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1. INTRODUCTION
•

The problem of fixed point for a given mapping r of a partially ordered set P to
itself is very easy to formulate: the question is if some (E P vermes f«(.) = (. It is
interesting that many problems are reducible to the existence of fixed points of certain
mappings. The question remains whether each statement could be equivalently
expressed in the fixed point language as well. The answer is affirmative, the answers

•

were given in [55].

Let X and Y be Hausdorff topological spaces and 8 , T : X ~ Y two set-valued
transformations from X to Y. The coincidence problem for (8, T ) is concerned with
conditions which guarantee that the pair (8, T) has one or more coincidence points,
that is points (xo' Yo) E X x X such that 8 Xo("\ Tyo is nonempty. Geometrical problems
of this type in an approximate context turn out to be intimately related to some basic
problems arising in convex analysis. This important fact was discovered by J ohn von
Neumann in 1937, who established a coincidence statement in Rn and made a direct
use of it in the proof of his well-known Minimax Principle. -cf [41]. In this sense, in
paper [42] von Neumann investigated the concept of a saddle point for a mapping
[: A x B ~ R, where A and Bare nonempty sets. A point (xo' Yo) E A x B is called a
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saddle point of (: A x B ~ R if

f(xo' y) < {(xo' Yo) < fix, Yo) for all (x, y) E A x B.

This condition is equivalent with the following equality

max min {(x, y) = min max {(x, y),
XEA y EB y EB XEA

i.e., with the following double equality

max {(xo, y) = {(xo , Yo) = min { (x, Yo)'
y EB XEA

Since then, geometr ical problems of a similar kind (as well as their analytic
counterparts) have attracted broad attention and remarkable progress has been made
both in generalizing the original results as well as in finding new applications in a
variety of mathematical areas, see [6] and [18].

In connection with the preceding, in this paper we consider a concept of
transversal points, for the mapping { of a nonempty set X into a partially ordered set P.
A map { of a nonempty set X into a partially ordered set P has a transversal point ~ E P
if there is a decreasing function g : p 2~ P such that the following equ ality holds

max min {{(x), ((y), g({(x), { (y )) } =
x,y EX

min max { ((x),f(y), g({(x),f(y))} :=" (1)
x,yEX

Also, in this paper, we consider some other points of this type. Applications in
•

nonlinear functional analysis, specially, in minmax theory and convex analysis are
considered.

2. FUNDAMENTALS OF NEW MINIMAX THEORY

Let (P ,:5) be a par t ially ordered set by the order ing relation <. T he function
g : pk ~ P (Il is a fixed positive integer) is decreasing on the ordered set P if ai' bi E P
and ai :5 bi (i ;:;;; 1, ... ,k) implies g(bJ> ... ,bk ) :5g(al> .. . , a

k
) .

Let L be a lattice and g a mapping from L2 into L. For any g : L 2~ L it is natural
to consider the following property of local comparability, which means, if ~ E L is
comparable with g(~, () E L then ~is comparable with every t EL.

We begin with the following essential statements.

LEMMA 1. (Sup-Inf Inequalities). Let (L ,:5) be a la t t ice and let g: L 2~ L be a
decreasing mapping. If L has property of local ' comparability, then for arbitrary
functions p: X ~Land q: Y~ L (X and Y are arbitrary nonempty sets) the
following relations are valid:

Hnd

implies ~:5 sup{ p(x), q(y), g(p(x), q(y))}, (2)



M.Taskovic I Minimax theory with transversal points

implies inf { p(x), q(y), g(p(x), q(y)) } s c. (3)
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for all x E X and for all y E Y. Hence, in particular, ( = g «( , () implies

inf { p(x),q(y), g(p(x), q(y)) } :s; (:S; sup { p(x), q(y), g(p(x),q(y)) }, (4)
•

for all x EX and for all y E Y

From assertions (2), (3) and (4) we obtain the following interesting conclusions
(which, incidentally are their equivalent formulations for X = Y) :

implies (:S; inf sup { p(x), q(y),g(p(x),q(y)) },
x,yEX

(5)

and

implies sup in£{ p(x), q(y), g(p(x),q(y)) }:s; c.
x , y EX

(6)

andg«( , () = ( implies the following inequalities

sup inr{ p(x),q(y), g(p(x ), q(y)) }:s; (:S;
x ,y EX

inf sup{ p(x), q(y),g(p(x),q(y))}.
x ,yEX

(7)

On the other hand, we note, that it is easy to construct a decreasing mapping on a
complete lattice which is not a totally ordered set but the property of local
comparability is fulfilled, see Figure 1.

1

•

a

o
Figure 1.

b

Example 1. Let L be the lattice on Figure 1 andlet g: L ~ L be defined by g(O) = 1,
• •

g(a ) = b, g(b) = a, gee) = 0, gel) = 0. Evidently, g is decreasing and the property of
local comparability is fulfilled, but the set L is not totally ordered.
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(9)g (C;, ... , ~) S C;

REMARK. The above statements (Lem ma 1) still h old when g :t) -4 L (k is a fixed
posit ive integer) is a decreasing fu nction . The proof is quite similar; the assertions

correspo nding to (2) and (3) look as follows

C;s g(C;•... ,0 implies C;SSUp{AI' . .. •Ak, g(AI' ... ,Ak ) },and (8)

implies inr{ AI> '" , Ak, g(AI"' " Ak) } s C;

for arbit rary functions AI' ... , Ak : X -. L , where X is an arbitrary nonempty set. Also,

in par t icu lar. C; = g(C;, ... , 0 implies .

inf {AI>' '' ' Ak ' g(AI. ·.. , Ak)} s c;s sup { AI , .. . , Aho g(AI ' . .. , Ak)}, (10)

fur a rbitra ry functions Ai : X L (i = 1, ... ,k), where X is an arbitrary n onempty set.
To s implify the nota t ion we will give the proof only for the case k = 2.

P ROOF OF LEMMA 1. Im plication (2). Let C; S g (C;, 0 and A = sup{ p(x), q(y) }, where the
•

element x EX and y E Y are arbitrarily chosen . If C; S A, then

(S up{ p(x ), q(y),g(p(x ), q(y)) }. for all x EX andy e Y, ( 11)

obviously hold . If AS C;, then c;sg(C;, 0 s g (P(x ), q(y» and (11 ) holds too. We ee t h a t
the comparability of elemen ts A and C; is po sible as a consequence of the property of
local com parability.

One gets the implication (3) by applying the a bove re ults to the case \ here t he
rein ion S is replaced by the relation ~; in fact , after thi change, every u premum
becomes an infunum and the function g remains decreasing with respect to each
argu ment. T hus, we have (3). The las t assertion (4) is eviden t. Thus, the proof is
cornplet .

LE1\lMA 2. ([ 55p. Let P be a totally ordered se t by the order relation s, and
g : L2-. L be u decreas ing ma pping. Then. the following conditions are equ ivalent:

min { t , g(t, t )}S C; S max { i, g( t , t)}. ( 12)

le t

for a ll t E P and the following condition

C; ;: min Pg or (= max PC, (13 )

whcr Pg : = {t E P I s«. t) S t } and pg := { t E p i t S s« , t) }.

F rom thi n s irtion as a direct con sequence it fo llow tha t:

- Th numb -r of po in ts C; E P with cha racte r ist ic (12) can b O. 1 or 2.

- Elich of th . e c s s ca n b rea lized.

wit h-

-

If P is an ev ·rywh re den ' s t of point, the number of point
churact r is tic (12) is 0 or 1.

If th set P has the hnra ,t iristic of de nsity (: = thn t is for every cdok ind' s
cro 8 section the I wcr clns ha tho nu imum or th u pp 'r class has l\

minimu m) th ' nu mb -r of poin ts is 1 or 2.
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- If sE P is the fixed point of the mapping g: p2 ~ P, then Sis the point with
characteristic (12), and then (12) holds if and only if

max min {x , g(x, x) } = min max {x, g(x, x) } = S.
x eP x eP

REMARK. In Lemma 2 the assumption that (P, :0::;) is totally ordered cannot be replaced
by the weaker assumption that (P,:o::;) is a lattice. More precisely, the implication
(12) => (13) holds true in the case of any poset, while the implication (13) => (12) is in
general false even for lattices. Indeed, from (12) it follows that each element t E P is
comparable withg(l, t) so that SE Pg or SE PC. in the first case t E Pg' i.e., gel, t) :o::; t ; so

we have s:O::; max { t, g(t, t)} = l, and hence S = :-;uin Pg' A symmetric proof shows that

SE Pc implies S = max PC. On the other hand, the structure on Figure 2 is obviously
a lattice and the function g: P ~ P defined by g(a) = e, g(b) = g (d ) = b, g ee) = a,
where P = {a, b, e, d}, is decreasing. In this case we have also Pg = {b, e },
Pc = {a, b } and thus b = min Pg = max PC, i.e., (13) holds. However (12) is false since
d is not comparable with b = g(d).

d

c

b

a

Figure 2.

PROOF OF LEMMA 2. (13) => (12). Let s= min Pg or S = max PC. Now, let x E Pg' y E Pc,
andy < x. Theng(y,y):o::;y < x :o::;g(x,x), Le.,g(y,y) :o::;g(x,x) is in contradiction with the
decreasing of the function g. Then, for all x E Pg and y E Pc it follows that x s y. Let

S = max PC, then if t E pc we have t :0::; S and from that min {t, g(t, t ) } :o::; x " and then

max {t, g(t, t) } =g(x, x) ~ g(s, Q~ S. If t E Pg, we have S< t, and from that

s:O::; max{ t , g (t , t )}.

For S < t, we have g(t, t) :0::; g(S, 0 :0::; S and from that min { t, g(t , t )} :0::; S. The case

S = min Pg is symmetrical with previovs one. '

(12) => (13). Let the point SE P have characteristic (12). Then x E pc implies

x :;;'g (x, x), that is, x = min {x, g(x, x) }:o::; s, and x E Pg implies g(x, x ) :0::; x , that is,
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•

x :::: max{ x,g(x,x)}~s. Then for all XEPC is S::;x, and for all XEPg is S<x.

Accordingly, as for all x E pe and y E Pg X ~ y holds, we have the following: if SE PC,
then S= max PC; if SE Pg then S= min Ps: Owing to that, if the point b > S satisfies
the condition (12), then we must have S = max PC, b = min Pg' and there cannot be
any third point with characteristic (12). Thus, the proof is complete.

SOME COMl"fENTS. That two different points with characteristic (12) may exist proves
the following example: P = {a , b }, a < b, g (a) =b, g(Q) =a. In that case both points a
and b have characterist ic (12). But, if (P,::;) is an everywhere dense set ( x < y =>

(3z E P ) x < Z < Y for all x ,Y EP ), then there can be at most one point of
characteristic (12).

Let us now give an example which shows that the points with characteristic (12)
may not be fixed points. Let the mapping g be defmed by g(x) = 1 (0::; x::; V2) and
g (x) =°(V2 < x ::; 1). Then on the set P = [0,1] the point S = 1/~ has characteristic (12),
but it is not the fixed point of the mapping g: [0,1] ~ [0,1].

With the help of the preceding statements we now obtain the fundamental fact of
this section.

THEOREM 1. (Sup-Inf Theorem). Let (L,::;) be a lattice and let g: L 2~ L be a
decreasing mapping. If L has property of local comparability, then for some arbitrary
functions p : X ~ Land q : X ~ L (X is arbitrary nonempty set) the equality

sup inf { p(x),q(y), g(p(x), q(y)) } ::::
x,yEX

inf sup{ p(x ),q(y), g(p(x), q(y))} (14)
x,yEX

holds if and only ifp(xo) =q(yo) := S=g(s, 0 for some xo' Yo E X.

PROOF. This follows at once from (7) of Lemma 1 and the trivial fact that the strict
inequality cannot hold in (7).

An immediate consequence (special case) of the preceding statement is the
following principle.

THEOREM 2. (Minimax Principle). Let P be a totally ordered set by the order relation s,
and let g: p2~ P be a decreasing mapping. Then for some arbitrary function
p : X ~ P and q: X ~ P (X is arbitrary nonernpty set) the equality

max min { p(x),q(y),g(p(x), q(y))}::::
X,Y EX

x~~max {p(x), q(y), g(p(x), q(y)) } (15)

holds if and only ifp(xo) =q(yo) := S=g(s, 0 for some xo' Yo EX .

The statement above still holds when g : ph ~ P (k is a fixed positive integer .
The proof is quite similar. Therefore, let (P, ~) be a totally ordered set by the order
relation ~, and g : ph ~ P (Il E N) be a decreasing mapping. Then, the equality

•
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max min {A}> ... ,Ak ' g(AI' ... , Ak)} =
AI. · ··. AkeP

min max {AI, ... , Ak ' g(A }> ... , Ak)}
AI •...• Ak eP

( 16)
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holds if and only if Al (xI) = ... = Ak(xk) := S= g(s, ... ,0 for some x!' ... 'Xk E X , where
}.j: X ~ P (i = 1, ... , }l ) are arbitrary functions and X is a nonempty set .

We remark that when X = P, p(x) = x and q(y) = y Theorem 2 reduces to the
following result.

•

COROLLARY 1. ([55)). Let P be a totally o..dered set by the order relation ::;, and let
g : p2~ P be a decreasing mapping. Then the equality

max min {x, y, g(x, y)} = min max {x, y, g(x,y)},
x.yeP x.yeP

•

holds, if and only if there is SE P such that g(s, 0 = s.
In connection with the preceding, we note that we can give an extension of the

preceding Theoreml, as a direct consequence of the preceding facts, in the following
sense.

THEOREM 3. (General Sup-Inf Theorem). Let (L , ::;) be a lattice and let g : L 2 ~ L be a
mapping. Then for some arbitrary p : X ~L and q : X ~L (X is arbitrary nonem pty
set) the following equality holds

sup inc{ p(x), q(y),g(p(x ), q(y)) } =
x.yeP

inf sup { p(x), q(y),g(p(x ), q(y)) } (17)
x . y eP

-if and only if the following inequalities hole"s

inf { p(x), q(y), g(p(x), q(y)) } s

p(xo) = q(yo) := s = g(s, ~ ::;

sup{ p(x), q(y), g(p(x), q(y))}
(18)

for some xo' Yo E X and for all x, y E X. .

On the other hand, condition (18) is equivalent with the following equality

max inf { p(x), q(y), g(p(x), q(y)) } =
x,yeX

min sup{ p(x), q(y), g(p(x), q(y)) }
x.yeX

Also, in connection with the preceding equality (16), if g : pk ~ P (Il is a fixed
positive integer) is not decreasing mapping, we can extend equality (16). In this sense,
if g: ph ~P (k is a fixed positive integer) is some arbitrary mapping then equality
(16) holds if and only if the following inequalities hold
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p(X) s g(p(x),q(y))s q(y)

min {AI' , Ak, g(A I' ... , Ak)} <

AI(XI) = = Ak(Xk) := (= g(( , ... , ()~

max {AI' , Ak' g(A I' ... , Ak)}'

for some x I' . .. , xk E X , where Ai X ~ P (i = 1, ... , k) are arbitrary functions and X is a
nonempty set.

On the other hand, the next result follows from the preceding statements.

COROLLARY 2. Let L be a lattice with the order relation <. Then for some arbitrary
mappings p: X ~ L and q: X ~ L (X is arbitrary nonempty set) the following
equality holds

sup inr{ p(x ), q(y)} = inf sup { p(x), q(y) }
X.y EX X.y EX

if and only if the following inequalities hold

inf { p(x ),q(y) }< p(xo)= q(yo)< sup{ p(x), q(y)}

for some xo' Yo E X and for all x,y EX.

We note, in the preceding statements (as in Corollary 2) we can define the
.preceding functions p , q : X ~ L on different sets, in sense that p: X ~ L and
q : X ~ L (X and Yare arbitrary nonernpty, sets). Then the preceding statements hold
too. In this sense, for some arbitrary functions fi : Xi ~ L (i = 1, ... ,k) the following
equality holds

sup inr{ fl (xI)" " ,{k(Xk) } = inf SUP{fl(XI )" " ,{k(Xk) }
Xl eX I... ·.x.eX . Xl «x.... ..x. eX .

if and on ly if the following inequalities hold

inf{ fl(XI) , "',{k(Xk)} s fl(f l) =... = fk(fk )~ sup{ fi(xd,"' ,{k(Xk)}

for some fl' E X ," (i = 1, ... ,It) and for all x · EX . (i = 1, ... .h)., , .

In this part of the section, we show that existence of separation in the preceding
se nse, is essential for applicat ions of the preceding statements.

T HEOR EM 4. (Statement of Separation). Let L be a lattice with the order relation s ;
Then for some ar bitrary mapping p : X ~ L and q: Y~ L (X and Yare two arbitrary

•nonempty sets) the fo llowing equality holds

sup p(x) = inf q(y) (19 )
xeX y eY

if and only if there exists a function g: L2~ L such that the following inequalities
holds

(20)

for all x E X and y E Yand there is (E L such that ( = p(xo) = q(yo ) for some Xu E .L' and
Yo E Y.

•
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PHOOF. Necessity. Let the inequalities (20) hold and let, from the conditions, there
exist points Xo E X and Yo E Y such that r; = p(xo) = q(yo)' Thus, we obtain the
following inequalities a.nd equality

inr{ p(x), q(y), g(p(x ), q(y)) } s; r; = g(r;, () S; sup { p(x ),q(y), g(p(x), q(y )) }

for some Xo E X and Yo E Y, and for all x E X and y E Y. T his means, from Theorem 3,
that the equality (17) holds, which gives the equality (19) of this statement.

Sufficiency. Assume that equality (19) holds . T hus, there is r; E L such that
p(x) S; r; s;q(y) for all x E X and y E Y, where p(xo) = q(yo) = r; for so me Xo E X and
Yo E Y. If the function g: L2~ L is defined by g(s, l) = r;, then, directly, we obtain
inequalities (20) . The proof is complete.

At the end of this section, based on the preceding statements, as an immediate
consequence we have the following statement.

THEOREM 5. Let P be a set totally ordered by the order rela tion S;, and let g: p2 P
be a decreasing mapping. Then the following equality holds

max min g(x, y) = min max g(x, y),
~~x y~~ y~~ ~~x

if and only if there is ~ E P such that g(~, ~) = ~.

3. SUP-INF INEQUALITIES

We give now some immediate applications of the preceding statements to Sup 
Inf inequalities; other applications will be given in the next sections. As an immediate
consequence of Lemma 1 we obtain the following inequalities.

LEMMA 3. Let P be a totally ordered set by the order rela tion S; and let g : p2 P be a
decreasing mapping. If for some arbitrary mapping f : p 2~ P is f(~, ~) S; ~ and
f(~, ~) <g(~, ~) , then

f (r;, () S; max{ p(x), q(y) , g(p(x ),q(y)) }, (21)

for all x , y E X where p , q : X ~ P (X is an arbitrary nonempty set) .

Quantifying the preceding assertion (21) we obtain the following conclusion that
f(~, ~) S; ~ and f(~, ~) S; g(~, ~) implies

f (r;, () S; min max{ p(x),q(y), g(p(x), q(y)) }.
x ,yEX

PROOF. Let A = max {p (x ), q(y) } where the elements x E X and y E Y are arbit rarily
chosen. If f(~, ~) S; A, then (21) obviously holds. If A S; tu; o, then f(~ , ~) S; g(~, o S;

g(p(x), q(y» and (21) holds too.

In connection with this, we now obtain the fundamental fact of this section .
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.

THEOREM 6. (Sup-Inf Inequality). Let (L , ~) be a lattice with zero and unit and let
A, B : X x Y ~ L (X and Yare arbitrary nonempty sets). Then for some arbitrary
mappings a, C : X ~ L and b, d : Y ~ L the following inequality holds

inf sup{ a(x), b(y), A(x, y)}< sup inf{c(x), d(y), B(x,y)}, (22)
xeX,yEY x EX ,y EY

if and only if the fo llowing inequality holds

sup{ a(x), b(y), A(x,y)} ~ inf{c(x), d(y), B(x,y)}, (23)

for all x E X andy E Y.

PROOF. Since inequ ality (23) holds for all x E X and y E Y, directly, quantifying this
inequality we obtain the preceding inequality (22). On the other hand, if (22) holds, we
assume that inequality (23) does not hold. Then there is some Xo E X and Yo E Y such
that

Thus, we obtain the following consequences,

inf{ c(x), d(y), B(x, y)} ~ a < fJ < sup{ a(x ),b(y), A(x, y)}

fur all x E X and for all y E Y. Quantifying the inequalities we obtain the following
inequality

sup inf{c(x),d(y),B(x,y)}< inf sup{a(x), b(y),A(x,y)}
XEX ,yEY XEX ,yEY

which i a contradiction with (22). Thus, this statement is proved.

As an immediate con equence of the preceding statement we obtain the following
statement.

(24)

•

THEOREM 7. Let (L,~) be a la t tice with zero and unit, and let A, B : X x Y ~ L (X and
Yare arbitrary nonempty sets). Then fo r some arbitrary mappings a , c : X ~ Land
b, d : Y ~ L the following inequality holds

inf sup{ a(x), b(y), A(x,y)} ~ sup sup{c(x), d(y),B(x,y)},
x X,y EY xEX,yEY

if and only if the following inequ ality holds

sup{ a(x), b(y), A(x,y)} ~ sup{ c(x), d(y), B(x,y)},

for all x E X and y E Y.

At the nd of this section, we givo a separation statement for eparation of the
pre ieding inequalities.

'J H EOH EM 8. (Separa ion of Inequalities). Let L be n la t tice with the orde r relation ~,

with zero and unit , and let the functions c: X L and b : Y L ( • and Yare two
arbitrary nuncmpty sets) atisfy the inequality b(y) ~ ctr) for all x eX" and ye r . Then
the following inequality holds
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inf b(y)~ sup c(x)
y EY XEX

(25)

if and only if there exist functions A , B : X x Y -)0 L, a: X L and d: Y -~ L such
that the following inequalities hold

a (x) ~ A (x ,Y) s b(y) s c(x ) s B (x , y ) :5, d(y) , (26)

for all x EX and for all Y E Y.

PROOF. Let inequality (25) holds, and let a: = infb(y) and p = sup c(x). If we define
y EY x X

functions A (x.r ) = a(x ) = a and B (x.r ) = d (y) = p, we obtain, directly, that inequalities
(26) hold. On the other hand, if the inequalities (26) hold, from Theorem 6 and
inequality (23), we cl.irectly obtain inequality (22), i.e., inequ ality (25 ) of this
statement.

4. VON NEUMANN'S MINIMAX THEa RY
•

John von Neumann' s Minimax Theorem 142) can be stated as follows: if X and Y
are finite dimensional simplices and {is a bilinear function on X x Y, then {has a saddle
point, i.e .,

max min { (x, y) = min max { (x, y). (27)
xsX y EY y EY XEX

There have been several generalizations of this theorem. Ville [611 and Wald [661
extended in various ways von Neumann's result to cases where X and Y were allowed
to be subsets of certain infinite cl.imensional linear space. The functions they
considered, however, were still linear. Shiffman 1531 seems to be the first to consider
concave-convex functions in a minimax theorem. Kneser [26), Fan [ 18) and Berge [81

(using induction and the method of se parat ing two disjoint convex sets in Euclidean
space by a hyperplane) got minimax theorems for concave-convex function s that are
appropriately semi-continuous in one of the two variables. Although these theorems
include the previous' results as special cases, they can also be shown to be rather direct
consequence of von Neumann' s theorem. Kakutany [291and Nikaido (44) , on the other
hand, using Brouwer's fixed point theorem, proved the existence of a saddle point for
functions satisfying the weaker algebraic concl.ition of being qu asi concave- convex, bu t
the stronger topological concl.ition of being continuous in each variable.

Thus, there seems to be two essential types of arguments: one uses some form of
separation of disjoint convex sets by a hyperplane and yields the theorem of Kneser
Fan, and the other uses the fixed point theorem and yields Nikaido' s results.

In [52), Sion unified the two streams of thought by proving a minimax theorems
for a function that is quasi-concave-convex and appropriately se mi-continuous in
each variable. The method of proof differs radically from any used previously. The key
tool used is a theorem due"to Knaster, Kuratowski, Mazurkiewicz based on Sperner's
lemma.
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In [24] and [14], Sion's minimax theorem is extended for non-compact sets, and
for certain two person zero - sum games on constrained sets a sequential

•

unconstrained solution method is given.

Granas and Fou-Che Liu [23] discuss some new general minimax results which
are of von Neumann's type too.

In connection with the preceding, evidently, our statements of separation give
methods for proof of all theorems of von Neumann's type. Thus, this new minimax
convex theory extends the theory of von Neumann' s type. In this section we give
proofs fo r the preceding facts.

Let {be a real-valued function defined on the product set X x Y of two arbitrary
sets, X, Y (not necessarily topologized). The function {is said to be convex on X , if for
any two elements Xl' x 2 E X and two numbers ( 1~ 0, (2 ~ 0, with (1 + ( 2 = 1, there
exists an element X o EX such that f(xo'y) ~ ( d(x I,y) + ( 2{(x 2, y) for all y E Y.

Similarly, { is said to be concave on Y, if for any two elements Y1'Y2 E Y and two
numbers '71 ~ 0, '72 ~ ° with '71 + '72 = 1, there exists an Yo E Y such that
[i», Yo) ~ '71 {(x ,YI ) + '72 {(x, Y2) for all x E X. Recall that a real valued function { : X ~ R
on a topological space is lower (respectively upper) semicontinuous if {x E X: { (x ) > r}

(respect ively {x EX: ((x ) < r } ) is open for each r E R; if X is a convex set in a linear
space, then { is quasi-concave (respectively quasi-convex) if {x EX: f(x) > r }

(respectively {x E X: ((x ) < r} ) is convex fo r each r E R.

The fo llowing result of Sion [52] is the best representative of von Neumann' s
theory.

COROL LARY 3. ([52]) . Let Xc E and Yc F be two nonempty compact convex sets in
linear topological spaces E and F, and { : X x Y ~ R be a real-valued function
sat isfying:

(a) Y H [t», y ) is lower semicontinuous and quasi- convex on Y for each x E X;

(b) x H {(x ,y ) is upper semicontinuous and quasi-concave on X for each Y E Y.

Then the following equality holds

max min {(x, y) = min max r(x, y). (28 )
x eX y eY y eY x "",

We shall use the notat ion as in 154). Let (P,~) be a partially ordered set. For
x , y E P and x < y, the set )x,y! is defined by )x,y! := {t I t E P and x < t < y}. Call a
poset P conditionally compl ete when every nonempty subset of P with upper bound
has its su premum in P. The proof of this fu ndamental statement in von Neumann' s
minimax theory we begin with the following essential lemma.

LE TMA 4. (Coincidence Lemma). Let (P, ~) or ~'(,y[ be a conditionally complete
pili tially ordered se t and let r.g : P P be two mappings such that

a s b implies If\.a ),g(b )] c[a,bj, foralla,bE lx,YI. (29)

If for a ~ b the pr 'ceding inclusion c is st r ict, then there exists R point ( E P with
the property f\. :) =g (c,) = (.
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PROOF. From condition (29) we have a < ((a) :::;; g (b ) :::;; b. Applying again condition (29)
we get the following relations (inequalit ies) :

a :::;; r ea ) s (2 (a ) s ... s g 2(b) s g(b) s b. (30)

Hence the set pr := {a, {(a}, /'2(a} , ... } is nonempty and bounded from above , and
s := sup pr exists, by conditional completeness of P (or )X, yD. Also, {(pr) c pr. ince
x :::;; s for all x E pr, we have x :::;; {(x) :::;; {(s ) for all x E p ro Hence res) is a majoran t for the
set {(pr). Also, from the preceding inequalities, we have s :::;; su p {(prj s {(s). 'I'hu
s E prc )x ,y[. Applying condition (29) it follows that {(s) S S. We conclude s = ({s).

Further, let ",> {b, g (b ) , g2(b ) , ... } . H ence the set Pg is nonempty and bounded from
above and 1:= inf Pg exists, by conditional completeness of P (or )x,yD. Also
g(Pg) c Pg' and 1 :::;; g(x} :::;; x for all x E Pg' Analogous to the proof of the preceding fact ,
dually we have further that g(l } = 1 with property s S 1. If s < 1 (st r ict ly), then from
condition (29) we obtain [f(s) , g(l }) = [s ,l] which is in contradiction with st r ict
inclusion [r(s} , g(l }] c [s, 1]. We conclude s = 1, i.e., there exists point (E P with
property r (e;> =g (e;> = (. This completes the proof.

PROOF OF COROLLARY. (Applicat ion of Theorem 4 and Lemma 4 ) . Because of upper and
lower semicontinuity

p(x): = min r (x, y) and q(y): = maxj'(x, y) exist for each x E X andy E Y.
y eY x eX

On the other hand, since p (x } s {(x ,y) s q(y} for all x E X and for a ll y E Y, we obtain
the following inequalities

p (x ) < max p (x ) < minq(y) < q(y}, for all x E X and y E Y.
xeX y eY

Suppose that p (x } ~ q(y ) for all x E X and y E Y. Then we can find a st r ict ly
increasing sequence of real numbers a a = p (x a} for a -c to , and a st r ictly decreasing

sequence of real numbers ba = q(y ,) for a-cui, where w is any (finite or transfinite)

ordinal.

Since X and Yare two nonempty compact (convex) sets, we obta in, also, that p (X)

and q(Y) are two nonempty compact sets. Thus p (X) u q(Y) c R is a conditionally
complete set. We define two mappings F and G from p (X) u q(Y) into itself by

ap = F(aa}' aa = G (aa) ' bp = G(b,) and ba =F (ba} for a < P< w,

where w is any (finite or transfinite) ordinal. It is easy to see that F and G sa tisfy a ll
the required hypotheses in Lemma 4. Applying Lemma 4, in this case, we obtain that
then there exists a point ( E p (X) U q(Y) with property F (e;> = G(e;> = (. From the
construction of functions F and G it follows that point S must be element of
p (X) (1 q(Y) , i.e. , (E p(X) (1 q(Y). On the other hand, if we define II functi on g: R2 R
by

g(s, t} = e E maxp(x }, min q(y}
y er xeX

(3 1)
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it is easy to see that all the required hypotheses of Theorem 4 are satisfied and we
obtain that equality (19) holds, which is equivalent, in this case, with the equality (28) .

The proof is complete.

In connection with the preceding, from the proof of Corollary 3 and from

Theorem 4, we have directly two following statements:

THEOREM 9. Let Xc E and Y c;: F be two nonempty compact sets in the topological

spaces E and F; and let {: X x Y ~ R satisfy:

(a) For each fixed x E X, { (x, y) is lower semicontinuou s on Y, and (is a mapping of

Yonto R.

(b) For each fixed y E Y,f(x, y) is upper semicon tinuou s on X, and {is a mapping of

X onto R.

Then the equality (28) holds.

T HEOREM 10. Let X r: E, Y c F and Z c G be three -nonernpty compact sets in the
topological spaces E, F and G; and let { : X x y x Z ~ R satisfy

(a) For each fixed x E X and y E Y, {(x, y ,z) is lower semicontinuous on Z, and { is a

mapping of Z onto R.

(b) For each fixed Z E Z, {(x, Y ,z) is upper semicon tinuous on X and Y and { is a
mapping ofX, Y onto R. -

Then the following equality holds

max min {(x, y , z) = min max {(x, y, z).
x eX ,yEY zEZ ZEZ XEX,yEY

The proof is analogous to the proof of the preceding statements.

5. MINIMAX INEQUALITIES
•

In this part we establish some minimax inequalities in topological spaces, as
consequences of former results of separation fo r inequalities.

As an immediate consequence of Theorems 6 and 8 we obtain the following result .

COROLLARY 4. ([22)) . Let h, h : X x Y ~ R (X and Y are two nonempty compact convex
subset s in linear topological spaces A and B, respectively) be two real- valued fu nct ions
such that

h ex, y ) s h ex, y ) for all x E X andy E Y.

If x H hex, y ) is upper semicontinuous and quasi-concave on X for each y E Yand
if y H h ex, y) is lower semicontinuous and quasi-convex on Y fo r each x E X, then

inf sup k(x, y) s sup inf h(x, y) (32)
y EY XEX XEX Y EY

P nOOF. (Applicat ion of Theorem 8). Because of upper and lower semicontinuity

Pi(X) = inf i(x, y) and q.(y) = supi(x y) for i = h, h.
y EY I x EX'

•
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exists for each x E X and y E Y. SincePk(x ) ~ k lx, y ) ~ qk(Y) ~ Ph(x) s h (x,y) s q,,(y ) for all
x E X and y E Y, it is easy to see that all the required hypotheses of Theorem 8 are
satisfied. Applying Theorem 8 we have the preceding inequality (32) of Granus and
Fon-Che Liu .

Also, as an immediate consequence of Theorems 7 and 8 we obtain the fo llowing
results of Granas, Fon-Che Liu and Ky Fan.

COROLLARY 5. ([22)). Let X be a nonempty compact convex set in linear topological
space E and Y be a subset of E containing X. Let {, g : X x Y R be two real-valued
functions satisfying the following inequality

( (x,y) ~ g(x, y) for all x E X andy E Y,

where x H g (x,y) is quasi-concave on X for each y E Y and y H f(x,y ) is lower
semicontinuous on Y for each x EX . Then

inf sup { (x, y) ~ sup g(x, x )
y EY xeX XEX

We remark that, in case X = Y, Corollary 5 gives a generalization of the Ky Fan
Minimax Inequality due to Yen [64J.

COROLLARY 6. ([18)). Let X be a nonempty compact convex set in a linear topological
space E and Y be a subset of E such that X c Y. Assume ( : X x Y R is a real- valued
function such that y H f(x , y ) is lower semicontinuous on Y for each x E X and
x H f(x,y) is quasi-concave on X for eachy E Y. Then

inf sup {(x , y) ::; sup { (x , x ).
y EY xeX XEX

6. EXISTENCE OF TRANSVERSAL POINTS

In connection with the preceding, in this part we continue the study of the
preceding minimax problems. In this section we consider a concept of transversal
points for the mapping {of a nonempty set X into partially ordered set P . A map ( of a
nonempty set X into partially ordered set P has a transversal point ~ E P if there is a
decreasing function g : p2 -» P such that the following equality holds

max min {{(x), ((y), g(r(x ), { (y )) } =
x ,yEX

min max{{(x),f(y),g(r(x),f(y)) } :=t;: (33)
x ,yEX

On the other hand, in our paper [551 we investigated the concept of fixed apices
for a mapping {of a set X into itself. A map (of a set X to itself has a fixed apex II E X if
for U E X there is v E X such that feu ) = v and f(v) = u, The points u , v E X are called
fixed apices of(if f(u ) = v and ( (v) = u , In this sense, H nunem pty set X is apices set if
each of its points is an apex of some mapping T': X X . If T : S" -» S" is the map
such that Tx = -x for x E S", then S" is an apices set.

Otherwise, a function (: X -» P has a Sl- t ransversa l point if the preceding
equality (33) holds with sup and inf instead max and min, respectively. If the preceding
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equality (33) holds for points x, - x EX (X is a linear space) r; is A-transversal ~oint;

more generally r; is R-transversal point for f:;'i. ~ P if the equality (33) holds for
points x , Tx E X. A function f: X ~ P (X is a linear space) has a pair of antipodal
poin ts p , - p E X if the following equality holds fT.p )=f(-p).

We note that from the second section, i.e., from Corollary 1, we obtain that the
function f(x) = idR : R~ R has a transversal point r;E R .if and only if for some
decreasing function g : R2~ R we have g (r;, Q = r;. .

Let E be the normed space of all those sequences x = ,(x l' x2' ... ) of real numbers

having at most fmitely many xn ':I:- 0, with the norm II x II = LI xi I. The subset {x EE l
x. = 0 for all i>n } is denoted by En or R"; the unit n-ball is yn = {x E En : II x II < I }.

I

The unit n- sphere sn= {xE E n+ l :ll xll = I } ; its upper hemisphere is
S / I = {x E S'": xn+ l ~ O}, and its lower hemisphere is s _n = {x E S'": x n+ l ~ OJ; clearly
5" = S +n U s _n. Observe that for any h < n, we have

Sk = {x E sn I xk+2 = ... = xn+l = O}

and that s n-l = S /1 r, S_". Recall that a map t: S" ~ S" is antipodal-preserving if
f (a) = a(j) , for some a: S" ~ S",

Results equivalent to the Lusternik Schnirelman and Borsuk statement use the
notions of extendability and homotopy in their formulation. For the convenience of the
reader, and to establish the terminology, we recall the relevant definitions. By space
we understand a Hausdorff space; unless specifically stated otherwise, a map is a
continuous transfo rmation.

Let X, Y be two spaces and A e X. A map f: A ~ Y is called extendable over X if
there is a map F :X ~ Y with F\A = f. Two maps f ,g : X ~ Y are called homotopic if
there is a map H : X x 1~ Y with Hix, 0) = f(x ) and H(x, 1) = g(x) for each x E X. The
map H is called homotopy (or : continuous deformation) of f to g, and written H : f=.g.
For each t, the map x ~ H (x , t) is denoted by H t: X ~ Y; clearly the family (Ht)O-:oISl

determines H and vice versa. Thus, the relation of homotopy decomposes the set of all
maps of X into Y into pairwise disjoint classes called homotopy classes and [: X ~ Y
homotopic to a constant map is called nullhomotopic.

We now prove Borsuk's antipodal theorem and also show that it is equivalent to
various geometr ic results abou t the n-sphere.

THEOREM 11. Let S" denote the n- sphere. Then the following statement are
equ ivalent : .

(a) (Lusternik-Schnirelman-Borsuk theorem). In any closed cover ing
{M l' .. . , M n + I} of S" by (ll + I )- sets , at lea t one set M j must contain n pair of
antipodal points.

•

(b) (Borsuk antipodal theorem). An antipodal - preserving map [ : n-l {I-l L
not nullhomotopic.

(c) (Borsuk- Ulam typ theorem) . Every continuous map [: n H se nds at
least one pair of antipodal points to the same point.

(d) ([561). Every continuous map f : STi ~ R has at least one A-tnl11sverslIl point.



M.Ta kovic I Minimax theory with transversal points 145

In connect ion with the proof of th is statement, first, we note that the followin g
fact holds.

LEMMA 4. Let { : S" ~ R" be a continuous mapping. Then {ha an Av-transver al
point if and only if all projections ' pr'(j) : S" ~ R defined by pr'(j) = pr' (a I' ... , a,.) = a j

(i = 1, ... , n ) have an A-transversal point.

P ROOF. If f has an A- transversal point (E R", then from Theorem 2, we obtain
• •

s := ((t) = f(-t) for some t E S", Thus, p;'(f(t)) = pr'(f(- t)) for some l E S" and
i = 1, ... , n. T herefore we choose for g:?2 ~ R the function g(s, t) = '1:=

• •

pr' (f(t» = pr1(f(- t)) , such that g('1, '1) = '1. 'I'hus, from Theorem 2 we obtain that all
project ions of f have an A- transversal point. On the other hand, if all proj ctions of (
have an A- transversal point '1 E R, from Theorem 2, we obtain '1 := pr' (f(t)) =

•

pr' (f(- i)) for some t E S" and i = 1, ... ,n. Again applying Theorem 2, analogous to the
preceding case, we choose for g : R" x R" ~ R the function g (s, t) = s: = f(t) = f(-t) for
some l E S" and we obtain that (has an A-transversal point.

-
P ROOF OF THEOREM 11. From Dugundji-Granas (17), (a) is equivalent to (b). Thus, we
need only to show that (b) implies (c), (c) implies (d) and that (d) implies (a).

~ First, (b) ~ (c). Assume ( : S" ~ R is such that f(x) ~f(-x) for every x E SII.
Define F: S" ~ sn-1 by

_]((x)-{(-x)[ n
F (x ) - () ( ) fo r XES .

{ x - {-x

Then Fjsn- 1: s n- 1~ sn -1 is antipodal-preserving and, since 1'lS +n is a n
extension over V", FjSII- 1 would be null-homotopic, contradicting (b) .

Second, (c) ~ (d). Suppose that the map [: S" ~ R does not have A-transversal
points, i.e., assume {: S" ~ R is such that

max min { {(x), ((-x), g(r(x), {(-x))} ~
x eS"

min max { {(x), ( (-x), g(r(x), {(-x))}, (34)
xES"

On the other hand, from (c) { has a pair of antipodal points such that ( (t) = f(-t)
for some t E S". Thus, from Theorem 2 (Minimax Principle) for s: =f(t) =f(-t) and
some decreasing map g : R2~ R the following equality holds

•

max min {{(x), ((-x), g(r(x), {( -x))} =
x eS"

min max { {(x ),{(-x], g(r(x), {(- x)) },
xES"

contradicting (34) . Thus, I .S" ~ R has at least one A-transversal point, i.e., (d)

I holds.

Third, (d) ~ (a). Assume there were some closed covering M l' .. . ,.M" + 1 of S" with
no M ; containing a pair of antipodal points, i.e., M; n a(M;> = 0 for each i, where
a(x)=-x. Let h;: S " ~ [0,1) be a function with h;lM; =°and hilMi+1 = 1 for each
i = 1, ... , n . Define h : S " ~ Rn by h ex ) = (h 1(x ) , .,. ,hn(x». Then, according to (d) all

.-----------------------
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projections of h have an A-transversal point. U' irefore, from Lemma 4, we obtain
that li has an A-transversal point. According to rl'~eorem 2, there must be a Z E S"
with h (z) = h (a(z», so that h/z) =h/a(z» for i = 1, ... , n and therefo re

•

Z E S n - UMi - U a(MJ. Since both {MJ~=+/ and {a(Mi)};=+/ cover S", the point
;=1 i=1 .

z E S" must belong to both M n + 1 and a(Mn +1) , which is the desired contradiction.

This completes the proof.

In the connection with the former results of Lusternik, Schnirelman, Borsuk and
Theorem 11, as an immediate consequence we obtain the following fact .

•

COROLLARY 7. Let S" denotes the n-sphere. T hen the following statements are
equivalent :

(a) (Borsuk-Ulam Theorem). Every continuous map [: S" ~ R" sends at least
one pair of antipodal points to the same point.

(b) ([56]). Every continuous map f: S" ~ R has at least one A- transversal point.

On the other hand, analogous to the preceding statement, we obtain the fo llowing
extension of the former result s.

T HEOREM 12. Let X be an apices set in sense of fixed point free map T: X ~ X and let-
Card X ~ cont inuum; then the fo llowing statements are equivalent:

(a) In any closed covering {M l' ... , Mn + I} of X by (n + I )- sets, at least one set Mi
must contain a pair of points x, Tx EX.·

(b) Every continuous map (: X ~ R has at least one pair of points p , Tp E X
such that{(p) = {(Tp ).

(c) Every continuous map {: X ~ R has at least one R-transversal point.

The proof i analogous to the proof of the preceding Theorem 11.

In connect ion with the transversal points. in this part we consider some other
concept of points for the mapping {of a nonempty set X into a partially ordered set P.
A map { : X P has a [urcate point S E P if fo r some functio n T: X X the fo llowing
equa lity hold

max min { f( x),f(Ty)} = min max { f (x),f(Ty)} : = So (35)
x,y e X X,y loA

Otherwise, a function f: X P has a SI-furcate poi-it if the preceding equality
(35) ho ld when instead max and min stand su p and inf, respectively. If the preceding
'quality (35) holds for points x, - x E X eXis a linear space) then S is A-furcate point;
or ge nera lly t; is H-furcate point for { : X P if the equality (35) hold for points
x, Tx E X.

•

From the second sect ion, i.e., from Theorem 3, we obtain that for the function
(: X - ) L (X is an arbitrary nonern pty set and (L, $;) is a la ttice) the following
ineq ualities hold inf {{(x), {('J'y ) } s {(xo) = {(7'yo) s su p {{(x ), {('J'y )}, for some
xo' Yo X a nd for all x, y EX.

,



'------'-----'--e_ -J

147M.Taskovic / Min imax tieory with transversa l points
•

for some X o EX, Yo E Yand for all X EX, Y E Y. ~n connection with this, we notice tha t
there are some continuous functions {, g : 1 --.1 (Figure 4) which map compact
interval into itself, but {and g have not coincidence furcate points.

g

Figure 3.

f

P Tp

f

T

For two mappings { : X --. R end g: Y --. P (X and Yare arbitrary nonem pty sets
and P is a partially ordered set) we have cornrr c i (coincidence) furcate points . amely,

•

two mappings [ : X --. P and g : Y --. F have a coincidence furcate point ( E P, if the
following equality holds

max min { ((x), g(y) }= min max { ((x), g(y)} := (.
XEX.y EY XEX .yEY

In general, the mappings Ii :X i --. P (i = 1, ... , k) (Xi are arbitrary nonempty sets
and P is a poset) have a coincidence furcate point ( E P if the following equality holds

max min { { (XI )" " ,f(Xk )}= min max { { (Xl ), ,, , ,f(Xk)} := So
x I EX l .....X~ EX~ x I EX1. · ...x .EX.

We notic, that from Theorem 3, we obtain that the function {: X P and
g : Y --. P have coincidence furcate poinc if and tnly if the following inequalities holds

min{ ( (x ), g(y)} s ( (xo)=g(yo)s max{ ( (xo), g(yo)},

Thus, if {: X --. L has an Rr--furca~.e'poin'; then (has at least one pair of points
p , Tp E X such that f(p ) = f(Tp ). Reverse does I ;O ~' hold. Figure 3 shows the mapping (
of complete lattice I into itself with f(r ) = f(Tp) for some p E 1, bu t withou t furcate
points.

Figure 4.

I
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•

It is also possible to in troduce the concept of general transversal point in the,
following sense: the function [ :X ~ P (X is a nonen.pty set and P a poset) has a quasi
transversal point (E P, if for some function g : p2 ~ P the following equality holds

max min {{(x), ((y), g(r(x), { (y)) } =
x,yeX

min max { {(x), ((y), g(r(x), { (y)) } :=(.
x,y eX

•

If in this equality g(j(x), ((y)) = go(x, y ) then ( is TD-transversal point. In
connection with this see paper of Arandelovic [5J.

We notice, from Theorem 3, that mapping {: X ~ P has a general transversal
point ( E P if and only if the following equality holds

min {{(x), ( (y), g(r(x), { (y)) } s

{(xo) = {(Yo) := (= g((, 0 s

max { {(x), ((y), g(r(x), { (y)) },

for some xo, Yo E P and for all x , YE P. Also, we can introduce SI-general transversal
points, A-general and R- general transversal points.

7. GENERALIZED CONVEX FUNCTIONS

In this section we introduce and consider a new concept of convexity. First, we
introduce a concept of s--general convex functions and general convex functions.

In second part we prove a stability theorem of Hyers-Ulam type for general
convex functions. First , we prove an extremal principle. Hyers and Ularn (25) have
introduced the notion of approximately convex function. A function {: D ~ R where R
denotes the real line and D is a convex subset of R", is said to be s-upproximately
convex provided it satisfies the inequality

{(J.x + ( l-A.)y) $ I.. {(x) + (l-A.){(y) + 6,

fo r all x, y E D, for all A. E [0,1], and some 6 > O. For 6 = 0 the definition reduces to that
of co nvex function. On the other hand, in what follows we assume that D is nonempty
convex subset of Rn and 6 is a positive constant. Recall that a function {: D R is
said to be s- quasiconvex if

{(J.x + (1 -A.)y) $ max {{(x), {(y) } + 6,

for a ll x,y E D, and all A. E 10,11. For 6 = 0 this definition reduces to that of quasiconvex
fun ction, cf. Roberts- Varborg [491.

I n this section we introduce and conside r a concept of e-general convex functions.
Recall that a function {: D It is said to be s-gen ral convex if for some 6 > 0 there
is a function g: {(D)2 R such that

{(J.x + (1 -A.) y) s max {{(x), ((Y), g(f(x) , {(y)) } + 6, t36)

for all x,y E D, and for a ll A. [0, 11. For 6 = 0 this d fmi tion reduc s to that of general
conv sx funct ion.

,
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We notice that the set of all convex and quasiconvex functions can b a proper
subset of the set of all general convex functio.is. t lso, an s-quasiconvex function is an
s-general convex function. If the preceding ~ iequalities hold for all x, y E D and A = 1/ 2

then {(x) is s-general J -convex function, and for s = 0, {(x ) is general J - convex
function.

••

On the other hand, recall that a funccion (: D ~ R is said to be c- genera l
concave if for some e > °there is a functon C : {(JJ)2 ~ R .such that

min {{(x ), f(y ), g(f(x ), f(y» } + s s {(Ax + (I - A) y ) (37)
-

for all x , y ED and for all AE [0,11. For c:;: C chis definition reduces to that of general
concave function . If (is general convex nr.d b3neral concave function then (is general
inner function .

7.1. AN EXTREMAL PRINCIPLE

Let X be a Banach space and let (: M ~ R u { + oo} be a map from a clo ed convex
set M in X, and set

Mt := {x E M Imax {{(x), g(f(x) , {(x» } s l}

where g : (M)2 ~ R is a continuous ;unc~~:-il. The map ( is called g- lower
semicont inuous if the set Mt is closed for all t "= R; and the map ( is called g- qulJsi
convex if the set Mt is convex for all t E R.

Let (: M R be continuous and convex Oil a closed, convex set M in the Banach
space X. Then the map (is both g-lower sernicontinuous and g - quasi convex. Indeed,
the map (is g-lower semicontinuous, for it' (xn ) is a sequence in M t such that X li x
as n ~ 00, then x E M. The map (is also 6'-quasi convex, for if x, Y E Mt , then for all
A E [0,1),

{(Ax + (I-A)y) ::; max {{(x ), f(y ), g(f(x ), f(y» } s t,

which means that Ax + (I -A) y E M, so that M, is convex.

LEMM.+. 5, (Extremal Principle). Let X be a reflexive Banach space, and let M be a
nonempty, closed, bounded and convex set in X. If (: M ~ R u {+oo} is a g- lower
semicontinuous andg-quasiconvex function, than (has a minimum on M.

PROOF. The set M is weakly compact, because M is bounded, closed and convex set in
reflexive Banach space X. Further, M t is closed and convex, and hence weakly closed.
Therefore (is g-lower semicontinuous in the weak topology on M. The conclusion now
follows from the Weierstrass theorem.

7.2. APPROXIMATELY GENERAL CONVEX FUNCTIO S

The classical stability theorem of Hyers and Ulam (25) states that, if [: D ~ R is an c
convex function, where D is a convex subset 01 R", then there exis ts a convex function
17 : D ~ R such that 'l(X) < ((x) ::; 17(X) + hnc for all xE D, where
h

ll
= 1 + (n-1) (n + 2) / 2 (n+ 1), i.e., where the constant hn depends only on the
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dimension of the domain. Also, Nikoder ~45] has-proved a stability theorem of Hyers-
•

Ulam type for quasiconvex functions.

In this section we prove an analogous statement for general convex functions.
Assume that f: D ~ R is an s-general convex function and consider the level sets

La := {x E D Imax {f{x) , g(f(x ), f{x »} ~ a },

for a E R where g : f{D )2 ~ R. It is clear that UaeR La = D, and for a < b we have
•,

Lac Lb·

We are now in a position to formulate the main statement.

THEOREM 13. If a function [: D ~ R is s-ge.iera. rconvex function , then there exists a
general convex function '1: D ~ R such that ,

,,(x ) ~ f{x ) ~ ,,(x) + ek in) ,

for all x ED, where k in) := [log 2n ) +. 1 a, d D is a convex subset of R".

\ e note , if xl' ... , xm+ 1 E La for co. E R: m E , w. iere a !' ... , am+ 1 E [0, 1) and
a l + ... + am+ 1 = 1, then a 1x1 + ... + am + 1x m+1 E La + d ( 71 ) wherell (m) = [log2 n

] + 1.

P ROOF. By induction we can show that a 1x 1 -1- ... + ~sX25 E La + s s for all S E and

assu me that xI' ... , x m E D , a !' ... , am E [0,1) an? a l -f: ... + am = 1. Take the minimal
S E uch that m + 1 ~ 28

• One can easily check that S = nog2 m) + 1 := k tm) , In the
ca em + 1 < 28

, let u put am +2 = ... = ~s = ° and xm +2 = = x2 := XI' Then by
the preceding fact , we obtain a 1x I + ... + am+ lx m+1 =:' alx l + + a2"'t"2s E La + &kIm )

and he proof i complete.

PROOF OF TH EOREM 12. By the Caratheodory theorem ([49 ]) x = 0lxl + ... +
o,,+ lxn +1 for orne x l"" ,xn + 1 E La' and a!' .. . , 0n+( E [0 ,11 with 01 + ... + 0 n+1 = I,
where we take an a E R uch that x i included in co ,.vex hull of L i.e ., x E cony L .• a a

From the preceding fact we get x E La + d In )' which "lean that f{x ) ~ a + &k(ll ) for

every a E H. inc th i inequa lity holds for every 0 E R such that x E L a' we have al 0

he following inequality

(lx)~ in f l aE Rl xE co nv La} + sll ( T1 ) . (3)

L t us defin a function ,, :D R puttir-g 'I (X ) := inf {c e R I X E convLa L for
x < D . By (38) we obtain (lx ) ~ ,,(x ) + &k(T1 ) , for all X ED. ince {o E R I x E La} C

10 E R I X E cony La}, W hay htx ) ~ inf 10 R I x E La } = (lx ) , for all x ED. ow we
shall how that '1 is a g neral cony x function. s urn that 'l(x) ~ 'I(V) for .r, y E D .
Tak an arbitrary I > m { ,,(Y),g('/ ), '/(Y» }. Th n, by the definition of 11(Y) , there
exists a nd a < i such that y E cony La' Also , th n y E cony Lt, b ' C ruse L(I c Lt.
Analogou sly w show that y E cony Lt. 1-1 nc Ax + (1 - ..1. ) y E cony L, for eve ry ..1. - 10. 1] .

inc> this r elnt ion holds for all r max I fl.y ), g lJ\y) ,fl.,y» }, we obtain

,,(..1.:r: + (1 - ..1. ) y ) = inf' {r RI . + (1 - ,Oy conv L j ]

'1(Y ) s m ax I '1 (y ) . g( ,,(y). '1~y» }.

T his shows thnt 'I is a gun ral cony >. fun cti on nnd t he proof is com pl ' teo
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8. MISCELLANEOUS RESULTS AND PROBLEM

151

This part is given in the form of exercises at the end of the paper. It d > cr ibes
extensions and related developments of the theory and indicates further applicat ions
not treated in the text.

8.1. NEW MATHEMATICAL GAMES

Game theory is a mathematical search for the optimal balance of confl ict ing
interests, such as between two partners. As such, it is applicable to a wide va r iety of
situations: social games, economic competition between organizations, confl ict in
nature, and so on. The optimal strategies for both partners turn ou t to be described by
saddle points, whose existence we established in Section 4. This key observa t ion goes
back to John von Neumann [41].

In new mathematical games, the optimal s t rategies for both partners tu rn out to
be described by transversal points, whose existence we est ablished in Section 6.

Let (P , ::;) be a totally ordered set and let g : p2 P be a decreasing mapping. We
consider two players, A and B. Players A and B have available sets of s t ra tegies X c P
and Y eP, respectively. Each point x E X and y E Y represents a possible choice by A
and B, respectively. If A chooses x, and B chooses y, than the funct ion
(x, y ) -+ max {x, y , g (x,y ) } represents the gain by A and the fu nction
(x , y ) -+ min {x, y, g (x,y ) } represents gain by B. The point , E P is called an optimal
strategy if the following equality holds

s: = max min {x , y ,g(x ,y) } = min max {x ,y, g (x , y ) }.
xeX ,y eY xeX,yeY

We note that the existence of optimal strategy is established in Corollary 1.

On the other hand, we can consider the following game with the deer easing
function g (x , y ). In this sense, the point , E P solves the game if the following equality
holds

s: =max min g(x, y) =min max g(x, y) .
t;<x y <t; y :> t; t;:>x •

The existence of optimal strategy we estabiished in Theorem 5.

Finally, let (P,::;) be a totally ordered set, let g: ph -+ P (Il is a fixed positive
integer) be a decreasing function and consider players AI ' ... , A k wit h sets of s t ra tegies
Xi' ... ,Xk in P, respectively. Each point Al E Xi' ... , Ak E X k represents a possible choice
by Ai' ... ,Ak , respectively. The point , E P is called an optimal s t rategy, in this case, if
the following equality holds

s: = max min {AI , ·.. , Ak, g (Al> ... , Ak)}=
Al eX I .· ... A, «x,

min max {AI' ... , Ak' g(AI' . .. ,Ak ) }.
Al eX I ... .. A., eX,

We notice that the existence of optimal strategy we established in Theorem 2,
case (16).
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8.2. GENERAL TRANSVERSAL POINTS

(40)

In connection with former facts on transversal points, we have the following
extensions. A map {: X ~ P (X is an arbitrary nonempty set and P is a poset ) has a
general t ransversal point SE P if there is a decreasing function g : pk~ P (Il is a fixed
positive in teger) such that the following equality holds

max min { ((Xl), ... ,f(Xk), g({(XI ), ... ,f(Xk))} =
xl'" 'Xk eP

min max{{(xI ),... ,f(Xk), g(r(XI),... ,f(Xk))} := s (39)
Xl." 'Xk eP

•

•
From the second section, i.e., from Theorem 2, case (16), we obtain that the

function { : X ~ P has a general transversal point if and only if {(t 1) = .. . = {(tk) : =
s=g(S, .. · , 0 for some tl , .. · ,tk EP.

On the other hand, a map { : X ~ P (X is an arbitrary nonempty set and P is a
poset) has a quasi general t ransversal point SE P if there is a function g: p k ~ P (Il is
a fixed positive in teger) such that the equality (39) holds. Also, from the former
results, we obtain that the function [: X ~ P has a quasi general transversal point if
and only if the following equality holds

min { ((Xl)' ,.. ,f(Xk), g({(XI)' .,. ,f(Xk)) } s

(( tI)=,.·={(tk) :=s=g(s, .. ·,s)<

max { {(Xl), ... ,{ (Xk)' ~({(XI)"" ,{(Xk)) }

for some t l' ... , tk E P and for all X l' ... , xk E P.

If the function g: ph ~ P (Il is a positive integer) is a decreasing function with
the property {(t I ) = ... = {(tk ) := S = g(s, ... , 0 for some t I . ... , l k E P, then, from
Theorem 2 (case (16)) and Lemma 1, we obtain that the preceding condition (40)
hulds.

8.3. ROOTS OF ALGEBRAIC EQUATIONS

We note that, by the application of Lemma 1 (in fact of (4) , i.e., (10)), one can
simultaneously obtain the upper and lower bounds of the roots of the equation

n n -I n -2
X = alx + O-:!x + ... + an

•

n
•

a I, .. ·,an~ O, Lai >O ,
i= I

(41)

As an immediate consequence of Theorem ::::, case (16), we obtain the following
statement .

T HEOREM 14. A point SE R-t.: = (0,+ ) is the roof; of equation (41) if and only if the
following equality holds
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• -- -
~ -

•max min

•

rmn max
. " RA. .J •• • ••/~ .. '=- '. .

all
~ . ,. ~ 1

"11 
,... II

In connection with the preceding facts about transversal points , from

Theorem 14, we obta in that t he equ a t ion (41) has a root r; E R i" if an d on ly if the puint
r; is a general transversal point of the function f(x ) = idR : R ~ R.

PROOF. From Theorem 2, case t I 6), we may choose the function g: P" ~ P VI E N) fo r

P := Ri" ' defined by
•

( )
a 2 , all

g Xl' .. . 'Xn = a1 ~ ... ... ~ 1
X X'l -2 II

I ' II

Applying Theorem 2, case t16), we obtain directly .the preceding equality for

positive root of equa t ion (4 1).

THEOREM 15. Let 11' ... •In be indices sets and Gi ~ 0 be real numbers which satis fy the
following condi tion )

)' G l· = j - t for j =1, . . . , It and 0 < t < 1.- )

i) -=I )

Then ¢E R is the root of the algebraic equatio n xl = alxl -l ~ ... +atrrl -lI

t tal' .. . , all) += to , 0) ) if and only if the followin g equa lity h olds

1/ 1

.
m:LX 111111
M ,

)

II

M , • L
)

J = l
n ,W, Cd ,)

)

, . .: I .
• •

•

= mll1lnaX
M,

)

•. - . - _.

PHOOF. In order to prove this statement we may ch oose the function g : R'l .,. -+ R+
t it is a positive integer ) defined by

l/t

•
•

for x, . .. . ' xTl ER •

and then apply Theorem :2 , case tIG ).

8.4. METHOD FOR INEQUALITIES
,

In this part we give a m et hod for proving co nvex type inequalities . We consider

ou r general method on the following inequality .
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HOLDER' S L'l'EQUALITY. Le t x , y E R
T

U {O} and p > 1 su ch that 1/p + 1/q = 1. T h en

the following inequality holds

xliPyl/l/ s ~ .,..1. , where equality holds if and only if x = y.
p q

(42 )

(43)

if max {A,glll} = xlp -;- ylq,

~ + y .
p q

-

MJ::TH OD UF' PROUF'. In Theorem 2 or Lemma 1, we m ay choose for function g: P ~ P,

P = R.,. , the following function g(t} =(x I /Py 1/1/ )2 t where t;=x I l p / 11/ is a fixed point of

mapping g . Then , from Lemma 1 we have

;= xl /pyl /l/ s rna\: { A, g(;. ) } fo r arbitrary A ER_.

Thus, for A = xlp -;- ylq we have two cases. F irs t ,

the n inequality (42) holds. If not , then from (43) we have

( r y ( )2s= xl lPyll 1/ s gl-=- +- = xl py l/I/
P q

But, this is not possible by Theorem 2, since g is a decreasing funct ion , wh ich
tends to zero. Thus, the inequality t 42 ) holds.

RJ::.\I AHK. The me t hod of the preceding proof of H older ' s inequali ty can be u sed for a ll

co nvex type inequali ties (Ha da m ar d. Jansen , Abel , H older, Canchy).

8.5. D O L: BLE Luur Co DITlON

In the fo llowing, let X and Y be two none rn pty sets a nd let

a : X x Y -t [--x:.ol. b : .\ " Y [jJ.+ I ( a . fJ E R),

be fun ctions on the Cartesian produc t X X Y intu exte nded reuls [32 1. If for all
sequences (X III) in X and \}') in Y

lim su p lim inf a(xlII • J" I ) ~ lim inf lim su p b(xlII •Y/l )
II - +V") 111 - .<6 ' /11 co fl co

holds , then (X , Y, a, b) is said to sa t isfy the "do uble lim it condition" tOLC for short, see

1331J .

•

bcp, q) = Jb dp 0 q.
X Y

Let Px U\-) denote the se t of all pro ba bility measures on Xl Y) with firute su pport.
\Ve extend (l a mi b un Px ' Pyaccurding u

•

a(p .q ) = jadp 0q lind
X )'

•

As a n immedia te co nseque nce of T heo rem G, we obta in the fo llowing statement.

COHOLl...AHY 8. (]32 [). (X , Y, a , b) sa t is fies the DL if and only if the followin g
inequ ali ty holds

inf su p ai p , q ) < su p inf bi p, q )
'1 d 'r P Ps J" 'Ps '1 €Pr

for a ll no nem pty s u bse t S e X and T e Y.
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We note, that Kindler gets the following Ptak' s combinatorial lemma as a p icia l
case, see [32].

COROLLARY 9. ([48]). Let F be a nonempty system of subsets of an infinite set Y. Then
there is an infinite T c Y such that

inf sup q(G)> 0
qePr GeF

if and only if there exists sequences (Gm) in F and (y,,) in Y such that Yll arc distinct
and {Y l' ...J'm } e Gm for every m eN.

8.6. AN ILLUSTRATIVE EXAMPLE

From the proof of Corollary 3 it is easy to see that if { satisfies the condition (28)
then {also sat isfies the condition (33).

Now we shall give an example which shows that there exists such mapping which
does not sat isfy (28), but sat isfies the condit ion (33). Let {(x, y) be a mapping defined
by { (x,y) = x for all x ,y E R , where R denotes the real line. The mapping { does not
satisfy (28) on whole R, but it satisfies (33) for every decreasing mapping g: R2 R
with property g(~, ~ = ;;.
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