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Faculty of Transport and Traffic Engineering, University of Belgrade

dusan@sf.bg.ac.rs

Milica ŠELMIĆ
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1. INTRODUCTION

The nature-inspired algorithms are motivated by a variety of biological and
natural processes. Their popularity is based primarily on the ability of biological
systems to efficiently adapt to frequently changeable environments. Evolutionary
computation, neural networks, ant colony optimization, particle swarm optimiza-
tion, artificial immune systems, and bacteria foraging algorithm are among the
algorithms and concepts that were motivated by nature.

Swarm behavior is one of the main features of different colonies of social insects
(bees, wasps, ants, termites). This type of behavior is principally characterized
by autonomy, distributed functioning, and self-organizing. Swarm Intelligence
[5, 6] is the area of Artificial Intelligence based on studying actions of individuals
in various decentralized systems. When creating Swarm Intelligence models and
techniques, researchers apply some principles of the natural swarm intelligence.

In the last two decades, the researchers have been studying the behavior of
social insects in an attempt to utilize the swarm intelligence concept and build
up various artificial systems. Here are some optimization algorithms inspired
by bees’ behavior that appeared during the last decade: Bee System [27, 41], Bee
Colony Optimization (BCO) [50], Marriage in Honey-Bees Optimization (MBO)
[1], BeeHive [55], Honey Bees [34], Artificial Bee Colony (ABC) [22], Bee System
Optimization (BSO) [16], Bees Algorithm [39, 40], Honey Bee Marriage Opti-
mization (HBMO) [2], Fast Marriage in Honey Bees Optimization (MHBO) [58],
Virtual Bee Algorithm (VBA) [59]. These algorithms apply information share models
to beat restrictions on the applicability of optimization techniques. In all these
approaches, there are few agents who search solution space at the same time.
Artificial bees (agents) in all considered approaches have incomplete information
when solving the problem. There is no global control in any of these approaches.
Artificial bees are based on the concept of cooperation. Cooperation enables bees
to be more efficient, sometimes even to achieve goals they could not achieve in-
dividually. These algorithms denote general algorithmic frameworks that could
be applied to diverse optimization problems. The excellent surveys of the algo-
rithms inspired by bees’ behavior in nature are given in [23, 48, 49], while in [24]
a comprehensive survey of ABC and its applications is presented. Here, we focus
on BCO with the main goal to describe basic concept of the algorithm proposed
in [27] (under the name Bee System, renamed to BCO in [50]) and to illustrate its
evolution. BCO is a meta–heuristic method, since it represents a general algo-
rithmic framework applicable to various optimization problems in management,
engineering, and control that could always be tailored for a specific problem. BCO
belongs to the class of population-based algorithms. Complex initial formulation
of the algorithm has been evolving to simpler versions through numerous appli-
cations [12, 14, 15, 32, 34, 36, 37, 47, 51, 52, 56, 57]. Part II of this paper is devoted
to detailed survey of BCO applications.

The BCO algorithm underwent numerous changes trough the process of evo-
lution from its development in 2001 until nowadays. Moreover, in order to solve
hard optimization problems, the initial constructive BCO was modified and a new
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concept based on the improving complete solutions was developed. This concept
enabled obtaining better final solutions than the ones resulted from constructive
moves only.

In addition, parallel variants of the BCO algorithm were developed. The main
goal of the parallelization, in general, is to speed up the computations needed to
solve a particular problem by engaging several processors and dividing the total
amount of work between them. When meta–heuristics are under consideration,
the performance of parallelization strategy is influenced also by the quality of
final solution. Namely, meta–heuristics represent stochastic search procedures
(and BCO is not an exception) that may not result in the same solution even in
repeated sequential executions. On the other hand, parallelization may assure the
extension of the search space that could yield either improvement or degradation
of the final solution quality. Therefore, the quality of final solution should also be
considered as a parameter of parallelization strategy performance. Consequently,
the combination of gains may be expected: parallel execution can enable efficient
search of different regions in the solution space yielding the improvement of the
final solution quality within smaller amount of execution time.

BCO has proven to be suitable method for solving non-standard combinato-
rial optimization problems, e.g., those containing inaccurate data or involving
optimization according to multiple criteria. In these cases, the application of BCO
requires it to be hybridized by the appropriate techniques.

As for many other meta–heuristic methods, the quality of the final solution
cannot be evaluated with respect to the optimal one. However, some theoretical
aspects connected to the asymptotic convergence could be considered. Here we
recall some results identifying necessary conditions for the theoretical verification
of the BCO algorithm.

This paper presents a brief description of the meta–heuristics inspired by
bees’ foraging principles, details of the BCO algorithm, as well as of the algorithm
changes through its evolution. The rest of the paper is organized as follows.
Biological background is presented in Section 2. The survey of all algorithms
that rely on foraging habits of honeybees is given in Section 3. BCO is described
in Section 4. Modifications of the proposed algorithm are given in Section 5.
Section 6 contains the theoretical aspects of BCO convergence, and the last section
is devoted to conclusions and possible directions for a future research.

2. BIOLOGICAL BACKGROUND

Swarm behavior (fish schools, flocks of birds, herds of land animals, insects’
communities, etc.) is based on the biological needs of individuals to stay together.
In such a way, individuals increase the probability to stay alive since predators
usually attack only the isolated individuals. Flocks of birds, herds of animals, and
fish schools are characterized by collective movement. Colonies of various social
insects (bees, wasps, ants, termites) are also characterized by swarm behavior.
Swarm behavior is primarily characterized by autonomy, distributed functioning
and self-organizing. The communication systems between individual insects
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contribute to the collective intelligence pattern named “Swarm Intelligence” in
[5, 6].

Swarm Intelligence represents the branch of the Artificial Intelligence that
investigates individuals’ actions in different decentralized systems. These de-
centralized systems (Multi Agent Systems) are composed of physical individuals
(robots, for example) or “virtual” (artificial) ones that communicate, cooperate,
collaborate, exchange information and knowledge, and perform some tasks in
their environment. When designing Swarm Intelligence models, researchers use
some principles of the natural swarm intelligence. The development of artifi-
cial systems does not usually involve the entire imitation of natural systems, but
explores and adapts them while searching for ideas and models.

Bees in nature look for food by exploring the fields in the neighborhood of their
hive. They collect and accumulate the food for later use by other bees. Typically,
in the initial step, some scouts search the region. Completing the search, scout
bees return to the hive and inform their hive-mates about the locations, quantity,
and quality of the available food sources in the areas they have examined. In case
they have discovered nectar in the previously investigated locations, scout bees
dance in the so-called “dance floor area” of the hive, in an attempt to “advertise”
food locations and encourage the remaining members of the colony to follow
their lead. The information about the food quantity is presented using a ritual
called a “waggle dance”. If a bee decides to leave the hive and collect the nectar,
it will follow one of the dancing scout bees to the previously discovered patch of
flowers. Upon arrival, the foraging bee takes a load of nectar and returns to the
hive relinquishing the nectar to a food store. Several scenarios are then possible
for a foraging bee: (1) it can abandon the food location and return to its role of
an uncommitted follower; (2) it can continue with the foraging behavior at the
discovered nectar source without recruiting the rest of the colony; (3) it can try to
recruit its hive-mates with the dance ritual before returning to the food location.
The bee opts for one of the above alternatives. As several bees may be attempting
to recruit their hive-mates on the dance floor area at the same time, it is unclear
how an uncommitted bee decides which recruiter to follow. The only obvious
fact is that “the loyalty and recruitment among bees are always a function of the
quantity and quality of the food source” [7]. The described process continues
repeatedly, while the bees at a hive accumulate nectar and explore new areas with
a potential food sources.

3. THE ALGORITHMS BASED ON FORAGING HABITS OF HONEYBEES

Numerous algorithms have appeared in the recent literature as the paradigm
based on foraging habits of honeybees [3, 8, 11, 12, 13, 14, 18, 27, 32, 34, 37, 43, 44,
46, 47, 50, 53, 52, 54, 55, 56, 57]. They were mainly developed starting from one
of the following methods ABC [22], Bees Algorithm [39, 40] and Bee System [27].
Different authors propose various models of implementations and verify them on
numerous combinatorial optimization problems.
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Main steps of any algorithm based on foraging habits of honeybees are: forag-
ing and waggle dancing. Foraging is the solution generation phase, while the role
of the waggle dance (the information exchange phase) is to examine quality of
the existing solutions and direct the generation to the new ones. The idea for the
development of these algorithms was based on the simple rules for modeling the
organized nectar collection.

These algorithms use a similarity between the way in which bees in nature look
for food and the way in which optimization algorithms search for an optimum
of the combinatorial optimization problems. The main idea was to create the
multi agent system (the colony of artificial bees) capable to efficiently solve hard
combinatorial optimization problems. The artificial bees explore through the
search space looking for the feasible solutions. In order to increase the quality
of discovered solutions, artificial bees cooperate and exchange information. Via
collective knowledge and information exchange, the artificial bees focus on more
promising areas and gradually discard solutions from the less promising ones.

Among the first algorithms based on foraging concept is the one proposed in
[27]. The authors initially named their algorithm Bee System, but starting with
paper [50], the name BCO has been used. The aim of this paper is to propagate
this BCO algorithm by describing basic steps and its evolution toward simpler
but more efficient method. Before that, in the rest of this section, we briefly
summarize various algorithms based on foraging habits of honeybees, pointing
out the differences between them, and listing their applications.

Bulk of the papers proposing algorithms based on foraging habits of honey-
bees and their applications to numerous combinatorial optimization problems
appeared in the last couple of years [3, 8, 11, 12, 13, 14, 18, 22, 26, 27, 28, 29, 30, 32,
34, 36, 37, 43, 44, 46, 47, 50, 51, 53, 52, 54, 55, 56, 57]. Different implementations
of basic steps (foraging and waggle dancing) are the reasons for such a variety of
algorithms. As the major differences between these algorithms we point out the
following:

• various biological inspiration sources, mainly [7] or [42];

• the initial solutions are generated in various ways: randomly [52, 54] or in
some constructive, probability based manner [12];

• the number of bees may vary during the search process [27] and bees may
have different role (e.g., scouts, workers and onlookers in [22, 54]), while in
[12, 13, 14, 32, 47, 53] the number of bees is fixed and they perform the same
algorithm steps;

• in some of the algorithms, whole solutions are propagated [12, 56] and in
others, partial solutions [3, 14, 32, 47] or even the solution components [46]
influence the decision making process;

• dance duration, i.e., the number of iterations a solution is propagated,
changes in [8, 34], while in [12, 13, 14] only the solutions from the current
iteration are propagated;
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• some concepts involve solution improvement by applying e.g., local search
[54, 56] or fuzzy logic [51];

• different concepts for solution modification: constructive [15, 47], and im-
provement concept [12, 36, 52].

The algorithms based on foraging habits of honeybees have been applied to
various optimization problems in location analysis [3, 12, 15, 17, 47, 53], bio-
sciences [18, 46], economy [54], scheduling [13, 34, 43], transport and engineering
[32, 37, 51, 56, 57], medicine [52], etc.

4. THE BCO META–HEURISTIC

In the period 1999-2003, the basic concepts of BCO [27, 28, 29, 30] were in-
troduced under the name Bee System, by Dušan Teodorović (adviser) and Panta
Lučić (Ph.D. candidate) while doing research at Virginia Tech. BCO is a nature–
inspired meta–heuristic method developed for efficiently finding solutions to
difficult combinatorial optimization problems.

The basic idea behind BCO is to build the multi agent system (colony of artifi-
cial bees) that will search for good solutions of various combinatorial optimization
problems, exploring the principles used by honey bees during nectar collection
process. Artificial bee colony usually consists of a small number of individuals,
but nevertheless, BCO principles are gathered from the natural systems. Artificial
bees investigate through the search space looking for the feasible solutions. In
order to find the best possible solutions, autonomous artificial bees collaborate
and exchange information. Using collective knowledge and information shar-
ing, artificial bees concentrate on the more promising areas and slowly abandon
solutions from the less promising ones. Step by step, artificial bees collectively
generate and/or improve their solutions. The BCO search is running in iterations
until some predefined stopping criterion is satisfied.

During the evolution of the BCO algorithm, the authors have developed two
different approaches. The first approach [13, 47] is based on constructive steps in
which bees build solutions piece by piece. The second, a very actual approach of
the BCO algorithm [12, 37, 52], is based on the improvement of complete solutions
in order to obtain the best possible final solution. This approach is named BCOi.
In the text to follow, we explain both concepts through the general description of
the algorithm.

The population of agents consisting of B individuals (artificial bees) is engaged
in BCO. Each artificial bee is responsible for one solution of the problem. There are
two alternating phases (forward pass and backward pass) constituting a single step
in the BCO algorithm. In each forward pass, all artificial bees explore the search
space. They apply a predefined number of moves, which construct/improve the
partial/complete solutions, yielding the new partial/complete solutions.

For example, let bees Bee 1, Bee 2, . . . , Bee B participate in the decision–making
process on n entities. The entity could be a subset (one or more) of components
of the partial solution according to the constructive version, or a single complete
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solution that is going to be enhanced in the following algorithm phases according
to BCOi. The possible situation after s-th forward pass is illustrated in Fig. 1.
Rectangles in Fig. 1 represent partial/complete solutions associated to the bees.
Different patterns denote that to each bee is associated a different solution.

Figure 1: An illustration of partial/complete solutions after s-th forward pass

Having obtained new partial/complete solutions, the second phase, the so-
called backward pass starts. In the backward pass, all artificial bees share the
information about the quality of their partial/complete solutions. In nature, bees
would return to the hive, perform a dancing ritual (“waggle dance”) that would
inform other bees about the amount of food they have discovered, and the prox-
imity of the patch to the hive. In the search algorithm, the announcement of the
solution quality is performed by the calculation of the objective function value
for each partial/complete solution. Having all solutions evaluated, each bee de-
cides with a certain probability whether it will stay loyal to its solution or not.
The bees with better solutions have more chances to keep and advertise their
solutions. Contrary to the bees in nature, artificial bees that are loyal to their par-
tial/complete solutions are at the same time the recruiters, i.e., their solutions would
be considered by other bees. Once the solution is abandoned, the corresponding
bee becomes uncommitted and has to select one of the advertised solutions. This
decision is taken with a probability, such that better advertised solutions have
greater opportunities to be chosen for further exploration. In such a way, within
each backward pass, all bees are divided into two groups (R recruiters, and re-
maining B − R uncommitted bees) as it is shown in Fig. 2. Values for R and B − R
are changing from one backward pass to another.

Let us assume that after comparing all generated partial/complete solutions,
Bee 1, from Fig. 1 decided to abandon its own solution and to join Bee B (see
Fig. 3). Bee 1 and Bee B “fly together” along the path already generated by the
Bee B. In practice, this means that partial/complete solution generated by Bee B is
associated (copied) to Bee 1 also (rectangles which denote solutions associated to
Bee 1 and Bee B are the same in Fig. 3). After that, both Bee 1 and Bee B are free
to make their individual decisions about the next step to be made. The Bees 2, 3,
from previous example, keep already generated partial/complete solutions.

In the next forward pass, according to the constructive BCO, each bee adds
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Figure 2: Recruiting of uncommitted followers

Figure 3: The possible result of a recruiting process in s-th backward pass

new (different) components to the previously generated partial solution, while
in BCOi bees modify some components of the complete solutions in order to
generate higher quality ones. The described situation after the next forward pass
is illustrated in Fig. 4 (bees’ partial/complete solutions are changed, and it is
shown symbolically by the associated rectangles with new patterns).

Figure 4: An example of partial/complete solutions after (s+1)-th forward pass

The two phases of the search algorithm, namely the forward and backward
pass, alternate NC times, i.e., until each bee completes the generation of its solution
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or performs NC solution modifications. In former (constructive) variants of the
BCO algorithm, parameter NC was used to count the number of components to be
added to partial solutions during each forward pass. Consecutively, the number
of forward/backward passes was calculated as a function of NC. In order to
unify the algorithm description, we changed the original meaning of NC after the
development of BCOi. Some other modifications of BCO parameters can also be
found in recent literature [36, 37]. In any case, NC is a parameter used to define the
frequency of information exchange between bees. When NC steps are completed,
the best among all B solutions is determined. It is then used to update global best
solution and an iteration of BCO is accomplished. At this point, all B solutions
are deleted and the new iteration could start. The BCO algorithm runs iteration
by iteration until a stopping condition is met. The possible stopping condition
could be, for example, the maximum number of iterations, the maximum number
of iterations without the improvement of the objective function value, maximum
allowed CPU time, etc. At the end, the best found solution (the so called current
global best) is reported as the final one.

The BCO algorithm parameters whose values need to be set prior the algorithm
execution are:

B — the number of bees involved in the search and
NC — the number of forward (backward) passes constituting a single BCO

iteration.
The pseudo-code of the BCO algorithm is given in Fig. 5.
Steps (1), (a) and (b) are problem dependent and should be resolved in each

BCO implementation. On the other hand, there are formulae specifying steps (c),
loyalty decision, and (d), recruiting process, and they are described in the rest of
this section.

4.1. Loyalty Decision
After the completion of a forward pass, each bee decides whether to stay loyal

to the previously discovered solution or not. This decision depends on the quality
of its own solution related to all other existing solutions. The probability that b-th
bee (at the beginning of the new forward pass) is loyal to its previously generated
partial/complete solution is expressed as follows:

pu+1
b = e−

Omax−Ob
u , b = 1, 2, . . . ,B (1)

where:
Ob - denotes the normalized value for the objective function of partial/complete
solution created by the b-th bee;
Omax - represents maximum over all normalized values of partial/complete solu-
tions to be compared;
u - counts the forward passes (taking values 1, 2, . . . , NC).

The normalization is performed in two ways, depending on whether a min-
imization or maximization of the objective function is required. If Cb (b =
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Initialization: Read problem data, parameter values (B and NC),
and stopping criterion.

Do
(1) Assign a(n) (empty) solution to each bee.
(2) For (i = 0; i < NC; i + +)

//forward pass
(a) For (b = 0; b < B; b + +)

For (s = 0; s < f (NC); s + +)//count moves
(i) Evaluate possible moves;
(ii) Choose one move using the roulette wheel;

//backward pass
(b) For (b = 0; b < B; b + +)

Evaluate the (partial/complete) solution of bee b;
(c) For (b = 0; b < B; b + +)

Loyalty decision for bee b;
(d) For (b = 0; b < B; b + +)

If (b is uncommitted), choose a recruiter by the roulette wheel.
(3) Evaluate all solutions and find the best one. Update xbest and f (xbest)

while stopping criterion is not satisfied.
return (xbest, f (xbest))

Figure 5: Pseudo-code for BCO

1, 2, . . . ,B) denotes the objective function value of b-th bee partial/complete so-
lution, normalized value of the Cb in the case of minimization is calculated as
follows:

Ob =
Cmax − Cb

Cmax − Cmin
, b = 1, 2, . . . ,B (2)

where Cmin and Cmax are the values of partial/complete solutions related to minimal
and maximal objective function value, respectively, obtained by all engaged bees.
From equation (2), it could be seen that if b-th bee partial/complete solution is
closer to maximal value of all obtained solutions, Cmax, than its normalized value,
Ob, is smaller and vice versa.

In the case of maximization criterion, normalized value of Cb is calculated as
follows:

Ob =
Cb − Cmax

Cmax − Cmin
, b = 1, 2, . . . ,B (3)

From equation (3), it is obvious that if the value of the partial/complete solution
Cb, is higher, then its normalized value Ob, is larger, and vice versa.

Using equation (1) and a random number generator, each artificial bee decides
whether to become uncommitted follower or to continue exploring its own solu-
tion. If chosen random number is smaler than the calculated probability, then the
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bee stays loyal to its own solution. Otherwise, if the random number is greater
than the probability pu+1

b , the bee becomes uncommitted.
Let us discuss equation (1) in some more details. A greater Ob value corre-

sponds to a better generated solution, and a higher probability of the bee staying
loyal to the previously discovered solution. The higher index in the forward pass
increases the influence of the already discovered solution. This is expressed by
the term u in the denominator of the exponent (equation (1)). In other words, at
the beginning of the search process bees are “braver” when searching the solu-
tion space. The more forward passes are made, the less courage they have: as
we approach to the end of the search process, the bees are more focused on the
already known solutions.

Some other probability functions are examined in [31], indicating that al-
ternative ways to determine loyalty should also be considered since for some
combinatorial problems they may result in faster execution of the BCO algorithm.

4.2. Recruiting Process
For each uncommitted bee, it is decided which recruiter it will follow, tak-

ing into account the quality of all advertised solutions. The probability that b’s
partial/complete solution would be chosen by any uncommitted bee equals:

pb =
Ob

R∑

k=1

Ok

, b = 1, 2, . . . ,R (4)

where Ok represents the normalized value for the objective function of the k-th
advertised solution, and R denotes the number of recruiters. Using equation (4)
and a random number generator, each uncommitted follower joins one recruiter
through a roulette wheel.

The roulette wheel is a well-known model of choice. The main inspiration
for its development came from a game-gambling roulette. Any solution can be
chosen, and the probability of its selection (the size of a particular slot on the
roulette wheel) depends on the quality of that solution, i.e., the value of the
objective function.

In practice, the size of the slot on the roulette wheel associated to each solution
is determined by the ratio of the corresponding normalized objective function
value and the sum of the normalized objective function values for all advertised
solutions. On the one hand, a solution with better objective function value has a
higher chance to be selected. On the other hand, there is still a possibility that it
will be eliminated from further search process.

5. THE MODIFICATIONS OF THE BCO ALGORITHM

The BCO algorithm underwent numerous changes trough the process of evolu-
tion from its appearance until nowadays. The first versions of BCO [27, 28, 29, 30]
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have more similarities with the behavior of bees in the nature than the recent
versions of the algorithm. The main difference between these versions is that hive
had an important role in the first version. The hive had specified location that
could also be changed during the search process. The other difference is that in
the first version not all bees were engaged at the beginning of the search process.
The scout bees started the search, and at each stage, new bees joined in by the
recruiting process. In this initial BCO version, the authors proposed Logit-based
model [33] for calculating the probability of choosing next node to be visited,
while in recent versions roulette wheel is used for this purpose.

During numerous applications of the BCO algorithm, it was observed that the
constructive version cannot successfully solve some combinatorial optimization
problems. Therefore, several modifications of the BCO algorithm were developed
in order to solve hard optimization problems. In the text to follow, we will explain
all these modifications in details.

5.1. Constructive and Improving Alternatives of the BCO Algorithms
In most of the recent applications, the BCO algorithm was constructive [13,

29, 30, 47, 56, 57]. For each bee, a solution was constructed from scratch, step
by step, applying some stochastic, problem specific, heuristic rules. Randomness
induced by these stochastic construction processes assured diversity of the search.
Within each iteration, B solutions were generated and the best of them was used
for updating the current global best solution. Next iteration then resulted in B
new solutions, among which, we searched for the new global best one.

The first time implementation of the original constructive BCO method in
solving the p-center problem was not successful enough. As a consequence,
the authors of [12] decided to develop a new concept based on improving the
complete solution held by each bee. The new version of the BCO algorithm is
named BCOi, as it is mentioned before. In contrast to the constructive version, in
BCOi bees are assigned complete solutions at the beginning, and have to modify
them through the iterations. The BCOi concept has not been previously used in
the relevant literature: all methods based on bees foraging principles were the
constructive ones.

The BCOi algorithm implementation proposed in [12] consists of the following
five steps. The first step, called preprocessing is performed “off-line”. In this
step the input data are transformed in order to reduce the time required for
all computations performed online. The second step represents generation of
the initial complete solutions. In the third, the most significant step, bees modify
current solutions through NC forward passes within the single iteration. This step
is the key factor that enables reaching the best possible solution quality. Its main
role is to assure different treatment for the same solutions held by different bees.
Solution modification has to be stochastic and without local search embedded
in the process. Steps 4 (solutions comparison mechanism) and 5 (recruitment)
are identical to the corresponding steps from the constructive BCO. The last four
steps are executed in the real CPU time.
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The idea of improving alternatives could be developed in many different ways,
and this approach certainly may be very useful for solving difficult combinatorial
optimization problems. It has already been explored in the recent literature for
solving some other hard optimization problems like network design [37] and
satisfiability problem in the logic with approximate conditional probability [44],
while for the berth allocation problem [26], hybrid variant was designed.

5.2. Global knowledge
The recent concepts of the BCO algorithm did not involve information ex-

change between iterations, i.e., there was no global knowledge [12, 15, 47]. The
advantage of this approach is that bees have freedom to generate various solu-
tions that lead to diversification of the solution space search. On the other hand,
it may cause potentially promising parts of the solution space to be insufficiently
explored. Therefore, it may be useful to take into account information exchange
between iterations and its amount should be carefully determined. The authors
of [14] notice that an excessive increase of information exchange forces bees to
concentrate their search on a small part of the solution space. As a result, the
BCO algorithm generates final solutions of poor quality. To overcome this prob-
lem, the authors of [14] embedded the existence of the global knowledge into the
algorithm.

In order to improve their results on the tested benchmark instances, the au-
thors of [14] allowed the relevant information to be available through different
iterations, and to be explored by bees during the solution generation process. The
appropriate amount of shared information for this problem is determined exper-
imentally. The following modification of the BCO algorithm yielded the greatest
performance increase. The current global best objective function value is used by
each bee during both forward and backward passes. Within the forward pass,
bees would not perform constructive steps yielding the solutions worse than the
current global best if they have an alternative. Regarding the backward pass,
the same information is used to prevent bees staying loyal to partial solutions
inferior to the current global best objective function. Consequently, the probabil-
ities defined by equation (1) for those bees are set to zero, and they automatically
become uncommitted. If all bees become uncommitted in this way, the iteration is
interrupted and a new one starts without completing the current partial solutions.

According to the global knowledge concept, for a successful implementation of
the BCO algorithm, it is necessary to establish the connections between iterations
and therefore, to prevent the generation of solutions worse than the current global
best.

Similar principle has also been used in [37]. The authors propagated the best
known solution through modification process in the later BCO iterations. Among
randomly generated initial solutions, the best was set to be the current best known
(incumbent) solution. At the beginning of each iteration, the authors took into
account the incumbent as well as B solutions created within previous iteration
(B + 1 solutions in total). In such a way, they enabled global knowledge about
current best solution to be shared through search process.
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5.3. Parallelization of the BCO algorithm
Swarm intelligence algorithms are created as multi-agent systems, providing

a good basis for the parallelization on different levels. High-level parallelization
assumes a coarse granulation of tasks and can be applied to iterations of all these
methods. Smaller parts of the algorithms usually also contain a lot of independent
executions, and are suitable for low-level parallelization. Parallelization on all
levels for various bees’ algorithms can be found in recent literature [4, 10, 12, 35,
38, 45]. Here we briefly recall the parallelization strategies for BCO proposed in
[10, 12], and systematically reviewed in [9].

The authors of [10, 12] addressed the parallelization of BCO for distributed
memory multiprocessors systems. They considered the coarse granulation strat-
egy in both synchronous and asynchronous way. Fine-grained parallelization is
not suitable for these multi-processors systems, as it was verified in [12]. Three
different strategies for parallelization of BCO, two synchronous and one asyn-
chronous, were proposed in [10]. All strategies may be implemented in several
different ways; some details are given in the remaining of this subsection.

5.3.1. Independent run of BCO algorithms
Coarse-grained parallelization of BCO in its simplest form presents the in-

dependent execution of necessary computations on different processors, as il-
lustrated in Fig. 6. The main goal of this strategy was to speed up the search
performed by BCO by dividing total amount of work between several processors.

In [10], it was realized by a reduction of the stopping criterion on each pro-
cessor. For example, if the stopping criterion is defined as the allowed CPU time
(given as a runtime value in seconds), the BCO could run in parallel on q processors
for runtime/q seconds. Similar rule can be introduced when maximum number of
iterations is selected as the stopping criterion. In both cases, each processor has
to perform independently sequential variant of BCO, but with the reduced value
of the stopping criteria. The BCO parameters (number of bees B and number
of forward/backward passes NC) were the same for all BCO processes executing
on different processors in order to assure a load balance between all processors.
The BCO algorithms running on different processors were differing in the seeds
values. This variant of parallelized BCO was named Distributed BCO (DBCO).
Another way to implement the coarse grained parallelization strategy proposed
in [10] was the following: Instead of the stopping criterion, the number of bees
could be divided. Namely, if the sequential execution uses B bees for the search,
parallel variant executing on q processors would be using B/q bees only. Actually,
on each processor, a sequential BCO is running with the reduced number of bees.
This variant was referred to as BBCO since the bees were distributed among pro-
cessors, and again the BCO parameters had the same values for all BCO processes
executing on different processors.

The third variant of the independent BCO execution proposed in [10] was
obtained by varying values of the BCO parameters and changing stopping crite-
rion. The authors of [10] referred to this strategy as MBCO, and showed that it
introduced more diversification in the search process. In this case, the reductions
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Figure 6: DBCO – Independent execution of several sequential BCO algorithms

required to realize distributed execution in one of the described manner were
adjusted in such a way that the resulting load of processors was balanced. For
example, if the number of bees on one processor was twice bigger than that on
the other processor (and the value for NC remained the same), then the stopping
criterion of the first process was set to one half of the stopping criterion on the
second process.

5.3.2. Synchronous cooperation of BCO algorithms
More sophisticated way to realize coarse-grained parallelization is coopera-

tive work of several BCO processes. At certain predefined execution points, all
processes exchange the relevant data (usually the best solutions they obtained
by that time) that are used to guide further search. This synchronous strategy
was proposed in [10] and named Cooperative BCO (CBCO). The block-diagram
illustrating this strategy would be similar to the one presented in Fig. 6, only the
branching part should be concatenated several times (depending on the allowed
communication frequency).

In order to examine the benefits of the information exchange during the co-
operative execution, the authors of [10] did not reduce the stopping criterion,
allowing all processors to work until the original stopping criterion was satisfied.
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The communication points were determined in two different ways: fixed and
processor dependent. In the first case, the best solution was exchanged 10 times
during the parallel BCO execution regardless the number of processors engaged.
In such a way processors were given more freedom to perform independent part
of the search. Actually, as the number of processors q increased, the total number
of iterations performed before the communication was initiated also increased.
On the other hand, the authors of [10] tested how the increasing communica-
tion frequency with adding new processors influenced the search process. The
idea was to enable passing the information about the improvement of the current
global best solution to all the processors as soon as possible. The current global
best solution represents the reference point for constructing new solutions and
guaranties faster convergence of the resulting search. For the definition of com-
munication points in this case authors [10] used the following rule: current global
best solution was exchanged each nit/(10 ∗ q) iterations where nit represented the
maximum allowed number of iterations.

5.3.3. Asynchronous cooperation of BCO algorithms
To decrease the communication and synchronization overhead during the

cooperative execution of different BCO algorithms, the authors of [10] proposed
the use of the asynchronous execution strategy. They implemented this strategy
in two different ways, but under the common name General BCO (GBCO). The first
implementation involved a centrally coordinated knowledge exchange, while the
second utilized non-centralized parallelism. Each processor executed a particular
sequential variant of BCO until some predefined communication condition was
satisfied. It than informed others about its own search status, collected the current
global best, and continued its execution. As the asynchronous concept, this
strategy does not require all processors to participate in the communication at
the same time. Each processor can individually decide when to send its results
and when to collect the results arrived from the others. Non-blocking message
passing interface and the large enough mailbox buffer were used to support the
implementation of this strategy.

The first asynchronous approach proposed in [10] assumed the existence of a
central blackboard (a kind of global memory) - to which each processor has access.
The communication condition was defined as the improvement of the current best
solution or the execution of 5 iterations without improvement.

The stopping criterion was not reduced and was set to maximum allowed CPU
time in order to ensure better load balancing, i.e., all processors would complete
their execution at approximately the same time.

Non-centralized asynchronous parallel BCO execution assumed the existence
of several blackboards so that only a subset of (adjacent) processors may post and
access information on the corresponding blackboard. In this case, each proces-
sor was allowed to perform a single iteration of the corresponding BCO before
addressing its associated blackboard. In case that it managed to improve the
current best solution from the blackboard, it would post that information on the
blackboard and check if there were better solutions already posted there. The best
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posted solution would be adopted as the new reference point. If the improvement
did not occur in the current iteration, the corresponding processor would simply
check for a better solution on its associated blackboard. If a better solution was
posted, it would serve as a new reference point, otherwise, the execution would
continue with the previous best as the reference point.

5.4. The Artificial Bees and Fuzzy Logic
In the majority of the real life problem models it is assumed that problem data

(costs, capacity, distance, duration etc.) are deterministic quantities known in
advance. On the other hand, the travel time between two nodes in a network, for
example, may involve an uncertainty due to traffic conditions, type of driving,
weather conditions, choice of streets, and so on. The most common way to model
uncertainty is to use fuzzy logic [60]. Most sets in reality have no sharp line to
distinguish between the elements in the set and those outside it. The simplest
examples of fuzzy sets are classes of elements characterized by adjectives: big,
small, fast, old, etc. The membership function is associated with fuzzy sets and it
takes continuous values from the closed interval [0, 1].

In the fuzzy set theory, each setA is defined as a set of ordered pairs, namely
A = {x, µA(x)}where µA(x) indicates the grade of membership for an element x to
the setA [60].

For example, if x is the travel time between nodes i and j, then short could be
considered as a particular value of the fuzzy variable travel time x. To each x, a
number µA(x) ∈ [0, 1] is assigned showing the extent to which x is considered to
be short. The fuzzy set of subjectively estimated travel time between nodes i and
j is denoted by T . In order to simplify the arithmetic operations, the travel time
T is assumed to be a triangular fuzzy number. The triangular fuzzy number T is
expressed as:

T = (t1, t2, t3) (5)

where t1, t2, and t3 are the lower boundary, the value that corresponds to the
highest grade of the membership, and the upper boundary of fuzzy number T ,
respectively [25].

The BCO algorithm application on models with fuzzy logic is almost the same
as application on deterministic models. Main differences are in the part when:

- bees’ partial solutions are compared;
- different component attractiveness is calculated.
In the first case, Kaufmann and Gupta’s method can be used to compare fuzzy

numbers. In the second case, the approximate reasoning algorithm for calculating
the solution component attractiveness could be applied. This algorithm is usually
composed from the rules of the following type (Fig. 7):

If the attributes of the solution component are VERY GOOD
Then the considered solution component is VERY ATTRACTIVE
The approximate reasoning based on Fuzzy Logic has been used in [30] to

model uncertain demands in nodes when solving vehicle routing problem, and in
[50, 51] to model some uncertain quantities for solving Ride-Matching problem.
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Figure 7: Fuzzy sets describing attractiveness

5.5. BCO and multi-objective programming
The authors of [47] solved the inspection stations location problem by com-

bining the BCO algorithm and compromise programming. This was the first
attempt to hybridize BCO with a technique that belongs to the multi-objective
programming.

The basic idea behind compromise programming is to create a vector which is
called the ideal vector and is represented by [ f o

1 , f o
2 , . . . , f o

K], where f o
i (i = 1, 2, . . . ,K)

denotes the optimum of the i-th objective function. The point that determines
the ideal vector is called ideal point. In real-life applications, it is rare, if not
impossible, to discover the ideal solution of the considered multi-objective prob-
lem. In [47], the following measure of “possible closeness to ideal solution” was
proposed.

Lp =


K∑

i=1

wp
i

∣∣∣∣∣∣
fi(~x) − f o

i

fi max − f o
i

∣∣∣∣∣∣
p 

1/p

(6)

where
fi(~x) - i-th objective function value that is a result of implementing decision ~x;
f o
i - the optimum value of the i-th objective function;

fi max - the worst value obtainable for the i-th objective function;
K - total number of objective functions;
wi - i-th objective function’s weight;
p - the value that shows distance type: for p = 1, all deviations from optimal

solutions are in direct proportion to their size, while 2 ≤ p ≤ ∞, bigger deviation
carry larger weight in Lp metric.

Various compromise solutions can be generated by choosing different values
for the parameters. In this way, several feasible alternatives can be presented to
the decision-maker.

The authors of [47] assumed that decisions related to the inspection station
locations depend on two conflicting objective functions. The first was the mini-
mization of the total number of deployed inspection facilities, and the second was
the maximization of the risk reduction. The BCO algorithm for the multi-objective
problem formulation, presented in [47], is similar to the BCO application in the
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single objective problem case. The difference is only in the part when bees com-
pare their partial solutions. In the multi-objective case, the authors in [47] used
Lp metric to perform partial solutions comparison in the following way.

Lp =

√
w2

1

∣∣∣∣∣
NFb −ONFb

WNFb −ONFb

∣∣∣∣∣
2

+ w2
2

∣∣∣∣∣
RRb −ORRb

WRRb −ORRb

∣∣∣∣∣
2

, b = 1, 2, . . . ,B (7)

The following labels are used in the previous formula (7):
w1 - weight of the first criterion;
w2 - weight of the second criterion;
NF - the number of deployed inspection facilities in the current partial solution;
ONF - the optimal value for the first criterion;
WNF - the worst value for the first criterion;
RR - the value of risk reduction in the current partial solution;
ORR - the optimal value for the second criterion;
WRR - the worst value for the second criterion.
In [47], it was adopted that the worst value obtainable for the first criterion was

equal to m (the maximum number of inspection station that could be deployed in
the network). The ideal (optimal) value in the case of the first criterion was equal
to zero. On the other hand, the worst value for risk reduction was zero. The ideal
(optimal) value was equal to the sum of all aip, where aip denoted the reduction of
risk achieved on path p if the first facility encountered along that path was located
at vertex i.

6. THE THEORETICAL VERIFICATION OF THE BCO ALGORITHM

Each implementation of the BCO algorithm is tailored for a particular opti-
mization problem that is to be solved. This involves the solution representation,
the rules for constructing/modifying current solutions, and the evaluation and
comparison of these solutions. Once the program is completed, it is executed on
various instances until the stopping criterion is satisfied. For the considerations to
follow, we assume that the stopping criterion is defined as the maximum number
of iterations.

The final solution of the BCO execution is identified as the best solution found
before the stopping criterion is fulfilled. If the optimal solution for a particular
problem instance is not known, we cannot discuss the quality of the final BCO
solution. Is it the optimal one or, if not, how far is it from the desired optimum?
The only thing we can do is to increase the maximum number of iterations and,
possibly, obtain a better final solution.

Numerous successful applications of the BCO method have illustrated its effi-
ciency in an empirical way. Moreover, there are some recent papers dealing with
the empirical evaluation [36] and parameter calibration [31] of BCO. However,
the theoretical explanations of its effectiveness appeared just recently [20, 21]. In
[20], the necessary conditions assuring that an optimal solution can be generated
by any bee when the number of iterations is sufficiently large were identified.
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Then, the so-called best-so-far convergence of the BCO algorithm was proven. It
was shown that the current best solution converges to one of the optimal solu-
tions, as the number of iterations increases, with the probability one. This type
of convergence is quite common and holds even for some simple, single solution
based, stochastic search techniques, like e.g., random walk.

Here, we reproduce the first theorem from [20] related to the earlier versions
of BCO, which did not include the global knowledge.

Theorem 6.1. [20]: Let P∗(t) be the probability that the BCO algorithm generates an
optimal solution s∗ at least once within the first t iterations. Let p∗ be the probability that
any bee generates the optimal solution. Then for an arbitrary ε > 0 and for a sufficiently
large t, p∗ > 0, implies P∗(t) ≥ 1 − ε. Asymptotically, this yields

lim
t→∞

P∗(t) = 1.

Generalization to the more sophisticated case, involving the dependency and
knowledge exchange between the iterations, is straightforward. In this case, p∗

changes from iteration to iterations and we denote it by p∗(t). Now, only additional
requirement is the existence of the lower bound pmin on the probability p∗(t), and
the same proposition holds referring to pmin instead of p∗.

Therefore, the necessary condition for an implementation of the BCO algo-
rithm to be convergent in the best so far sense is that selected solution represen-
tation and construction/modification rules allow generating an optimal solution
with the probability larger than zero. In another words, the BCO implementation
has to ensure that the entire solution space will be visited if the algorithm is given
enough time. This means that at least one bee will generate an optimal solution
for a given problem. For example, in solving TSP if the solution is represented as
a permutation of cities, than the probability to generate an optimal tour equals at
least 1/n! > 0. In solving the p-median or p-center problem, to obtain the optimal
solution, a bee has to select appropriate p among n locations. The number of all
selections of p elements out of the given n is

(n
p
)

and therefore, p∗ ≥ 1/
(n

p
)
> 0.

The results presented in [21] are dealing with different types of convergence as
defined in [19] for a general meta–heuristic concept. In addition to the best-so-far
convergence of BCO, so called model convergence was also proved for the construc-
tive variant of the BCO algorithm. Model convergence assumes learning from the
previous experience and therefore, can be considered only for the variants with
global knowledge exchange between iterations. Moreover, iteration-dependent
probabilities for selecting components during the forward pass (step 2 (a)(i)) have
to satisfy some additional properties summarized in Theorem 2.

Theorem 6.2. [21] Assume that

1 ≥ λt ≥
log t

log(t + 1)
for all t ≥ t0, (t0 ≥ 1)

and
+∞∑

t=1

(1 − λt) = +∞.
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Then the corresponding BCO algorithm converges in probability to one of the optimal
solutions.

Here, λt represents the time dependent learning rate used to modify the se-
lection probability of component i in the iteration t (pi(t)). This probability is
calculated as follows:

pi(t) =



1−λt · (1−pi(t−1)) if i ∈ xbs f
t−1;

λt · pi(t−1) if i < xbs f
t−1;

pi(1) if i was not choosen.

where pi(1) denotes the initial (problem specific) probability to choose a com-
ponent i. The idea is to learn the influence of each component to the quality
of generated solution from the previous experience. If the component i is part
of the current best (best-so-far) solution, the probability that it will be selected
in the next iteration is increased. If this component was included in some low
quality solutions, the probability of its selection for the next iteration is decreased.
Obviously, if a component was not included in any solution, we cannot evaluate
its influence. In that case, its probability remains unchanged in order to give it
more chance to be chosen in the iterations to follow. As the number of iterations
increases, the components not included in the search will have larger selection
probability then those belonging to the low quality solutions and therefore, their
chances to be included in some future solutions will increase. Consecutively, as
the number of iterations t → +∞, only first two modification cases will remain.
Complete explanations and proof of Theorem 2 are beyond the scope of this paper;
interested readers are referred to [21].

7. CONCLUSION

The Bee Colony Optimization algorithm, one of the Swarm Intelligence tech-
niques, is a meta–heuristic method inspired by the foraging behavior of honey-
bees. It represents a general algorithmic framework applicable to various opti-
mization problems in management, engineering, control, etc., and should always
be tailored for a specific problem. The BCO method is based on the concept of
cooperation, which increases the efficiency of artificial bees. BCO has the capability
to intensify search in the promising regions of the solution space through infor-
mation exchange and recruiting process. The diversification process is realized
by restricting the search within different iterations.

This paper contains a brief survey of all algorithms based on foraging habits
of honeybees, the detailed explanation related to the BCO algorithm proposed in
[27, 28, 29, 30], and all modifications applied on initial version of the algorithm
during its various applications. Moreover, it briefly describes recently obtained
mathematical validation of the BCO approach. Detailed survey of BCO applica-
tions to various combinatorial and continuous optimization problems is presented
in our paper: Bee Colony Optimization Part II: The Application Survey.
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In years to come, the authors expect more BCO based models, examining,
for instance, bees’ homogeneity (homogenous vs. heterogeneous artificial bees),
various information sharing mechanisms, and various collaboration mechanisms.
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[50] Teodorović, D., and Dell’Orco, M., ”Bee colony optimization - a cooperative learning approach to
complex transportation problems”, In Advanced OR and AI Methods in Transportation. Proceedings
of the 10th Meeting of the EURO Working Group on Transportation, Poznan, Poland, (2005) 51–60.
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