,e for all xeb, where
k, =1+ (n-1) (n+2)/2 (n+1), ie., where the constant k depends only on the
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dimension of the domain. Also, Nikoder» [45] hastroved a stability theorem of Hyers-
Ulam type for quasiconvex functions.

In this section we prove an analogous statement for general convex functions.
Assume that f: D — R is an e-general convex function and consider the level sets

L := {x € D|max { flx), g(flx), flx)) } <a},
for a € R where g:fiD)? > R. It is clear that U,_p L, = D, and for a <b we have
A | '
We are now in a position to formulate the main statement.

THEOREM 13. If a function f: D — R is e&-geaera.‘convex function, then there exists a
general convex function n:D — R such that

n(x) < flx) £ n(x) + ek(n),
for all x € D, where k(n) := [log,” ] + 1 a. d D is a convex sabset of R".
We note, if x,,...,x_,,€L, for ceR, meN, w.ere a,..,a,,,€[0,1] and

ay+..+a, =1 thenax,+..+a, % .1€L, . pt-n) Wherek(m) = [log,"] + 1.

PROOF. By induction we can show that a,x, + ... + agsxos€ L for all s N and

a+eEs
assume thatx,, .., x, €D, a,..,q, €[0,1] and a, + ... + a, = 1. Take the minimal
s € N such that m + 1 <2°. One can easily check that s = [log, m] + 1 := k(m). In the
casem +1<2%letusput a,,,=..=ays=0 and x_ ., =..=2x,s:=x,. Then by
the preceding fact, we obtain Xyt ot @y 1 X1 = Xyt Agsxgs€ L o

and the proof is complete.

PROOF OF THEOREM 12. By the Caratheodory theorem ([49]) x = ax, + ..+
A, 41X, 4+ for some x,,..,x ., €L, and a,,..,a, € [0,1] with a, + ... + a1 = 1,
where we take an a € R such that x is included in co ivex hull of L, i.e., x € conv L.
From the preceding facts we get xe L, _ k(n» Which means that flx) <a + &(n) for
every a € R. Since this inequality holds for every a € R such that x € L_, we have also

the following inequality
fx) <inf{aeR|xeconvL } + sk(n). (38)

Let us define a function 7:D — R puttirg nx) :=inf {aeR | x e conv L _}, for
x < D. By (38) we obtain flx) < n(x) + &(n), for all xe D. Since {aeR | xel }c
faeR|xeconvl }, we have h(x)<inf {aeR|xe L. } = flx), for all x € D. Now we
shall show that » is a general convex function. Assume that 7(x) < n(y) for x, y e D.
T'ake an arbitrary ¢ > max { n(y), g(n(y), () }. Then, by the definition of n(y), there
exists and a <{ such that ye conv L,. Also, then yeconvL, because L ek,
Analogously we show that y & conv L,  Hence Ax + (1-4) y € conv L, for every A € [0,1].
Since this relation holds for all ¢ > max { fly), g(A), Ay)) }, we obtain

NAx + (1-2)y) = inf{te R| Ax + (1-A)y e conv L, } <
nly) < max { n(y), g(n®), nly)) }.

This shows that 7 is a general convex function and the proof is complete.
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8. MISCELLANEOUS RESULTS AND PROBLEMS

This part is given in the form of exercises at the end of the paper. It describes

extensions and related developments of the theory and indicates further applications
not treated in the text.

8.1. NEW MATHEMATICAL GAMES

Game theory is a mathematical search for the optimal balance of conflicting
interests, such as between two partners. As such, it is applicable to a wide variety of
situations: social games, economic competition between organizations, conflicts in
nature, and so on. The optimal strategies for both partners turn out to be described by
saddle points, whose existence we established in Section 4. This key observation goes
back to John von Neumann [41].

In new mathematical games, the optimal strategies for both partners turn out to
- be described by transversal points, whose existence we established in Section 6.

Let (P, <) be a totally ordered set and let g : P2— P be a decreasing mapping. We
consider two players, A and B. Players A and B have available sets of strategies X ¢ P
and Y c P, respectively. Each point x € X and y € Y represents a possible choice by A
and B, respectively. If A chooses x, and B chooses y, than the function
(x,y) >max {x,y,g(x,y)} represents the gain by A and the function
(x,y) > min {x, y, g(xy) } represents gain by B. The point {€ P is called an optimal
strategy if the following equality holds

£= max min{x,y glx,y)}= min max{x,y,g(xy)}
xeX,yeY xeX,yeY

We note that the existence of optimal strategy is established in Corollary 1.

On the other hand, we can consider ¢he following game with the decreasing

function g(x, y). In this sense, the point { € P solves the game if the following equality
holds

&= max min g(x, y) = min max g(x, y).
sx y<¢ ys¢ (=x

The existence of optimal strategy we estabiished in Theorem 5.

Finally, let (P, <) be a totally ordered set, let g:P*—> P (k is a fixed positive
integer) be a decreasing function and consider players A,, ..., A, with sets of strategies
X, ..., X, in P, respectively. Each point 4, € X, ... , 4, € X, represents a possible choice
by A,, ..., A,, respectively. The point {' € P is called an optimal strategy, in this case, if
the following equality holds

= max  min{Ay,..., A g4y, ..., 4) | =
min max{/ll,...,lk,g(il,...,/lk)}.

We notice that the existence of optimal strategy we established in Theorem 2,
case (16).
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8.2. GENERAL TRANSVERSAL POINTS

In connection with former facts on transversal points, we have the following

extensions. A map f:X — P (X is an arbitrary nonempty set and P is a poset) has a
ceneral transversal point ¢ € P if there is a decreasing function g: P* —» P (k is a fixed

positive integer) such that the following equality holds
maxmin{ f(x1),..., f(xe), &(F(x1)-... Flxe) =

\ minepmax{f(xl),...,f(xk), elf(x). flx)) } :=¢ (39)

From the second section, 1.e., from Theorem 2, case (16), we ‘obtain that the
function f:X — P has a general transversal point if and only if f(¢,) = ... = f(¢£)) :=
¢ =g(CG, ... y ¢) for some iy, ..., 1, €L,

On the other hand, a map f: X —» P (X is an arbitrary nonempty set and P is a
poset) has a quasi general transversal point ¢ € P if there is a function g: P*—> P (k is
a fixed positive integer) such that the equality (39) holds. Also, from the former
results, we obtain that the function f:X — P has a quasi general transversal point if
and only if the following equality holds

min{f(ﬁ):---:f(-"’&):g(f(%)y---:f(xk))}5
flt)=...=f(t) =¢=8(5..., 9=
max f(xl),...,f(xk),g(f(xl),...,f(xk))}

for somet,, ..., t, € Pand for allx,, ..., x, € P.

(40)

If the function g:P*— P (k is a positive integer) is a decreasing function with
the property f(¢,) =..=f,):=¢{=g( .., for some £15 .yt €FP; then; from
Theorem 2 (case (16)) and Lemma 1, we obtain that the preceding condition (40)
holds.

8.3. ROOTS OF ALGEBRAIC EQUATIONS

We note that, by the application of Lemma 1 (in fact of (4), i.e., (10)), one can
simultaneously obtain the upper and lower bounds of the roots of the equation
( n \
x“"=a]:x:”_’1+o:12:.1c“"2+...+aﬂ Oy cns yline Zai>0 , (41)
| \ =1 J

As an immediate consequence of Theorem £, case (16), we obtain the following
statement.

THEOREM 14. A point {e R, := (0,+») is the roo* of equation (41) if and only if the
following equality holds
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v . A a a
;= max mins Ao ‘Aﬂ-?al +-l+ + L >
A EO = = A /-iu-l
- | 2 ' ST
f )
: ] Q9 a,
min INAXN " Agy ey Apy @1 =" ..., ?
ST A B
& kW Sl £ { 2 A.ﬂ )

In connection with the preceding facts about transversal points, from
Theorem 14, we obtain that the equation (41) has a root ¢ € R_ if and only if the puint

¢ 1s a general transversal point of the function flx) = id;: R > R.

PROOF. From Theorem 2, case (16), we may choose the function g: P* - P (n € N) for

P:= R _, defined by
do a
g(xl,...,xn)zal +x—-+ M o niil forxl,...,xn ER_,_.
2 Xn

Applying Theorem 2, case (16), we obtain directly the preceding equality for
positive root of equation (41).

THEOREM 15. Let ],, ..., I be indices sets and ©; > 0 be real numbers which satisty the
following condition .

ZO =]t

for;=1,...,n and O<iZ<1l.

| L-n

Then ¢e R, is the root of the algebraic equation x'=ax"" +...

(ay,...,a,) =0, ..,0))1f and only if the following equality holds
( \1/¢t ] r ( \I/2 |
I a . : a
Max min « ijr I = » = IN1N Max ¢ MLJ, o : 5, = £,
pf!,} J=1 l_[ iWIJ o M'J =1 l_[ M
kli.t:'l‘, ) ! /
/ \

PrOOF. In order to prove this statement we may choose the function g:R"_— R_
(n 1s a positive integer) defined by

/ \ 1/t
i X
g ,
\ il )

forxl,...,xn ER+

"

and then apply Theorem 2, case (16).

8.4. METHOD FOR INEQUALITIES

In this part we give a method for proving convex type inequalities. We consider
our general method on the following inequality.
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HOLDER'S INEQUALITY. Let x,y € R_ U {0} and p > 1 such that 1/p + 1/g = 1. Then
the following inequality holds

pyVa < X .Y where equality holds if and only if x = y. (42)

P 49

»

METHOD OF PROOF. In Theorem 2 or Lemma 1, we may choose for function g:P — P,

2
P = R+, the following function g(¢) = (xlfpylfq) /! where ¢=x'Py"9 is a fixed point of

mapping g. Then, from Lemma 1 we have

C= x‘”’y”q < max{ A, g( ) } for arbitraryA eR . . (43)

Thus, for A = x/p + y/q we have two cases. First, if max{ A4, g(4) } = x/p + y/q,
then inequality (42) holds. If not, then from (43) we have

| 2
C= xlpqu.qg(x y]z(xlpylfq)/(i.,.l]_
P 9 P g

But, this is not possible by Theorem 2, since g is a decreasing function, which
tends to zero. Thus, the inequality (42) holds.

REMARK. The method of the preceding proof of Holder's inequality can be used for all
convex type inequalities (Hadamard, Jansen, Abel, Holder, Canchy).

8.5. DOUBLE LIMIT CONDITION

In the following, let X and Y be two nonempty sets and let
a: XxYo|-xa| b:XxY—>|[f+x] (a feR),
be tunctions on the Cartesian product X xY into extended reals [32]. If for all
sequences (x, ) iInXand (y,) In Y

lim sup lim infa(x,,,y,)< lim inf lim supb(x,,, y,)

L —p O 171 —p O I7h ~p O Il =3O

holds, then (X, Y, a, b) 1s said to satisfy the "double limit condition" (DLC fpr short, see
|33]).
Let Py (Py) denote the set of all probability measures on X(Y) with finite support.
We extend a and b on Py- x Py according to
alp, q) = J'a dp®q and b(p, q)= J‘b dp ® q.
XY AxY
As an immediate consequence of Theorem 6, we obtain the following statement.
COROLLARY 8. ([32)). (X,Y, a,b) satisfies the DLC if and only if the following
inequality holds
inf SUB (p,q)< su E mf b(p, q)

qelp pe qe Py

for all nonempty subsets ScXand T'c Y.
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We note, that Kindler gets the following Ptak's combinatorial lemma as a special
case, see [32].

COROLLARY 9. ([48]). Let F' be a nonempty system of subsets of an infinite set Y. Then
there is an infinite 7' c Y such that

inf G)>0
i)

if and only if there exists sequences (G,) in F and (y,) in Y such that y are distinct
and {y,,....y,,} € G,, for every m € N.

8.6. AN ILLUSTRATIVE EXAMPLE

From the proof of Corollary 3 it is easy to sec that if f satisfies the condition (28)
then f also satisfies the condition (33).

Now we shall give an example which shows that there exists such mapping which
does not satisfy (28), but satisfies the condition (33). Let f(x, ¥) be a mapping defined
by flx,y) = x for all x,y € R, where R denotes the real line. The mapping f does not
satisfy (28) on whole R, but it satisfies (33) for every decreasing mapping g: R* - R

with property g(&, &) = &
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