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Abstract: In recent years many so-called matheuristics have been proposed for
solving Mixed Integer Programming (MIP) problems. Though most of them are
very efficient, they do not all theoretically converge to an optimal solution. In
this paper we suggest two matheuristics, based on the variable neighbourhood
decomposition search (VNDS), and we prove their convergence. Our approach is
computationally competitive with the current state-of-the-art heuristics, and on a
standard benchmark of 59 0-1 MIP instances, our best heuristic achieves similar
solution quality to that of a recently published VNDS heuristic for 0-1 MIPs within
a shorter execution time.

Keywords: 0-1 Mixed integer programming, Matheuristics, Variable neighbourhood search,
Pseudo-cuts, Convergence.

MSC: 90C11,90C27.



344 S.Hanafi et al., / New Variable Neighbourhood Search

1. INTRODUCTION

The 0-1 Mixed Integer Programming (0-1 MIP) problems can be expressed as
follows:

(0-1 MIP) max{cTx | x ∈ X}, (1)

where X = {x ∈ Rn | Ax ≤ b, x j ≥ 0 for j = 1, . . . ,n, x j ∈ {0, 1} for j = 1, . . . , p ≤ n} is
the feasible set, cTx is the objective function, and x ∈ X are the feasible solutions.
The set of indices of variables N = B ∪ C is partitioned into two subsets B =
{1, 2, . . . , p} and C = {p + 1, p + 2, . . . , n}, corresponding to binary and continuous
variables, respectively. To simplify the notation we will use notation P to refer to
the 0-1 MIP.

Wide range of practical problems in science, engineering and business can be
modeled as 0-1 MIP problems (0-1 MIPs). However, a number of special cases of
0-1 MIPs is proven to be NP-hard [6], and for some of them the computational
resources required to obtain an optimal solution can grow exponentially with
the size of the problem instance. That is why a lot of effort has been made to
improve the exact methods for 0-1 MIPs, such as branch-and-bound, branch-and-
cut, branch-and-price, dynamic programming, Lagrangian relaxation, and linear
programming. This, on the other hand, led to appearance of a number of well-
developed and successful designed general-purpose MIP solvers, such as IBM
ILOG CPLEX [17], Gurobi [12], XPRESS [2], LINGO [21] or FortMP [5].

Mathematical programming formulation of 0-1 MIP is particularly convenient
for some general-purpose solver application. However, many MIP problems
still cannot be solved within acceptable time and/or space limits by the best cur-
rent exact methods. As a consequence, metaheuristics (general frameworks for
building problem specific heuristics) have attracted attention as possible alterna-
tives or supplements to the more classical approaches. Matheuristics combine
metaheuristics and approaches relying on mathematical programming problem
formulations. Often, an exact optimisation method is used as the subroutine of a
metaheuristic for solving a smaller subproblem [22], though more generally, any
optimisation method available through a call to a general-purpose MIP solver can
be used as the subproblem subroutine within a given metaheuristic. At present,
many existing general-purpose MIP solvers contain a variety of heuristic solution
methods in addition to exact optimisation techniques.

Although the term matheuristic (short from math-heuristic, also known as
model-based heuristic) is only recently in use, over the last decades, a number of
methods for solving optimisation problems has emerged that can be considered as
matheuristics. In [25], a convergent algorithm for pure 0-1 integer programming,
solving a series of small subproblems generated by exploiting information ob-
tained through a series of linear programming relaxations, was proposed. Several
enhanced versions of this algorithm have also been proposed, see [14, 26]. Neigh-
bourhood search type metaheuristics, such as Variable Neighbourhood Search
(VNS), proposed in [23], Large Neighbourhood Search (LNS) introduced in [24],
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or large-scale neighbourhood search [1], are proved to be very efficient when
combined with optimisation techniques based on the mathematical program-
ming problem formulations. Recently, Glover and Hanafi [9, 10] developped a
more advanced approach for generating the target objective based on exploiting
the mutually reinforcing notions of proximity, reaction, and resistance. In [7],
an Adaptive Memory Projection (AMP) method for pure and mixed integer pro-
gramming was proposed, which combines the principle of projection techniques
with the adaptive memory processes of tabu search to set some explicit or im-
plicit variables to some particular values. This idea can be used for unifying
and extending a number of other procedures: LNS, Local Branching (LB) [4], the
Relaxation Induced Neighbourhood Search (RINS) [3], VNS branching [16], or
the global tabu search intensification using dynamic programming [27], among
others. Following the ideas of LB and RINS, another method for solving 0-1 MIP
problems was proposed in [20], based on the principles of Variable Neighbour-
hood Decomposition Search (VNDS) [15]. This method uses the solution of the
linear relaxation of the initial problem to define sub-problems to be solved within
the VNDS framework.

In this paper we propose two new heuristics for solving 0-1 MIP, which dy-
namically improve lower and upper bounds on the optimal value within VNDS.
By choosing a particular strategy for updating lower and upper bounds, we de-
fine different schemes for generating a series of sub-problems. The proposed
heuristics are tested and validated on instances used in [20] and extracted from
the standard 0-1 MIP benchmark from MIPLIB 2003 library. The results show
that:

• the proposed methods converge to an optimal solution if no limitations
regarding the execution time or the number of iterations are imposed;

• our proposed algorithms are comparable with the state-of-the-art heuristics.

This paper is organized as follows. In Section 2, we provide necessary notation
and definitions. In Section 3, we present the new general scheme and describe
in detail the new heuristics based on the mixed integer and linear programming
relaxations of the problem and the VNDS principle. Next, in Section 4, computa-
tional results are presented and discussed. In Section ??, some final outlines and
conclusions are provided.

2. NOTATION

In order to mathematically formulate the process of variable fixation, we intro-
duce the notion of reduced problem. Given an arbitrary solution x0 (not necessarily
a feasible solution) and an arbitrary subset of indices corresponding to binary
variables J ⊆ B, the problem reduced from the original problem P and associated
with x0 and J can be defined as:
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P(x0, J)


max cTx
s.t. Ax ≤ b

x j = x0
j ∀ j ∈ J

x j ∈ {0, 1} ∀ j ∈ B
x j ≥ 0 ∀ j ∈ N

Obviously, the reduced problem is derived from the original by setting variables
with indices in J at values of x0. We further define the sub-vector associated with
the set of indices J ⊆ B and solution x0 as x0(J) = (x0

j ) j∈J, the set of indices of binary
variables with integer values as B(x0) = { j ∈ B | x0

j ∈ {0, 1}}. We also use the short
form notation P(x0) for the reduced problem P(x0,B(x0)). Apparently, P(x0) = P if
x0

j ∈ ]0, 1[ ,∀ j ∈ B. The LP-relaxation of problem P is denoted as LP(P), i.e. :

LP(P)


max cTx
s.t. Ax ≤ b

x j ∈ [0, 1] ∀ j ∈ B
x j ≥ 0 ∀ j ∈ N

Hanafi and Wilbaut [13], and Glover [8] separately proposed the use of the
Mixed Integer Relaxation (MIR). It is defined for a given problem P and a subset
of indices J ⊆ B by forcing variables with indices in J to be binary in an optimal
solution, i.e. :

MIR(P, J)


max cTx
s.t. Ax ≤ b

x j ∈ {0, 1} ∀ j ∈ J
x j ∈ [0, 1] ∀ j ∈ B − J
x j ≥ 0 ∀ j ∈ N

If C is a set of constraints, we will denote with (P | C) the problem obtained
by adding all constraints in C to the problem P. Let x and y be two arbitrary
solutions of the problem P, the distance between x and y is then defined as
δ(x, y) =

∑
j∈B | x j − y j |. If J ⊆ B, then we define partial distance between x and

y, relative to J, as δ(J, x, y) =
∑

j∈J | x j − y j | (obviously, δ(B, x, y) = δ(x, y)). More
generally, let x̄ be an optimal solution of the LP relaxation LP(P) (not necessarily
MIP feasible), and J ⊆ B(x̄) an arbitrary subset of indices corresponding to binary
variables (by definition of B(x̄) all the variables in J have a binary value), the
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partial distance δ(J, x, x) can be linearised as follows:

δ(J, x, x) =
∑
j∈J

[
x j(1 − x j) + x j(1 − x j)

]
.

Note that δ(J, x, x) is not defined if J = ∅.
Let X be the feasible set of the problem P. The neighbourhood structures

{Nk | k = kmin, . . . , kmax}, 1 ≤ kmin ≤ kmax ≤ p can be defined if the distance δ(B, x, y)
between any two solutions x, y ∈ X is known. The set of all solutions in the kth

neighbourhood of x ∈ X is denoted asNk(x), where

Nk(x) = {y ∈ X | δ(B, x, y) ≤ k}.

From the definition ofNk(x) it follows thatNk(x) ⊂ Nk+1(x), for any k ∈ {kmin, kmin+
1, . . . , kmax − 1}, since δ(B, x, y) ≤ k implies δ(B, x, y) ≤ k + 1. If we completely
explore neighbourhoodNk+1(x), it is not necessary to explore the neighbourhood
Nk(x).

3. NEW ADVANCED VNDS BASED HEURISTICS

It is well known that heuristics and relaxations are useful for providing up-
per and lower bounds on the optimal value for large and difficult optimisation
problems, respectively. In [20], a hybrid approach is proposed for solving 0-1 MIP
problems that combines Variable Neighbourhood Decomposition Search (VNDS)
heuristic [15] and a generic MIP solver. VNDS is used to define a variable fixation
scheme for generating a sequence of smaller subproblems that are normally easier
to be solved than the original problem. We here consider this approach, denoted
as VNDS-MIP, and provide its pseudo-code for maximization problems in Figure
1. This algorithm can easily be adjusted for minimization problems.

Input parameters for the algorithm are an instance P of the 0-1 MIP problem,
a parameter d that defines the number of variables to be released in each iteration
and an initial feasible solution x∗ of P. The algorithm returns the best solution
found within the stopping criteria, defined by the variable proceed1. Variable
proceed2 is used to define the stopping condition of the second loop while in the
algorithm.

Variables are ordered according to their distances from the LP relaxation so-
lution values (see lines 5, 6 in Figure 1). More precisely, we compute distances
δ j =| x∗j − x j | for j ∈ B, where x∗j is a variable value of the current incumbent
(feasible) solution, and x j a variable value of the LP-relaxation. We then index
variables x j, j ∈ B, so that δ1 ≤ δ2 ≤ . . . ≤ δp, p =| B |. Parameters kmin, kstep and kmax
(see line 8 in Figure 1) are determined in the following way. Let q be the number
of binary variables which have different values in the LP relaxation solution and
in the incumbent solution (q =| { j ∈ B | δ j , 0} |), and let d be a given parameter
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VNDS-MIP(P, d, x∗)
1 Choose stopping criteria (set proceed1 = proceed2 = true);
2 Find an optimal solution x of LP(P);
3 if (B(x) = B) then return x;
4 while (proceed1) do
5 Set δ j =| x∗j − x j |, j ∈ B;
6 Index x j so that δ j ≤ δ j+1, j = 1, . . . , p − 1, p = |B|;
7 Set q =| { j ∈ B | δ j , 0} |;
8 Set kmin = p − q, kstep = [q/d], kmax = p − kstep, k = kmax;
9 while (proceed2 and k ≥ 0) do

10 Jk = {1, . . . , k}; x′ = MIPSOLVE(P(x∗, Jk), x∗);
11 if (ctx′ > ctx∗) then
12 x∗ = LocalSearch(P, x′);
13 else
14 if (k − kstep < kmin) then kstep = max{[k/2], 1};
15 Set k = k − kstep;
16 endif
17 Update proceed2;
18 endwhile
19 Update proceed1;
20 endwhile
21 return x∗.

Figure 1: VNDS for MIPs.

(its value is experimentally found) that controls the neighbourhood size. Then,
we set kmin = p − q, kstep = [q/d], (where [α] is the largest integer not greater than
α) and kmax = p − kstep. We also allow the value of k to be less then kmin (see lines
14 and 15 in Figure 1). In other words, we allow the variables having the same
integer value as in the LP relaxation solution to be released anyway. In case that
k < kmin, kstep is set to (approximately) the half of the number of the remaining
fixed variables. Note that the maximum value of parameter k (which is kmax)
indicates the maximum possible number of fixed variables. This value implies
the minimum number of released variables, and therefore the minimum possible
neighbourhood size in the VNDS scheme. Also note that in all pseudo-codes, the
statement y = MIPSOLVE(P, x) denotes a call to a generic MIP solver for a given 0-1
MIP problem P, starting from a given solution x and returning a new solution y
(if P is infeasible, then the value of y remains the same as before the call to the
MIP solver).
In this paper, two heuristics are derived by choosing different strategies for up-
dating lower and upper bounds, thus defining different schemes for generating a
series of subproblems.
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3.1. VNDS for 0-1 MIPs with Pseudo-Cuts (VNDS-PC1)
We here propose an algorithm that exactly solves a sequence of reduced prob-

lems, obtained from a sequence of linear programming relaxations. The set of
reduced problems for each LP relaxation is generated by fixing a certain num-
ber of variables according to the rules of VNDS (mentioned in Figure 1). That
way, two sequences of upper and lower bounds continue to be generated until
the completion of an optimal solution of the problem is justified. Also, when a
reduced problem is solved, a pseudo-cut is added into the problem to guarantee
that this subproblem is not revisited. Furthermore, whenever an improvement
in the objective function value occurs, a local search procedure is applied in the
whole solution space to attempt the further improvement (so-called boundary
effect within VNDS). We will refer to this method as VNDS-PC1, since it employs
VNDS to solve 0-1 MIPs while incorporating pseudo-cuts to reduce the search
space. The corresponding pseudo-code is provided in Figure 2 (here again, we
consider the maximization case).

VNDS-PC1(P, d, x∗)
1 Choose stopping criteria (set proceed1 = proceed2 = true);
2 Add objective cut: LB = ctx∗; P = (P | ctx > LB).
3 while (proceed1) do
4 Find an optimal solution x of LP(P); set UB = ctx;
5 if (B(x) = B) break;
6 Set δ j =| x∗j − x j |, j ∈ B;
7 Index x j so that δ j ≤ δ j+1, j = 1, . . . , p − 1, p = |B|;
8 Set q =| { j ∈ B | δ j , 0} |;
9 Set kmin = p − q, kstep = [q/d], kmax = p − kstep, k = kmax;

10 while (proceed2 and k ≥ 0) do
11 Jk = {1, . . . , k}; x′ = MIPSOLVE(P(x∗, Jk), x∗);
12 P = (P | δ(Jk, x′, x) ≥ 1);
13 if (ctx′ > ctx∗) then
14 x∗ = LocalSearch(P, x′); LB = ctx∗;
15 Update objective cut: P = (P | ctx > LB); break;
16 else
17 if (k − kstep < kmin) then kstep = max{[k/2], 1};
18 Set k = k − kstep;
19 endif
20 Update proceed2;
21 endwhile
22 Update proceed1;
23 endwhile
24 return LB, UB, x∗.

Figure 2: VNDS for MIPs with pseudo-cuts.
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The main differences between the pseudo-code of VNDS-MIP and VNDS-PC1 are the
following. The LP relaxations of the current problem P is solved in the first loop
in VNDS-PC1 (line 4 in Figure 2). Indeed, the problem is enriched at each iteration
by a pseudo-cut (line 12). Then, variables are reordered (lines 5-6) according to
the new corresponding LP solution. These relaxations generate a sequence of
upper bounds, whereas the objective cut is updated each time the lower bound
is improved (line 15). If an improvement occurs after solving the subproblem
P(x∗, Jk), where x∗ is the current incumbent solution (see line 11 in Figure 2), we
perform a local search on the complete solution space, starting from x′ (see line 14
in Figure 2). The local search applied at this stage is the variable neighbourhood
descent for 0-1 MIPs, as described in [16]. In the VNDS-PC1 algorithm, lines 20
and 22 mean that the stopping conditions of the loops are checked and updated.
In particular, according to the following Proposition 1, procced1 can be stated as
UB − LB > 0 (for the maximization case).

Proposition 1. The VNDS-PC1 algorithm finishes in a finite number of steps and either
returns an optimal solution x∗ of the original problem, or proves the infeasibility of the
original problem.

Proof. Recall that p = |B| denotes the number of binary variables in the input
problem (see (1)). The number of outer loop iterations of VNDS-PC1 is at most the
number of all possible incumbent integer solutions, which is not greater than 2p

(because the cut δ(Jk, x′, x) ≥ 1 enforces the change of incumbent integer solution
in each iteration, except when Jk = ∅).

When Jk = ∅, all possible integer solution vectors have been examined. The
number of inner loop iterations is bounded by d + log2 p, so the total number of
iterations is at most 2p(d + log2 p).

The pseudo-cut δ(Jk, x′, x) ≥ 1 does not necessarily change the optimal value
of the LP relaxation of P at each iteration. However, we have that P(x∗, Jk) = (P |
δ(Jk, x∗, x) = 0) and ν(P) = max{ν((P | δ(Jk, x∗, x) ≥ 1)), ν((P | δ(Jk, x∗, x) = 0))} (where
ν(P) denotes the optimal value of P). So, if the optimal solution of the reduced
problem P(x′, Jk) is not optimal for P, then the cut δ(Jk, x∗, x) ≥ 1 does not discard
the optimal value of the original problem P. We have already proved that this
algorithm finishes in a finite number of steps, so it follows that either it returns an
optimal solution x∗ of the original problem (if LB = UB), or proves the infeasibility
of the original problem (if LB > UB). �

In practice, when used as a heuristic with the time limit as a stopping criterion,
VNDS-PC1 has a good performance (see Section 4). One can observe that if pseudo-
cuts (line 12 in Figure 2) and objective cuts (lines 2 and 15) are not added, the
algorithm from Figure 1 is obtained as a special case of VNDS-PC1 with a fixed LP
relaxation reference solution.

In this paragraph we analyze similarities and dissimilarities between our
pseudo-cut strategy and the recent ones from the literature. In particular, Las-
don et al. [18] proposed two methods to solve efficiently constrained global
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optimization problems. They are based on the framework of adaptive memory
programming. One of those methods uses pseudo-cuts within local search proce-
dure to prevent the search from being trapped in local optima. Hyperplanes that
are orthogonal to selected rays (originating at a given original point and passing
through another point) are constructed. The process is repeated to guide and
to diversify the search. This work was extended recently in [11], where the au-
thors propose some strategies to generate and to manage a pool of pseudo-cuts to
guide the search, but without providing the computational results. However, their
pseudo-cuts provide temporary and possibly invalid restrictions on the space of
feasible solutions. On the contrary, in our approaches, the pseudo-cuts are added
into the problem guaranteeing that an optimal solution of the original problem
will be kept at the end of the process. We need that property to prove convergence
of our matheuristics.

3.2. VNDS with pseudo-cuts and another ordering (VNDS-PC2)
In the VNDS variant discussed previously, variables in the incumbent integer

solution were ordered according to the distances of their values to the values
of the current LP solution. However, it is possible to employ different ordering
strategies. For example, consider the following two problems:

(LP−x∗ )


min δ(x∗, x)

s.t.: Ax ≤ b
ctx ≥ LB + ϵ
x j ∈ [0, 1] , j ∈ B
x j ≥ 0, j ∈ N

(LP+x∗ )


max δ(x∗, x)

s.t.: Ax ≤ b
ctx ≥ LB + ϵ
x j ∈ [0, 1] , j ∈ B
x j ≥ 0, j ∈ N

where x∗ is the best known integer feasible solution and LB is the best lower bound
found so far (i.e., LB = ctx∗). One can observe that ϵ can be set to a small value (e.g.,
0.0001) to impose an improvement of the best lower bound in problems LP−x∗ , and
LP+x∗ . If x− and x+ are optimal solutions of LP-relaxation problems LP−x∗ and LP+x∗
respectively, then components of x∗ could be ordered in ascending order of values
|x−j − x+j |, j ∈ B. Since both solution vectors x− and x+ are real-valued (i.e., from
Rn), this ordering technique is expected to be more sensitive than the standard
one, i.e., the number of pairs ( j, j′), j, j′ ∈ N, j , j′ for which |x−j − x+j | , |x−j′ − x+j′ | is
expected to be greater than the number of pairs (h, h′), h, h′ ∈ N, h , h′ for which
|x∗h − xh| , |x∗h′ − xh′ |, where x is an optimal solution of the LP relaxation LP(P).
Also, according to the definition of x− and x+, it is intuitively more likely that the
variables x j, j ∈ N for which x−j = x+j will have the same value (x−j ) in the final
solution, than for variables x j, j ∈ N for which x∗j = x j (and x−j , x+j ), to have the

final value x∗j. In practice, if x−j = x+j , j ∈ N, then usually x∗j = x−j , which justifies
the ordering of components of x∗ in described way. However, if we want to keep
the number of iterations in one pass of VNDS approximately the same as in the
standard ordering (i.e., if we want to use the same value for the parameter d),
then the subproblems examined will be larger than if the standard ordering is
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used, since the value of q will be smaller (see line 8 in Figure 3). The pseudo-code
of this variant of VNDS-PC, denoted as VNDS-PC2, is provided in Figure 3.

VNDS-PC2(P, d, x∗)
1 Choose stopping criteria (set proceed1=proceed2=true);
2 Add objective cut: LB = ctx∗; P = (P | ctx > LB);
3 while (proceed1) do
4 Find an optimal solution x of LP(P); set UB = ctx ;
5 if (B(x) = B) break;
6 Find optimal solutions x− of LP−x∗ and x+ of LP+x∗ ;
7 δ j =| x−j − x+j |, j = 1..p ; index x j so that δ j ≤ δ j+1, j = 1..p − 1 ;
8 Set q =| { j ∈ B | δ j , 0} |, kstep = [q/d], k = p − kstep;
9 while (proceed2 and k ≥ 0) do

10 Jk = {1, . . . , k}; x′ = MIPSOLVE(P(x∗, Jk), x∗);
11 if (ctx′ > ctx∗) then
12 Update objective cut: LB = ctx′; P = (P | ctx > LB);
13 x∗ = LocalSearch(P, x′); LB = ctx∗; break;
14 else
15 if (k − kstep > p − q) then kstep = max{[k/2], 1};
16 Set k = k − kstep;
17 endif
18 Update proceed2;
19 endwhile
20 x′ = MIPSOLVE(P(x,B(x)), x∗); LB = max{LB, ctx′};
21 Add pseudo-cut to P : P = (P | δ(B(x), x, x) ≥ 1);
22 x′ = MIPSOLVE(P(x−,B(x−)), x∗); LB = max{LB, ctx′};
23 Add pseudo-cut to P : P = (P | δ(B(x−), x, x−) ≥ 1);
24 x′ = MIPSOLVE(P(x+,B(x+)), x∗); LB = max{LB, ctx′};
25 Add pseudo-cut to P : P = (P | δ(B(x+), x, x+) ≥ 1);
26 Update proceed1;
27 endwhile
28 return LB, UB, x∗.

Figure 3: VNDS for MIPs with pseudo-cuts and another ordering strategy.

Proposition 2. The VNDS-PC2 algorithm finishes in a finite number of steps and either
returns an optimal solution x∗ of the original problem (if LB = UB), or proves the
infeasibility of the original problem (if LB > UB).

Proof. It is easy to prove that the convergence of the VNDS-PC2 algorithm is
guaranteed by pseudo-cuts added in lines 21, 23, and 25 of Figure 3 if no limitations
regarding the execution time or the number of iterations are imposed. The proof
is similar to the one in the case of linear programming based algorithm [26]. �
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4. COMPUTATIONAL RESULTS

4.1. Platform for experiments
Hardware and Software: All values presented are obtained by using a Pentium 4
computer with 3.4GHz processor and 4GB RAM and general purpose MIP solver
CPLEX 11.2 [17]. We use C++ programming language to code our algorithms and
compile them with g++ and the option -O2.

Methods compared: We compare the two convergent variants of the VNDS,
namely VNDS-PC1 and VNDS-PC2 with the VNDS proposed in [20], denoted as
VNDS-MIP. The three algorithms are executed for all the instances in the consid-
ered test bed. The results reported in [20] showed that the VNDS-MIP algorithm
was able to obtain better results than CPLEX in average. Thus, we do not consider
CPLEX in our comparison. Some other recent approaches as Local Branching (LB)
[4], or LB embedded within VNS [16] can be also considered for a comparison.
However, VNDS-MIPwas already compared with those approaches in [20] and the
authors showed that VNDS-MIP obtained in average better results.

Test bed: We consider 59 0-1 MIP problems extracted from [20] and the MIPLIB
2003 Library. These minimization problems were considered in recent papers for
general 0-1 MIP approaches (in [4, 20] for instance). We only consider instances
with binary and continuous variables, according to the definition of problem P at
the beginning of the paper. The characteristics of this test bed are given in Table
1: the number of constraints is given in column “num. constr.”, the total number
of variables is given in column “num. var.”. Column “num. bin.” indicates the
number of binary variables, whereas column “Obj.” provides the optimal or the
best known published objective value, according to the site of the MIPLIB 2003
and some recent papers [19, 20, 4] when no objective values are reported on the
website of the MIPLIB 2003.

CPLEX parameters: As mentioned earlier, the CPLEX MIP solver is used in each
method compared. We follow the choices made in [20]: We set the
CPX PARAM MIP EMPHASIS to FEASIBILITY for the first feasible solution, and then
change to the default BALANCED option after the first feasible solution is found.
After the first feasible solution is found, we set the local heuristics frequency
(parameter CPX PARAM HEUR FREQ) to 100.

VNDS Parameters: As a local search procedure in our algorithms, we use the
variable neighbourhood descent for 0-1 MIPs (VND-MIP) from [16]. We decide
to use the same values for parameters of VNDS for all our algorithms. We set
the value of parameter d to 10. We set the maximum neighbourhood size within
VND-MIP to 5, and the execution time limit for VND-MIP to 900s. The time limit for

http://miplib.zib.de/miplib2003/index.php
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calls to CPLEX MIP solver for subproblems within the four algorithms is set to
tsub = 1200s.

Termination: All methods were run for 5h (tmax = 18, 000s). We chose this stop-
ping condition to favor the comparison with the results obtained by VNDS-MIP in
[20].

4.2. Comparison on the MIPLIB instances
We provide a synthesis of the results for the VNDS-MIP method proposed in

[20] and the two convergent algorithms proposed in this paper for the 0-1 MIP
instances in Tables 2-3. In this table, we report in column “obj” the objective value
returned by a given algorithm, and in column “cpu*”, we report the running time
needed to reach this value (in seconds). The last three rows in Table 3 give
additional information: the number of times the given algorithm provides the
best solution among the three algorithms (row “number of wins”); the number
of times the given algorithm obtains a strictly better solution than the other two
algorithms (row “number of strict wins”); and the average running time needed
to converge to the best solution visited by an algorithm. A bold value in Tables
2-3 means that the corresponding algorithm visits the best solution among the
three algorithms.

Tables 2 and 3 suggest that VNDS-MIP and VNDS-PC1 clearly dominate VNDS-PC2.
If we compare directly the new convergent algorithms with VNDS-MIP, we can
observe the following:

• VNDS-PC1 obtains a (strictly) better objective value than VNDS-MIP for 12
instances. This method is also able to reach the same value as VNDS-MIP
for 32 other instances. So, VNDS-PC1 can provide solutions at least as good
as VNDS-MIP in 74.6% of the studied cases. In addition, VNDS-PC1 provides
30 solutions with better objective value than the solutions provided by
VNDS-PC2.

• Even if it is globally dominated, VNDS-PC2 is also able to obtain better ob-
jective value than VNDS-MIP for 5 instances (cap6000, harp2, protfold,
rail2586c, rail4284c). VNDS-PC2 reaches the same value as VNDS-MIP for
23 other instances, leading to 47.5% of the instances with a solution value at
least as good as VNDS-MIP.

These results show that, if we consider only the objective value of the final
feasible solution provided by a given algorithm, the convergent VNDS-PC1 algo-
rithm is able to rival the original VNDS-MIP. In general, the other new algorithm
(VNDS-PC2) has difficulties to escape from local optima during the search, and it
has more difficulties to rival with VNDS-MIP. The values reported in the row “avg.
cpu*” cannot be interpreted directly since they were obtained over all the in-
stances. This row simply shows that, in average, the VNDS-PC1 and the VNDS-PC2
algorithms converge faster to their best solution than the VNDS-MIP algorithm.
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Instance num. const. num. var num. bin. Obj
10teams 230 2,025 1800 924
a1c1s1 3,312 3,648 192 11,503.44
a2c1s1 3,312 3,648 192 10,889.14
aflow30a 479 842 421 1,158
aflow40b 1,442 2,728 1,364 1,168
air04 823 8,904 8,904 56,137
air05 426 7,195 7,195 26,374
b1c1s1 3,904 3,872 288 24,544.25
b2c1s1 3,904 3,872 288 25,740.15
biella1 14,021 7,328 6,11 3,065,005.78
cap6000 2,176 6 6 -2,451,377
dano3mip 3,202 13,873 552 687.733333
danoint 664 521 56 65.6667
disctom 399 10 10 -5
ds 656 67,732 67,732 93,52
fast0507 507 63,009 63,009 174
fiber 363 1,298 1,254 405,935.18
fixnet6 478 878 378 3,983
glass4 396 322 302 1,200,012,600
harp2 112 2,993 2,993 -73,899,798.84
liu 2,178 1,156 1,089 1,138
markshare1 6 62 50 1
markshare2 7 74 60 1
mas74 13 151 150 11,801.1857
mas76 12 151 150 40,005.0541
misc07 212 260 259 2,81
mkc 3,411 5,325 5,323 -563.846
mod011 4,48 10,958 96 -54,558,535
modglob 291 422 98 20,740,508.1
momentum1 42,68 5,174 2,349 109,143
net12 14,021 14,115 1,603 214
nsrand-ipx 735 6,621 6,62 51,2
nw04 36 87,482 87,482 16,862
opt1217 64 769 768 -16
p2756 755 2,756 2,756 3,124
pk1 45 86 55 11
pp08aCUTS 246 240 64 7,35
pp08a 136 240 64 7,35
protfold 2,112 1,835 1,835 -31
qiu 1,192 840 48 -132.873137
rail2536c 2,539 15,293 15,284 689
rail2586c 2,589 13,226 13,215 947
rail4284c 4,287 21,714 21,705 1,071
rail4872c 4,875 24,656 24,645 1,534
rail507 509 63,019 63,009 174
rd-rplusc-21 125,899 622 457 165,395.28
set1ch 492 712 240 54,537.75
seymour 4,944 1,372 1,372 423
sp97ar 1,761 14,101 14,101 6.61E+08
sp97ic 1,033 12,497 12,497 429,562,635.68
sp98ar 1,435 15,085 15,085 529,814,784.70
sp98ic 825 10,894 10,894 449,144,758.40
stp3d 159,488 204,88 204,88 493.72
swath 884 6,805 6,724 467.407
t1717 551 73,885 73,885 170,195
tr12-30 750 1,08 360 130,596
UMTS 4,465 2,947 2,802 30,090,469
van 27,331 12,481 192 4.57
vpm2 234 378 168 13.75

Table 1: Characteristics for 0-1 MIP instances.
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However, this solution is not necessarily the best one among the 3 algorithms (in
particular for VNDS-PC2). Then, we provide in Table 4 additional information to
compare the behaviour of the three algorithms. In this table, we report in column
“cpu*” the average running time (in seconds) needed to obtain the final solution
by a given algorithm, and in column “# wins” the number of times that a given
algorithm obtains this solution faster (or in the same second) than the others.
As we wish to provide more accurate information about the performance of the
algorithms, we only consider subsets of instances where the algorithms obtains
the same solution. Then, in row “VNDS-MIP vs VNDS-PC1 vs VNDS-PC2”, we only
consider the 23 instances for which the three algorithms reach the same solution.
We do the same comparison with the 3 possible combinations of two algorithms
in the next rows (VNDS-MIP vs VNDS-PC1, VNDS-MIP vs VNDS-PC2 and VNDS-PC1 vs
VNDS-PC2).

The results reported in Table 4 are clearly encouraging. Indeed, the values
reported in rows “VNDS-MIP vs VNDS-PC1 vs VNDS-PC2” and in row “VNDS-MIP vs
VNDS-PC1” suggest that, in average, the VNDS-PC1 algorithm is able to converge
faster to its best solution than VNDS-MIP. The average difference in terms of time is
not very important. However, the number of times that VNDS-PC1 converges to its
final solution faster than VNDS-MIP for this subset of instances is more important
(13 - 7 in the first row, 22 - 15 in the second one). Table 4 also confirms that
VNDS-PC2 is, in average, dominated by VNDS-MIP and VNDS-PC1.
According to the previous observations and to the results presented in this section,
we can say that the average performance of VNDS-PC1 suggest that the use of
pseudo-cuts can improve the VNDS scheme initially proposed in [20] to solve
hard 0-1 MIP problems.
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VNDS-MIP VNDS-PC1 VNDS-PC2
Instance obj cpu* obj cpu* obj cpu*
10teams 924 8 924 8 1,056 3

a1c1s1 11,503.44 7,008 11,538.26 6,414 11,879.40 1,144
a2c1s1 10,889.14 16,694 11,008.87 6,007 11,559.85 184

aflow30a 1,158 35 1,158 65 1,158 150
aflow40b 1,168 10,887 1,168 5,102 1,168 1446

air04 56,137 112 56,137 46 56,137 3,2723
air05 26,374 34 26,374 59 26,374 86

b1c1s1 24,960.78 2,976 24,948.16 3,604 26,046.30 316
b2c1s1 26,194.59 10,896 26,092.57 3,771 26,438.95 434,00
biella1 3,065,005.78 7,978 3,065,052.45 10,125 3,070,001.58 17,809

cap6000 -2,451,372 12 -2,451,377 1,134 -2,451,377 687
dano3mip 694.42 3,417 694.29 2,254 740.13 4,944

danoint 65.6667 225 65.6667 35 65.6667 17
disctom -5,000 179 -5,000 179 -5,000 137

ds 429.6 15,043 425.7 5,211 515.9 2,962
fast0507 174 3,529 174 453 174 3,796

fiber 405,935.18 3 405,935.18 < 1 405,935.18 < 1
fixnet6 3,983 2 3,983 3 3,983 1,56
glass4 1,200,012,600 5,020 1,200,012,600 2,505 1,700,010,547 1,202
harp2 -73,899,700.00 1,753 -73,899,798.84 1,706 -73,899,798.84 1,540

liu 1,152 15,500 1,152 13,174 1,152 11,669
markshare1 3 6,497 3 2,236 4 5,946
markshare2 5 1,605 7 6,593 6 8,323

mas74 11,801.1857 223 11,801.1857 49 11,801.1857 57
mas76 40,005.0541 27 40,005.0541 < 1 40,005.0541 35
misc07 2,810 202 2,810 1 2,810 2

mkc -563.53 16,702 -560.81 1,691 -542.89 17
mod011 -54,558,535 222 -54,558,535 155 -54,558,535 4,351

modglob 20,740,508.1 1 20,740,508.1 1 20,740,508.1 38
momentum1 109,158 3,357 109,158 1,505 147,644.49 15,018

net12 214 3,882 214 4,013 255 3,121

Table 2: Results for 0-1 MIP instances (beginning).
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VNDS-MIP VNDS-PC1 VNDS-PC2
Instance obj cpu* obj cpu* obj cpu*

nsrand-ipx 51,360 17,083 51,520 2,052 54,240 4
nw04 16,862 441 16,862 478 16,862 752

opt1217 -16 < 1 -16 < 1 -16 < 1
p2756 3,128 5 3,124 6 3,130 4

pk1 11 76 11 68 11 77
pp08aCUTS 7,350 10 7,350 3 7,350 147

pp08a 7,350 5 7,350 2 7,350 6
protfold -23 14,512 -21 1,377 -28 12,251

qiu -132.873137 13 -132.873137 46 -132.873137 3
rail2536c 689.00 364 689.00 689 691.00 6,324
rail2586c 966.00 13,838 961.00 17,657 964.00 13,107
rail4284c 1,083.00 17,148 1,073.00 17,843 1,078.00 17,194
rail4872c 1,558.00 17,107 1,556.00 12,834 1,560.00 16,824

rail507 174.00 2,818 174.00 1,941 175.00 960
rd-rplusc-21 165,516.32 2,957 165,842.58 3,379 184,260.88 229

set1ch 54,539.80 147 54,537.75 435 54,587.5 16
seymour 423 11,72 425 6,457 424 130

sp97ar 662,204,945 15,803 663,111,072 8,229 665,576,653 8,075
sp97ic 428,561,466.56 17,037 430,233,510.56 3,791 435,995,576.48 3,77
sp98ar 530,074,293.76 5,693 530,047,577.44 5,248 531,637,561.76 5,42
sp98ic 449,144,758.40 5,733 449,468,491.84 4,019 455,457,274.24 4,34
stp3d 521.76 17,624 521.76 16,822 521.76 14,981
swath 477.56 16,031 483.40 338 530.15 < 1
t1717 222,859 5,410 238,055 5,022 243,994 12,646

tr12-30 130,596 3,738 130,596 4,045 130,673 12,424
UMTS 30,125,519.00 1,163 30,128,228.00 3,384 30,456,926.00 1,039

van 5.88 13,538 5.88 10,820 5.88 17,938
vpm2 13.75 1 13.75 < 1 14 < 1

number of wins 46 43 27
number of strict wins 14 9 2

avg. cpu* (global) 5,064 3,476 4,501

Table 3: Results for 0-1 MIP instances (end).

number of VNDS-MIP VNDS-PC1 VNDS-PC2
instances cpu* # wins cpu* # wins cpu* # wins

VNDS-MIP vs VNDS-PC1 vs VNDS-PC2 23 2,067 7 2,068 13 3,850 7
VNDS-MIP vs VNDS-PC1 32 2,147 15 2,016 22 /
VNDS-MIP vs VNDS-PC2 23 2,067 15 / 3,850 9
VNDS-PC1 vs VNDS-PC2 25 / 2,016 17 3,576 10

Table 4: Comparison between VNDS-MIP, VNDS-PC1 and VNDS-PC2.
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5. CONCLUSION

Most of the discrete and continuous optimisation problems are hard to solve.
The idea of combining exact solution methods by using mathematical program-
ming formulation and metaheuristics has attracted a lot of attention recently. As
a consequence, a new class of methods, called matheuristics (or model-based heuris-
tics) has been introduced. In this paper we propose two matheuristic methods for
solving 0-1 Mixed Integer Programs (MIP). We combine solutions of exact MIP
solver and a Variable Neighborhood Decomposition Search (VNDS) metaheuris-
tic. VNDS consists of systematic fixing of certain number of solution attributes
and solving the remaining smaller size problems by using the basic variable
neighborhood search. We also propose new variants of VNDS that integrate re-
laxations, pseudo-cuts, and objective cuts. The proposed VNDS’s variants update
both lower and upper bounds on the optimal value during the search. Our basic
result is, in fact, our proof of their convergence. Based on computational analysis
performed on benchmark instances from the literature, we may conclude that
theoretical convergence analysis could help in designing efficient matheuristics.
Moreover, the VNDS based matheuristic has great potential for solving MIP. Fu-
ture work may contain more extensive computational analysis with our VNDS-PC1
heuristic, which should include not only 0-1 MIPs. In addition, the theoretical
challenge could be the design of new convergent matheuristics for mixed integer
programming.
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