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Abstract: Optimal control and efficient management of industrial products are the key 

for sustainable development in industrial and process engineering. It is well-known that 

proper maintenance of process performance, ensuring the quality products after a long 

time operation of the system, is desirable in any industry. Nonlinear dynamical systems 

may play crucial role to appropriately design the model and obtain optimal control 

strategy in production and process management. This paper deals with a mathematical 

model in terms of ordinary differential equations (ODEs) that describe control of 

production and process arising in industrial engineering. The optimal control technique in 

the form of maximum principle, used to control the quality products in the operation 

processes, is applied to analyze the model. It is shown that the introduction of state 

constraint can be advantageous for obtaining good products during the longer operation 

process. We investigate the model numerically, using some known nonlinear optimal 

control solvers, and we present the simulation results to illustrate the significance of 

introducing state constraint onto the dynamics of the model.  
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1. INTRODUCTION  

Optimal control theory has a long history in the literature for diverse applications in 

engineering science. There may have been some controversies about the birth of the 

optimal control theory [28], but not about its necessity in practice. It is now widely 

accepted that optimal control theory has dominant role in applications of many real life 

problems arising in science, engineering, biology, and biomedicine. According to the 

argument of Sussmannand Willems [28], the fundamental research in optimal control 

theory came to light more than three centuries ago with the publication of Johann 

Bernoulli‘s solution of the Brachystochrone problem in 1697. However, main theoretical 

development in this field occurred in the 1950s, more than 65 years ago. The 

development of optimal control has gained strength by treating multivariable, time 

varying systems, as well as many nonlinear problems arising in control engineering, 

biology, and medicine. The Pontryagin Maximum Principle is a milestone in optimal 

control theory [25]. It extends the classical Euler and Weierstrass conditions from the 

classical calculus of variations to control settings [29]. The development of Nonsmooth 

Analysis [17] enhanced a wide scope of research and opened a new horizon in the 

optimal control theory; we omit the detailed descriptions of the theoretical development 

of non smooth maximum principle for optimal control problems, referring the readers to 

([4, 8, 9, 10, 14, 15] and references therein) for some recent theoretical developments 

both for state and mixed constrained problems in this area. 

Since the last few decades, in parallel to the theoretical development, numerical 

solutions, as well as applications of optimal control problems have become some of the 

most challenging and demanding areas of research due to their diverse applications 

especially in biology and medicine. The crucial issue of the present day research on 

optimal control theory is to bridge the gap between the theory and the application. 

The necessary conditions of optimality (NCO) for optimal control problems are 

powerful tool in determining the optimal solution and are widely used in developing 

solvers. Moreover, they can provide qualitative information on the solution and are the 

basis for the study of regularity of the optimal solution (see for examples, [17, 29]). 

Necessary condition of optimality for optimal control problems with state constraints has 

been studied since the very beginning of optimal control theory. It appeared in a very 

natural way when modeling many real life engineering applications in engineering, life 

science, biology, and medicine. Since the first application of optimal control in 

biomedical engineering, around 1980s [23], several control and vaccination strategies for 

the treatment of infectious diseases in a certain population over a period of time have 

been successfully modeled as optimal control problems. Among those applications in 

biomedicine are modeling of infectious diseases and optimal control strategies like 

HIV/AIDS (see for examples, [1, 2, 6, 7, 19, 21], deadly nipah virus infections [3, 5]; for 

control of SEIR epidemic disease [10]; modeling the potential impact of global climate 

change [13], as well as modeling and control of cancer treatments [16, 26].Other 

important applications of optimal control theory attracting attention  are soft landing and 

fuel consuming of space vehicles in aerospace engineering [11], and efficient and 

sustainable managements of forest and ecosystems in life science [12]. 

 

This study is concerned with one of such applications of optimal control in production 

and process management arising in industrial engineering. We study a mathematical 
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model of the process in the form of optimal control problem in terms of ordinary 

differential equations (ODE), and present the numerical investigations of the problem 

(omitting the theoretical details) arising in production and process managements in 

industrial engineering. We also discuss the necessity of introducing state constraints in 

the model and show their influence in management for obtaining ―good‖ (quality) 

products over a certain time of operations. 

 

2. MATHEMATICAL MODEL  

It is well-known that the rate of production of ―good‖ (or quality/non-defective) 

products in a process management slows down after a long time operation of the systems 

due to absence of the proper maintenance. However, in some cases, an appropriate 

introduction of state constraints can help in preventing the decline of ―good‖ items 

produced over time. Mathematical model can be used to describe this production process 

in terms of ODEs. This problem is an application of optimal control in management and 

industrial engineering where the state constraints play an influential role in maintaining 

the performance of the production process. The dynamic model describing the process is 

taken as in [22] in terms of the following differential equations: 

 
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with the initial conditions 

1 10 2 20(0) 0, (0) 0,x x x x     

and the control constraints 

 1 1 2 20 ( ) , 0 ( ) , . . 0, .u t U u t U a e t T      

In the above dynamic model, one can see that the process consists of two state 

variables and two control variables. Here, we suppose that the state variable 1( )x t  

represents inventory level at time  0,t T for a fixed final time 0T  , and 2 ( )x t

represents the proportion of 'good' units of end items, produced at time t (also known as 

process performance). The two control variables, 1( )u t and 1( )u t
 
represent scheduled 

production rate and preventive maintenance rate to reduce the proportion of defective 

units produced, respectively. ( )t denotes the obsolescence rate of the process 

performance in the absence of maintenance and ( )d t is the demand rate. With the above 

system of differential equations, a production process in industrial engineering is 

efficiently described. It is worth mentioning that the negative sign in the second dynamic 

equation shows how the productions of ‗good‘ (or non-defective) units of items decrease 

over time in absence of maintenance. However, an appropriate preventive measure can be 

applied to the process to slow the rate of declination of process performance. In this 
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preventive measure, an introduction of  lower bound on the  number of ‗good‘ items 

produced over time can be imposed as state constraints to improve the process 

performance which may keep the ‗good‘ items produced in a minimum level. Thus, we 

introduce the following state constraint (i.e. a lower bound) on the number of ‗good‘ 

items: 

 2 min( ) , . . 0,x t l a e t T   (1) 

where 
minl  is the lower bound of the ―good‖ items produced at time t  and taking values 

in  . 

We observe that the constraint  1( ) 0, . . 0,x t a e t T  is imposed because all demands 

must be satisfied, and the state constraint in (1) is crucial in our analysis because it is a 

lower bound on the number of ‗good‘ items produced at time t. 

 

Our objectives in this optimal control problem are to maximize the total discounted 

cost as well as the salvage cost with the following objective functional: 

 1 2 1 2 1 1 2 2

0

( , , , ) ( ) ( ( )) ( ) ( ) ,

T

t TJ x x u u wd hx t u t cu t e dt bx T e          (2) 

where the function 1( ( ))u t is called the production cost function and is defined either as 

the quadratic function 

2

1 1( ( )) , 0,u t ru r    (3) 

or the linear function 

1 1( ( )) , 0,u t qu q     (4) 

all other parameters and constants (also sometimes regarded as weight parameters 

balancing the cost), along with their values used in the objective function, are presented 

in Table 1. Note that in our analysis we will consider and investigate the quadratic 

function only. Observe also that in the objective function, the other control function, 

2 ( ),u t representing the maintenance cost, appears as a linear function. Thus, we are 

considering the quadratic production cost function and linear maintenance cost functions. 

Maureret al.[22] studied such problem without introducing any state constraint in the 

model. They investigated state constrained model when both the production cost function 

and maintenance cost function are linear. In this study, we investigate the state 

constrained model when the production cost function is quadratic and maintenance cost 

function is linear. We treat this problem based on numerical analysis, omitting the 

theoretical details. Before presenting the results of numerical simulations, we sketch the 

idea of optimality conditions for the optimal solutions of our problem, referring readers 

to [22, 24, 29] for more detailed studies. 
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3. CHARACTERIZATIONOF OPTIMAL CONTROL 

The above mentioned dynamic model along with the state constraint can be rewritten 

in the following optimal control problem: 

   
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and the control functions representing the percentage are measurable functions defined in 

the set 

  1 2 1 1 2 2( , ) : 0 ( ) , 0 ( ) , . . 0, .U u u u t U u t U a e t T       

Here problem  P
 

is a well-known optimal control problem with state 

constraint which coincides with standard optimal control problem in absence of state 

constraint. However, the optimal solutions of such problem can be characterized by the 

Pontryagin Maximum Principle (PMP), the pioneer works of Pontrya ginet al.[25], which 

satisfies the necessary conditions of optimality for optimal control problems having the 

novelty of being sufficient conditions for the normal linear convex problems. The 

optimality systems are characterized by the two dynamic equations associated with two 

adjoint equations in turns of multipliers. For the optimality systems, we define the pseudo 

Hamiltonian in normal form (i.e. for 1  ): 

1 2 1 2( , , , , ,1) , ( , , ) ( , , )H x x u u p p f t x u L t x u      (5) 

Suppose that  * *,x u is the optimal solution of the problem  P . Then the maximum 

principle in [29] asserts the existence of an absolutely continuous function p and a scalar 

 such that 
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Together with the transversality conditions  ( ) , , wherep T b   . 

Now consider that  1 2( ) ,x xp t p p . We deduce from ( )iii an explicit characterization 

of the optimal control for the production cost given in terms of the multipliers :p  

* 1 2

1

( ) ( )
( )

2

xp t x t
u t

r
 . 

Observe a special feature of  P  that the dynamics is linear, both in the state and control 

variables separately, and the cost is convex with respect to the production cost (control) 

function. For such problem, we can a priori get an explicit optimal control. However, 

although we refrain from writing here the necessary conditions in the form of a maximum 

principle, it is well known that the presence of explicit state constraints introduces an 

additional multiplier which, a priori, is a non-negative Radon measure (see, for 

example,[29]). This fact itself complicates analytical analysis and prevents determination 

of a closed form for the optimal control. Given the special features of  P , we could 

hope to get some additional information taking into account some literature, like [20, 27], 

on the regularity of the optimal control. We also refer readers to [24] for the study of both 

necessary and sufficient conditions of optimality for such state constrained problems. 

 

4. NUMERICAL RESULTS AND DISCUSSIONS 

We solve the optimality systems by numerical simulations to obtain the optimal 

performance of the process for our model in different scenarios: without state constraint 

and with state constraint. To do these simulations, we use the Imperial College London 

Optimal control Software – ICLOCS—version 0.1b [18]. ICLOCS is an optimal control 

interface, implemented in MATLAB, for solving the optimal control problems with 

general path and boundary constraints, and free or fixed final time. ICLOCS uses the 

IPOPT—Interior Point OPTimizer—solverwhich is an open-source software package for 

large-scale nonlinear optimization [30].Considering a fixed time 1T  , a time-grid with 

1000 nodes was created, i.e., for  0,1t we get 0.001t  .According to [22], the 

values for all parameters and constants we use in this model are presentedin Table 1. 
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Table 1: Definitions and values of parameters and constants: 

Parameters and 

constants 
Definitions Values 

d  Demand rate 4 

  
Obsolescence rate of process 

performance in absence of maintenance 
2 

10x  Initial value of inventory level 3 

20x  Initial value of process performance 1 

1U  
Upper limit of scheduled production 

rate 
3 

2U  
Upper limit of preventive maintenance 

rate 
4 

  Discount rate (positive constant) 0.1 

w  Positive constant 8 

h  Positive constant 1 

c  Positive constant 2.5 

b  Positive constant 10 

r  Positive constant 2 
q  Positive constant 4 

minl  
Lower bound on number of‗good‘ 

items 
0.5 

(Source: [22]) 

Since we used a direct method, and consequently, an iterative approach, we imposed 

an acceptable convergence tolerance at each step of 910rel  (see[18] for more details). 

We first solve the optimality systems for our problem  P when the state constraint is 

not imposed. We run the program written in MATLAB code using the aforementioned 

solver ‗ICLOCS‘ and the optimal solution found. The simulation results for the optimal 

states and controls are presented in Figures 1 and 2, respectively. Figure 1shows how the 

state trajectories for stocks and productions of ‗good‘ items slow down in absence of 

maintenance during the operations of the process over time. Figure 2 represents the 

behaviors of the control functions where the production cost control is singular, while the 

maintenance cost control is bang-bang with some strange behaviors from 0.5 to 0.7 in the 

time interval. 
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Figure 1: Optimal processes of stocks and quality products (i.e. ‗good‘ items) without state 

constraint. 

 

 
Figure 2: Optimal control representing the production rate and maintenance rate without state 

constraint. 
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Now we run the program for the optimality systems of problem  P
 
in presence of 

state constraint. Here we again find the optimal solution satisfying the necessary 

conditions of optimality. Our results show that the rate of declination of the number of 

‗good‘ items produced over time can be halted from being slowed down at a certain 

minimum level. The simulation results of the optimal trajectories for state and control 

have been illustrated in Figures 3 and 4, respectively. From Figure 3, we see that the 

number of quality products can be halted from becoming slow down at 
min 0.5l  due to 

imposing state constraint, and thus, increases again over a fixed interval of time. The 

behaviors of control functions presented in Figure 4 are quite better than those in Figure 

2.   

 
Figure 3: Optimal processes of stocks and quality products (i.e. ‗good‘ items) with state constraint. 
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Figure 4: Optimal control representing the production rate and maintenance rate with state 

constraint. 

 

Our simulation results show that state constrained model can provide more 

information as well as better performance for maintenance a production process in 

industry if appropriate deign of controller for better approximation can be made. As we 

omit here the detailed analytical investigations, further extensive study requires more 

accurate control strategy. Moreover, due to the presence of state constraint, the 

involvement measure requires validation of sufficient conditions of optimality, as well as 

the regularity of minimizers. Our future work will focus on these directions. 

 

4. CONCLUSIONS  

Optimal control theory has become the distinct area of extensive research in dynamic 

optimization because it is necessary needed in diverse applications. It has been used as an 

essential tool for the optimal managements of all kinds of recourses, which are the key 

ingredients of sustainable development of a country. This paper mainly focuses on one of 

such applications in some real life problems, emphasizing management of production and 

maintenance in industrial engineering. A mathematical model, describing the production 

process in an industry over time, in terms of ordinary differential equations has been 

studied, and a numerical solution for the optimality systems has been presented using 

Pontryagin maximum principles. In many real situations, it is sometimes natural to 

impose constraints on the state variables to obtain desired optimal outputs from dynamic 

control problems. An important feature of this paper is that the model discussed 

introduced state constraint, showing that such constraint can be advantageous for the 

maintenance of process performance, ensuring the quality (or ‗good‘ items) products 

after a long time operation of the system.  As this result is based only on a numerical 

treatment, further analytical investigation is needed due to the presence of state 
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constraint. Our future research on the validation of sufficient optimality conditions and 

the regularity of minimizers will be focused on both detailed theoretical and numerical 

approaches.  
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